The Construction of M[G]

We have discussed versions of recursion over the set ω

We have discussed versions of recursion over the set ω and over the class ON.

We have discussed versions of recursion over the set ω and over the class ON. Here we state a more general version of recursion.

We have discussed versions of recursion over the set ω and over the class ON. Here we state a more general version of recursion.

Theorem 8.7, NST.

We have discussed versions of recursion over the set ω and over the class ON. Here we state a more general version of recursion.

Theorem 8.7, NST. Let V be a model and let A be a class in V.

We have discussed versions of recursion over the set ω and over the class ON. Here we state a more general version of recursion.

Theorem 8.7, NST. Let V be a model and let A be a class in V. Let E = E(x, y) be a class relation defined on A such that

We have discussed versions of recursion over the set ω and over the class ON. Here we state a more general version of recursion.

Theorem 8.7, NST. Let V be a model and let A be a class in V. Let E = E(x,y) be a class relation defined on A such that

lacktriangledown $\langle A; E \rangle$ is 'set-like'.

We have discussed versions of recursion over the set ω and over the class ON. Here we state a more general version of recursion.

Theorem 8.7, NST. Let V be a model and let A be a class in V. Let E = E(x,y) be a class relation defined on A such that

lacktriangledown $\langle A; E \rangle$ is 'set-like'.

We have discussed versions of recursion over the set ω and over the class ON. Here we state a more general version of recursion.

Theorem 8.7, NST. Let V be a model and let A be a class in V. Let E = E(x,y) be a class relation defined on A such that

• $\langle A; E \rangle$ is 'set-like'. (For all $a \in A$,

We have discussed versions of recursion over the set ω and over the class ON. Here we state a more general version of recursion.

Theorem 8.7, NST. Let V be a model and let A be a class in V. Let E = E(x,y) be a class relation defined on A such that

• $\langle A; E \rangle$ is 'set-like'. (For all $a \in A$, $\{b \in A \mid bEa\}$

We have discussed versions of recursion over the set ω and over the class ON. Here we state a more general version of recursion.

Theorem 8.7, NST. Let V be a model and let A be a class in V. Let E = E(x,y) be a class relation defined on A such that

We have discussed versions of recursion over the set ω and over the class ON. Here we state a more general version of recursion.

Theorem 8.7, NST. Let V be a model and let A be a class in V. Let E=E(x,y) be a class relation defined on A such that

- (A; E) satisfies the Axiom of Foundation.

We have discussed versions of recursion over the set ω and over the class ON. Here we state a more general version of recursion.

Theorem 8.7, NST. Let V be a model and let A be a class in V. Let E=E(x,y) be a class relation defined on A such that

- (A; E) satisfies the Axiom of Foundation.

We have discussed versions of recursion over the set ω and over the class ON. Here we state a more general version of recursion.

Theorem 8.7, NST. Let V be a model and let A be a class in V. Let E=E(x,y) be a class relation defined on A such that

- $\begin{array}{l} \bullet \ \ \, \langle A;E\rangle \text{ is 'set-like'}. \\ \text{(For all } a\in A, \{b\in A\mid bEa\}\ (=:\operatorname{pred}_{A,E}(a)) \text{ is a set.)} \end{array}$
- ② $\langle A; E \rangle$ satisfies the Axiom of Foundation. (Every nonempty subset of A has an E-minimal element.)

We have discussed versions of recursion over the set ω and over the class ON. Here we state a more general version of recursion.

Theorem 8.7, NST. Let V be a model and let A be a class in V. Let E=E(x,y) be a class relation defined on A such that

- $\langle A;E \rangle$ satisfies the Axiom of Foundation. (Every nonempty subset of A has an E-minimal element.)

If $G\colon A\times V\to V$ is a class function, then there is a unique class function $F\colon A\to V$ satisfying

We have discussed versions of recursion over the set ω and over the class ON. Here we state a more general version of recursion.

Theorem 8.7, NST. Let V be a model and let A be a class in V. Let E=E(x,y) be a class relation defined on A such that

- $f \langle A;E \rangle$ satisfies the Axiom of Foundation. (Every nonempty subset of A has an E-minimal element.)

