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Recursion over classes.

We have discussed versions of recursion over the set ω and over the class ON.
Here we state a more general version of recursion.

Theorem 8.7, NST. Let V be a model and let A be a class in V . Let
E = E(x, y) be a class relation defined on A such that

1 ⟨A; E⟩ is ‘set-like’.
(For all a ∈ A, {b ∈ A | bEa} (=: predA,E(a)) is a set.)

2 ⟨A; E⟩ satisfies the Axiom of Foundation.
(Every nonempty subset of A has an E-minimal element.)

If G : A × V → V is a class function, then there is a unique class function
F : A → V satisfying

F (a) = G(a, F |predA,E(a)).

Proof: See NST, pages 98-100. 2
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Absoluteness of recursive definitions

Let M be a transitive class model of ZF. We may compare the result of defining a
class function by recursion in V versus defining a class function by recursion relative
to M using the same data.

Theorem 13.11, NST. Let A be a class, E be a well-founded set-like class relation on
A, and G : A × V → V be a class function. Use these data to produce a class
function F that satisfies, for all x ∈ A, F (x) = G(x, F |predA,E

(x)). Let M be a
transitive class model of ZF, and assume the following:

1 A, E, and G are absolute for M .

2 (E is set-like on A)M holds.

3 (∀a ∈ M ∩ A)(predA,E(a) ⊆ M) holds.

Then F is absolute for M, V .

Proof: 10 lines, pages 199-200, NST.
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P -names (page 599, NST)

Theorem 28.4, NST. For any set P there exists a unique class function
F = FP : V → 2 such that for any set τ ,

F (τ) =


1 if τ is a binary relation and

for all (σ, p) ∈ τ we have that p ∈ P and F (σ) = 1,

0 otherwise.

This theorem uses recursion over the class A = V using the well-founded, set-like
relation E defined by

σ E τ ⇔ (∃p ∈ P )((σ, p) ∈ τ).
E is set-like, because ∈ is set-like. E is well-founded, since σEτ implies
rank(σ) < rank(τ):

σ E τ ⇔ (∃p ∈ P )(σ, p) ∈ τ
⇒ σ ∈ {σ} ∈ {{σ}, {σ, p}} ∈ τ
⇒ rank(σ) < rank(τ).

Call τ a P -name if FP (τ) = 1. By the preceding claims, the property of
being a P -name is absolute for M, V when M is a c.t.m. containing P .
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Characterizing P -names

Claim. τ is a P -name iff τ is a binary relation such that for every (σ, p) ∈ τ it
is the case that σ is a P -name and p ∈ P .

Reasoning:

τ is a P -name iff FP (τ) = 1
iff if τ is a binary relation and for all (σ, p) ∈ τ

we have that p ∈ P and FP (σ) = 1
iff if τ is a binary relation and for all (σ, p) ∈ τ

we have that p ∈ P and σ is a P -name.

Denote the P -names in V by V P . If M is a c.t.m. in V , MP = M ∩ V P is
the set of P -names in M .
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Examples of P -names

Using the characterization just given, we can see that the following are
P -names.

1 ∅.

Justification: τ = ∅ is a binary relation whose elements (σ, p) have the
property that σ is a P -name and p ∈ P . (Vacuously.)

2 Any binary relation of the form τ = {(∅, p), (∅, q), . . .}, p, q, . . . ∈ P .
3 Any binary relation of the form

τ = {(∅, p), (∅, q), . . . , ({(∅, r), (∅, s), . . .}, t), . . .}, p, q, r, s, t, . . . ∈ P .
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Alternative description of P -names

The P -names in V can be introduced by rank:

1 V P
0 = ∅.

2 V P
α+1 = P(V P

α × P ).
3 V P

λ =
⋃

β<λ V P
β , λ limit.

4 V P =
⋃

V P
α .

Note: Here, the notation V P
α does not mean Vα ∩ V P , but instead refers to the

value assigned to α under the recursively-defined function above.
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Evaluating P -names at G

Theorem 28.6, NST. For any set G ⊆ P there exists a unique class function

val(−, G) = valP (−, G) : V → V

such that for any set τ ,

val(τ, G) = valP (τ, G) = {val(σ, G) | (∃p ∈ G)((σ, p) ∈ τ)}.

The 6-line proof in NST uses class recursion.
The data defining val are absolute, so val is absolute.

Write τG for val(τ, G). In this notation

τG = {σG | (∃p ∈ G)((σ, p) ∈ τ)}.
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The Definition of M [G]

Definition.(page 600, NST) If M is a c.t.m. and G ⊆ P ∈ M , then
M [G] = {τG | τ ∈ MP }.

Remarks.

1 (For τ ∈ MP , τG = {σG | σ ∈ MP , (∃p ∈ G)((σ, p) ∈ τ)})
We only need to explain why, if τ ∈ M , then σ ∈ M : M is transitive and
σ ∈ {σ} ∈ {{σ}, {σ, p}} ∈ τ ∈ M .

2 (M [G] is a countable set in V )
Since MP ⊆ M , MP is a set in V that is countable in V . The assignment
τ 7→ τG is given by the class function val, so by the Axiom of Replacement in
V we get that M [G] is a set in V that is countable in V .

3 (M [G] is a transitive set in V )
Choose x ∈ y ∈ M [G]. Necessarily y = τG for some τ ∈ MP . Since
x ∈ y = τG, we must have x = σG for some σ ∈ MP . Hence x ∈ M [G].
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Since MP ⊆ M , MP is a set in V that is countable in V . The assignment
τ 7→ τG is given by the class function val, so by the Axiom of Replacement in
V we get that M [G] is a set in V that is countable in V .

