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Alternative description of P-names

The P-names in V' can be introduced by rank:

oV =0.

Q@ VL, =PVl xP).

Q@ VY =Uscn V4, Alimit.
Q vP=yvl.

Note: Here, the notation V,f does not mean V,, N V', but instead refers to the
value assigned to « under the recursively-defined function above.
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Next step: Prove that M [G] is a c.t.m. State and prove the Forcing Theorem.
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Properties of M [G], Part (2)

Our goal is to prove that M and M [G] have the same ordinals. We have
already established that pgina () is absolute for transitive classes, so
ordinals in M are ordinals in M[G]. Could M [G] have extra ordinals?

No. Let o € M[G] be an ordinal. o = 7¢ for some 7 € M*. Since the rank
function is absolute for transitive class models, 7 € MT C M implies
rank(7) € M. This leads to

a = rank(a) = rank(7¢) < rank(7) € M C M[G].
To summarize: « is an ordinal in M [G] that is an element of an ordinal,

rank(7), which is an element of M. By the transitivity of M, o« € M. O

Next step: Prove that M [G] is a c.t.m. State and prove the Forcing Theorem.
See pages 603-611, NST.
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Theorem. (Cohen) Let M be a c.t.m., let x be an infinite cardinal in M, let
P=(F(k Xw,2,w); 2,0),and let G C F(k X w,2,w) be a P-generic filter.

Q@ M|[G]is ac.t.m. with the same ordinals as M. (Still need: M[G] is a
model.)

@ M]|G] has the same cardinals and the same cofinalities of limit ordinals
as M. (No part of this has been proven yet.)

@ k < 2¥in M[G]. (Completed, assuming the above parts.)
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