If $G\colon A\times V\to V$ is a class function, then there is a unique class function $F\colon A\to V$ satisfying

$$F(a) = G(a, F|_{\operatorname{pred}_{A,E}(a)}).$$

We have discussed versions of recursion over the set ω and over the class ON. Here we state a more general version of recursion.

Theorem 8.7, NST. Let V be a model and let A be a class in V. Let E=E(x,y) be a class relation defined on A such that

- $\langle A;E \rangle$ satisfies the Axiom of Foundation. (Every nonempty subset of A has an E-minimal element.)

If $G\colon A\times V\to V$ is a class function, then there is a unique class function $F\colon A\to V$ satisfying

$$F(a) = G(a, F|_{\operatorname{pred}_{A, E}(a)}).$$

Proof:

We have discussed versions of recursion over the set ω and over the class ON. Here we state a more general version of recursion.

Theorem 8.7, NST. Let V be a model and let A be a class in V. Let E=E(x,y) be a class relation defined on A such that

- $\langle A;E \rangle$ satisfies the Axiom of Foundation. (Every nonempty subset of A has an E-minimal element.)

If $G\colon A\times V\to V$ is a class function, then there is a unique class function $F\colon A\to V$ satisfying

$$F(a) = G(a, F|_{\operatorname{pred}_{A, E}(a)}).$$

Proof: See NST, pages 98-100.

We have discussed versions of recursion over the set ω and over the class ON. Here we state a more general version of recursion.

Theorem 8.7, NST. Let V be a model and let A be a class in V. Let E=E(x,y) be a class relation defined on A such that

- $\langle A;E \rangle$ satisfies the Axiom of Foundation. (Every nonempty subset of A has an E-minimal element.)

If $G\colon A\times V\to V$ is a class function, then there is a unique class function $F\colon A\to V$ satisfying

$$F(a) = G(a, F|_{\operatorname{pred}_{A,E}(a)}).$$

Proof: See NST, pages 98-100. □

Let M be a transitive class model of ZF.

Let M be a transitive class model of ZF. We may compare the result of defining a class function by recursion in V versus defining a class function by recursion relative to M using the same data.

Let M be a transitive class model of ZF. We may compare the result of defining a class function by recursion in V versus defining a class function by recursion relative to M using the same data.

Theorem 13.11, NST.

Let M be a transitive class model of ZF. We may compare the result of defining a class function by recursion in V versus defining a class function by recursion relative to M using the same data.

Theorem 13.11, NST. Let A be a class, E be a well-founded set-like class relation on A,

Let M be a transitive class model of ZF. We may compare the result of defining a class function by recursion in V versus defining a class function by recursion relative to M using the same data.

Theorem 13.11, NST. Let A be a class, E be a well-founded set-like class relation on A, and $G: A \times V \to V$ be a class function.

Let M be a transitive class model of ZF. We may compare the result of defining a class function by recursion in V versus defining a class function by recursion relative to M using the same data.

Theorem 13.11, NST. Let A be a class, E be a well-founded set-like class relation on A, and $G: A \times V \to V$ be a class function. Use these data to produce a class function F that satisfies, for all $x \in A$,

Let M be a transitive class model of ZF. We may compare the result of defining a class function by recursion in V versus defining a class function by recursion relative to M using the same data.

Theorem 13.11, NST. Let A be a class, E be a well-founded set-like class relation on A, and $G \colon A \times V \to V$ be a class function. Use these data to produce a class function F that satisfies, for all $x \in A$, $F(x) = G(x, F|_{\mathsf{pred}_{A}} E(x))$.

Let M be a transitive class model of ZF. We may compare the result of defining a class function by recursion in V versus defining a class function by recursion relative to M using the same data.

Theorem 13.11, NST. Let A be a class, E be a well-founded set-like class relation on A, and $G \colon A \times V \to V$ be a class function. Use these data to produce a class function F that satisfies, for all $x \in A$, $F(x) = G(x, F|_{\operatorname{pred}_{A,E}}(x))$. Let M be a transitive class model of ZF, and assume the following:

Let M be a transitive class model of ZF. We may compare the result of defining a class function by recursion in V versus defining a class function by recursion relative to M using the same data.