3 (M [G] is a transitive set in V )
Choose x ∈ y ∈ M [G]. Necessarily y = τG for some τ ∈ MP . Since
x ∈ y = τG, we must have x = σG for some σ ∈ MP . Hence x ∈ M [G].
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M ⊆ M [G]

To prove that M ⊆ M [G], we need to show that for any x ∈ M there exists
τ ∈ MP such that τG = x. Given a forcing poset P = ⟨P ; ≤, 1⟩ ∈ M , use
class recursion over the class V with the E-relation E =∈ to define a function
H : V → V by

H(x) = {(H(y), 1) | y ∈ x}.

Write x̌ for H(x). The P -name x̌ is called the canonical P -name for x. In
this notation, x̌ = {(y̌, 1) | y ∈ x}. We claim that for every x ∈ M we have
(i) x̌ ∈ MP and (ii) x̌G = x.

Assume that this is not the case (i.e., (i) or (ii) fails), and choose an ∈-minimal
x witnessing this. We have x̌ = {(y̌, 1) | y ∈ x}, where the y̌’s belong to
MP , so x̌ is a P -name. We have x ∈ MP using Replacement in M with the
absolute class function y 7→ (y̌, 1). We have

x̌G = {y̌G | y ∈ x} = {y | y ∈ x} = x.

This contradicts the assumption from the first line of this paragraph. 2
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G ∈ M [G]

Let
Γ = {(p̌, p) | p ∈ P}.

Γ is a P -name, according to our characterization of P -names. Since M is a
c.t.m. and P ∈ M , we must have Γ ∈ M . (Γ is constructible from the
function p 7→ p̂ and the poset P by absolute set-theoretic operations.) Hence
Γ ∈ MP . Evaluating this P -name at G yields:

ΓG = {p̌G | (∃p ∈ G)((p̌, p) ∈ Γ)} = {p̌G | p ∈ G} = {p | p ∈ G} = G. 2
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M ⊆ N c.t.m. & G ∈ N =⇒ M [G] ⊆ N

If M is a c.t.m., P ∈ M is a forcing poset, and G ⊆ P is a P-generic filter,
then we know that M [G] is a countable transitive set. We postpone our goal to
prove that M [G] is a c.t.m.. Here we show that:

If N is a c.t.m., M ⊆ N , and G ∈ N , then M [G] ⊆ N .

Once we know that M [G] is a c.t.m., this fact will charactrerize M [G] as the
least c.t.m. extending M to contain G as an element.

Argument: Choose any x ∈ M [G]. Necessarily, x = τG for some τ ∈ MP .
We have τ ∈ MP ⊆ M ⊆ N , and also G ∈ N . By the absoluteness of
val(−, G), we get that x = τG = val(τ, G) ∈ N . Since x ∈ M [G] was
arbitrarily chosen, M [G] ⊆ N . 2
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Properties of M [G]

Theorem. Assume that M is a c.t.m., P = ⟨P ; ≤, 1⟩ is a forcing order, and G is a
generic filter of P .

1 rank(τG) ≤ rank(τ) for all τ ∈ MP .

2 M and M [G] have the same ordinals.

Proof: Assume that (1) fails for some τ ∈ MP . Choose a τ of least rank for this
failure. Recall that we have proved the general fact

rank(x) =
⋃
y∈x

(rank(y) + 1).
We have also explained why

τG = {σG | σ ∈ MP , (∃p ∈ G)((σ, p) ∈ τ)}

for all τ ∈ MP when M is a c.t.m. and G ⊆ P ∈ M . (Slide 9!) Hence

rank(τG) =
⋃

{rank(σG) + 1 | (∃p)(σ ∈ (σ, p) ∈ τ)}
≤

⋃
{rank(σ) + 1 | (∃p)(σ ∈ (σ, p) ∈ τ)} ≤ rank(τ). A
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Properties of M [G], Part (2)

Our goal is to prove that M and M [G] have the same ordinals. We have
already established that φordinal(x) is absolute for transitive classes, so
ordinals in M are ordinals in M [G]. Could M [G] have extra ordinals?

No. Let α ∈ M [G] be an ordinal. α = τG for some τ ∈ MP . Since the rank
function is absolute for transitive class models, τ ∈ MP ⊆ M implies
rank(τ) ∈ M . This leads to

α = rank(α) = rank(τG) ≤ rank(τ) ∈ M ⊆ M [G].

To summarize: α is an ordinal in M [G] that is an element of an ordinal,
rank(τ), which is an element of M . By the transitivity of M , α ∈ M . 2

Next step: Prove that M [G] is a c.t.m. State and prove the Forcing Theorem.
See pages 603-611, NST.
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Next Goals

Theorem. (Cohen) Let M be a c.t.m., let κ be an infinite cardinal in M , let
P = ⟨F (κ × ω, 2, ω); ⊇, ∅⟩, and let G ⊆ F (κ × ω, 2, ω) be a P-generic filter.

1 M [G] is a c.t.m. with the same ordinals as M . (Still need: M [G] is a
model.)

2 M [G] has the same cardinals and the same cofinalities of limit ordinals
as M . (No part of this has been proven yet.)

3 κ ≤ 2ω in M [G]. (Completed, assuming the above parts.)
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