Theorem 13.11, NST. Let A be a class, E be a well-founded set-like class relation on A, and $G \colon A \times V \to V$ be a class function. Use these data to produce a class function F that satisfies, for all $x \in A$, $F(x) = G(x, F|_{\operatorname{pred}_{A,E}}(x))$. Let M be a transitive class model of ZF, and assume the following:

 \bullet A, E, and G are absolute for M.

Let M be a transitive class model of ZF. We may compare the result of defining a class function by recursion in V versus defining a class function by recursion relative to M using the same data.

Theorem 13.11, NST. Let A be a class, E be a well-founded set-like class relation on A, and $G \colon A \times V \to V$ be a class function. Use these data to produce a class function F that satisfies, for all $x \in A$, $F(x) = G(x, F|_{\operatorname{pred}_{A,E}}(x))$. Let M be a transitive class model of ZF, and assume the following:

lacktriangledown A, E, and G are absolute for M.

Let M be a transitive class model of ZF. We may compare the result of defining a class function by recursion in V versus defining a class function by recursion relative to M using the same data.

Theorem 13.11, NST. Let A be a class, E be a well-founded set-like class relation on A, and $G \colon A \times V \to V$ be a class function. Use these data to produce a class function F that satisfies, for all $x \in A$, $F(x) = G(x, F|_{\operatorname{pred}_{A,E}}(x))$. Let M be a transitive class model of ZF, and assume the following:

- \bullet A, E, and G are absolute for M.
- ② $(E \text{ is set-like on } A)^M \text{ holds.}$

Let M be a transitive class model of ZF. We may compare the result of defining a class function by recursion in V versus defining a class function by recursion relative to M using the same data.

Theorem 13.11, NST. Let A be a class, E be a well-founded set-like class relation on A, and $G \colon A \times V \to V$ be a class function. Use these data to produce a class function F that satisfies, for all $x \in A$, $F(x) = G(x, F|_{\operatorname{pred}_{A,E}}(x))$. Let M be a transitive class model of ZF, and assume the following:

- \bullet A, E, and G are absolute for M.
- ② $(E \text{ is set-like on } A)^M \text{ holds.}$

Let M be a transitive class model of ZF. We may compare the result of defining a class function by recursion in V versus defining a class function by recursion relative to M using the same data.

Theorem 13.11, NST. Let A be a class, E be a well-founded set-like class relation on A, and $G \colon A \times V \to V$ be a class function. Use these data to produce a class function F that satisfies, for all $x \in A$, $F(x) = G(x, F|_{\mathsf{pred}_{A,E}}(x))$. Let M be a transitive class model of ZF, and assume the following:

- \bullet A, E, and G are absolute for M.
- $(E \text{ is set-like on } A)^M \text{ holds.}$

Let M be a transitive class model of ZF. We may compare the result of defining a class function by recursion in V versus defining a class function by recursion relative to M using the same data.

Theorem 13.11, NST. Let A be a class, E be a well-founded set-like class relation on A, and $G \colon A \times V \to V$ be a class function. Use these data to produce a class function F that satisfies, for all $x \in A$, $F(x) = G(x, F|_{\mathsf{pred}_{A,E}}(x))$. Let M be a transitive class model of ZF, and assume the following:

- \bullet A, E, and G are absolute for M.
- $(E \text{ is set-like on } A)^M \text{ holds.}$

Absoluteness of recursive definitions

Let M be a transitive class model of ZF. We may compare the result of defining a class function by recursion in V versus defining a class function by recursion relative to M using the same data.

Theorem 13.11, NST. Let A be a class, E be a well-founded set-like class relation on A, and $G \colon A \times V \to V$ be a class function. Use these data to produce a class function F that satisfies, for all $x \in A$, $F(x) = G(x, F|_{\operatorname{pred}_{A,E}}(x))$. Let M be a transitive class model of ZF, and assume the following:

- lacktriangledown A, E, and G are absolute for M.
- ② (E is set-like on A)^M holds.

Then F is absolute for M, V.

Absoluteness of recursive definitions

Let M be a transitive class model of ZF. We may compare the result of defining a class function by recursion in V versus defining a class function by recursion relative to M using the same data.

Theorem 13.11, NST. Let A be a class, E be a well-founded set-like class relation on A, and $G \colon A \times V \to V$ be a class function. Use these data to produce a class function F that satisfies, for all $x \in A$, $F(x) = G(x, F|_{\mathsf{pred}_{A,E}}(x))$. Let M be a transitive class model of ZF, and assume the following:

- lacktriangledown A, E, and G are absolute for M.
- ② (E is set-like on A)^M holds.

Then F is absolute for M, V.

Proof: 10 lines, pages 199-200, NST.

Theorem 28.4, NST.

Theorem 28.4, NST. For any set P there exists a unique class function

Theorem 28.4, NST. For any set P there exists a unique class function $F = F_P \colon \mathbf{V} \to 2$

Theorem 28.4, NST. For any set P there exists a unique class function $F = F_P \colon \mathbf{V} \to 2$ such that for any set τ ,

Theorem 28.4, NST. For any set P there exists a unique class function $F = F_P \colon \mathbf{V} \to 2$ such that for any set τ ,

$$F(\tau) = \begin{cases} 1 & \text{if } \tau \text{ is a binary relation and} \\ & \text{for all } (\sigma, p) \in \tau \text{ we have that } p \in P \text{ and } F(\sigma) = 1, \\ 0 & \text{otherwise.} \end{cases}$$

Theorem 28.4, NST. For any set P there exists a unique class function $F = F_P \colon \mathbf{V} \to 2$ such that for any set τ ,

$$F(\tau) = \begin{cases} 1 & \text{if } \tau \text{ is a binary relation and} \\ & \text{for all } (\sigma, p) \in \tau \text{ we have that } p \in P \text{ and } F(\sigma) = 1, \\ 0 & \text{otherwise.} \end{cases}$$

This theorem uses recursion over the class ${\cal A}={\cal V}$ using the well-founded, set-like relation ${\cal E}$ defined by

Theorem 28.4, NST. For any set P there exists a unique class function $F = F_P \colon \mathbf{V} \to 2$ such that for any set τ ,

$$F(\tau) = \begin{cases} 1 & \text{if } \tau \text{ is a binary relation and} \\ & \text{for all } (\sigma, p) \in \tau \text{ we have that } p \in P \text{ and } F(\sigma) = 1, \\ 0 & \text{otherwise.} \end{cases}$$

This theorem uses recursion over the class ${\cal A}={\cal V}$ using the well-founded, set-like relation ${\cal E}$ defined by

$$\sigma \mathrel{E} \tau \Leftrightarrow (\exists p \in P)((\sigma,p) \in \tau).$$

Theorem 28.4, NST. For any set P there exists a unique class function $F = F_P \colon \mathbf{V} \to 2$ such that for any set τ ,

$$F(\tau) = \begin{cases} 1 & \text{if } \tau \text{ is a binary relation and} \\ & \text{for all } (\sigma, p) \in \tau \text{ we have that } p \in P \text{ and } F(\sigma) = 1, \\ 0 & \text{otherwise.} \end{cases}$$

This theorem uses recursion over the class ${\cal A}={\cal V}$ using the well-founded, set-like relation ${\cal E}$ defined by

$$\sigma \ E \ \tau \Leftrightarrow (\exists p \in P)((\sigma, p) \in \tau).$$

E is set-like, because \in is set-like.

Theorem 28.4, NST. For any set P there exists a unique class function $F = F_P \colon \mathbf{V} \to 2$ such that for any set τ ,

$$F(\tau) = \begin{cases} 1 & \text{if } \tau \text{ is a binary relation and} \\ & \text{for all } (\sigma, p) \in \tau \text{ we have that } p \in P \text{ and } F(\sigma) = 1, \\ 0 & \text{otherwise.} \end{cases}$$

This theorem uses recursion over the class A=V using the well-founded, set-like relation E defined by

$$\sigma \ E \ \tau \Leftrightarrow (\exists p \in P)((\sigma, p) \in \tau).$$

Theorem 28.4, NST. For any set P there exists a unique class function $F = F_P \colon \mathbf{V} \to 2$ such that for any set τ ,

$$F(\tau) = \begin{cases} 1 & \text{if } \tau \text{ is a binary relation and} \\ & \text{for all } (\sigma, p) \in \tau \text{ we have that } p \in P \text{ and } F(\sigma) = 1, \\ 0 & \text{otherwise.} \end{cases}$$

This theorem uses recursion over the class ${\cal A}={\cal V}$ using the well-founded, set-like relation ${\cal E}$ defined by

$$\sigma \mathrel{E} \tau \Leftrightarrow (\exists p \in P)((\sigma,p) \in \tau).$$

$$\sigma E \tau$$

Theorem 28.4, NST. For any set P there exists a unique class function $F = F_P \colon \mathbf{V} \to 2$ such that for any set τ ,

$$F(\tau) = \begin{cases} 1 & \text{if } \tau \text{ is a binary relation and} \\ & \text{for all } (\sigma, p) \in \tau \text{ we have that } p \in P \text{ and } F(\sigma) = 1, \\ 0 & \text{otherwise.} \end{cases}$$

This theorem uses recursion over the class ${\cal A}={\cal V}$ using the well-founded, set-like relation ${\cal E}$ defined by

$$\sigma \ E \ \tau \Leftrightarrow (\exists p \in P)((\sigma, p) \in \tau).$$

$$\sigma \ E \ \tau \quad \Leftrightarrow (\exists p \in P)(\sigma, p) \in \tau$$

Theorem 28.4, NST. For any set P there exists a unique class function $F = F_P \colon \mathbf{V} \to 2$ such that for any set τ ,

$$F(\tau) = \begin{cases} 1 & \text{if } \tau \text{ is a binary relation and} \\ & \text{for all } (\sigma, p) \in \tau \text{ we have that } p \in P \text{ and } F(\sigma) = 1, \\ 0 & \text{otherwise.} \end{cases}$$

This theorem uses recursion over the class A=V using the well-founded, set-like relation E defined by

$$\sigma \ E \ \tau \Leftrightarrow (\exists p \in P)((\sigma, p) \in \tau).$$

Theorem 28.4, NST. For any set P there exists a unique class function $F = F_P \colon \mathbf{V} \to 2$ such that for any set τ ,

$$F(\tau) = \begin{cases} 1 & \text{if } \tau \text{ is a binary relation and} \\ & \text{for all } (\sigma, p) \in \tau \text{ we have that } p \in P \text{ and } F(\sigma) = 1, \\ 0 & \text{otherwise.} \end{cases}$$

This theorem uses recursion over the class ${\cal A}={\cal V}$ using the well-founded, set-like relation ${\cal E}$ defined by

$$\sigma \mathrel{E} \tau \Leftrightarrow (\exists p \in P)((\sigma,p) \in \tau).$$

$$\begin{split} \sigma \ E \ \tau & \Leftrightarrow (\exists p \in P)(\sigma, p) \in \tau \\ & \Rightarrow \sigma \in \{\sigma\} \in \{\{\sigma\}, \{\sigma, p\}\} \in \tau \\ & \Rightarrow \operatorname{rank}(\sigma) < \operatorname{rank}(\tau). \end{split}$$

Theorem 28.4, NST. For any set P there exists a unique class function $F = F_P \colon \mathbf{V} \to 2$ such that for any set τ ,

$$F(\tau) = \begin{cases} 1 & \text{if } \tau \text{ is a binary relation and} \\ & \text{for all } (\sigma, p) \in \tau \text{ we have that } p \in P \text{ and } F(\sigma) = 1, \\ 0 & \text{otherwise.} \end{cases}$$

This theorem uses recursion over the class ${\cal A}={\cal V}$ using the well-founded, set-like relation ${\cal E}$ defined by

$$\sigma \mathrel{E} \tau \Leftrightarrow (\exists p \in P)((\sigma,p) \in \tau).$$

$$\begin{split} \sigma \ E \ \tau & \Leftrightarrow (\exists p \in P)(\sigma, p) \in \tau \\ & \Rightarrow \sigma \in \{\sigma\} \in \{\{\sigma\}, \{\sigma, p\}\} \in \tau \\ & \Rightarrow \operatorname{rank}(\sigma) < \operatorname{rank}(\tau). \end{split}$$

Theorem 28.4, NST. For any set P there exists a unique class function $F = F_P \colon \mathbf{V} \to 2$ such that for any set τ ,

$$F(\tau) = \begin{cases} 1 & \text{if } \tau \text{ is a binary relation and} \\ & \text{for all } (\sigma, p) \in \tau \text{ we have that } p \in P \text{ and } F(\sigma) = 1, \\ 0 & \text{otherwise.} \end{cases}$$

This theorem uses recursion over the class ${\cal A}={\cal V}$ using the well-founded, set-like relation ${\cal E}$ defined by

$$\sigma \ E \ \tau \Leftrightarrow (\exists p \in P)((\sigma, p) \in \tau).$$

E is set-like, because \in is set-like. E is well-founded, since $\sigma E \tau$ implies $\mathrm{rank}(\sigma) < \mathrm{rank}(\tau)$:

$$\begin{split} \sigma \mathrel{E} \tau &\Leftrightarrow (\exists p \in P)(\sigma, p) \in \tau \\ &\Rightarrow \sigma \in \{\sigma\} \in \{\{\sigma\}, \{\sigma, p\}\} \in \tau \\ &\Rightarrow \operatorname{rank}(\sigma) < \operatorname{rank}(\tau). \end{split}$$

Call τ a P-name if $F_P(\tau) = 1$.

Theorem 28.4, NST. For any set P there exists a unique class function $F = F_P \colon \mathbf{V} \to 2$ such that for any set τ ,

$$F(\tau) = \begin{cases} 1 & \text{if } \tau \text{ is a binary relation and} \\ & \text{for all } (\sigma, p) \in \tau \text{ we have that } p \in P \text{ and } F(\sigma) = 1, \\ 0 & \text{otherwise.} \end{cases}$$

This theorem uses recursion over the class ${\cal A}={\cal V}$ using the well-founded, set-like relation ${\cal E}$ defined by

$$\sigma \ E \ \tau \Leftrightarrow (\exists p \in P)((\sigma, p) \in \tau).$$

E is set-like, because \in is set-like. E is well-founded, since $\sigma E \tau$ implies $\mathrm{rank}(\sigma) < \mathrm{rank}(\tau)$:

$$\begin{split} \sigma \ E \ \tau & \Leftrightarrow (\exists p \in P)(\sigma, p) \in \tau \\ & \Rightarrow \sigma \in \{\sigma\} \in \{\{\sigma\}, \{\sigma, p\}\} \in \tau \\ & \Rightarrow \operatorname{rank}(\sigma) < \operatorname{rank}(\tau). \end{split}$$

Call τ a *P*-name if $F_P(\tau) = 1$. By the preceding claims,

Theorem 28.4, NST. For any set P there exists a unique class function $F = F_P \colon \mathbf{V} \to 2$ such that for any set τ ,

$$F(\tau) = \begin{cases} 1 & \text{if } \tau \text{ is a binary relation and} \\ & \text{for all } (\sigma, p) \in \tau \text{ we have that } p \in P \text{ and } F(\sigma) = 1, \\ 0 & \text{otherwise.} \end{cases}$$

This theorem uses recursion over the class ${\cal A}={\cal V}$ using the well-founded, set-like relation ${\cal E}$ defined by

$$\sigma \ E \ \tau \Leftrightarrow (\exists p \in P)((\sigma, p) \in \tau).$$

E is set-like, because \in is set-like. E is well-founded, since $\sigma E \tau$ implies $\mathrm{rank}(\sigma) < \mathrm{rank}(\tau)$:

$$\begin{split} \sigma \mathrel{E} \tau &\Leftrightarrow (\exists p \in P)(\sigma, p) \in \tau \\ &\Rightarrow \sigma \in \{\sigma\} \in \{\{\sigma\}, \{\sigma, p\}\} \in \tau \\ &\Rightarrow \operatorname{rank}(\sigma) < \operatorname{rank}(\tau). \end{split}$$

Call τ a P-name if $F_P(\tau) = 1$. By the preceding claims, the property of being a P-name is absolute for M, V when M is a c.t.m. containing P.

Claim.

Claim. τ is a P-name iff τ is a binary relation such that for every $(\sigma, p) \in \tau$ it is the case that σ is a P-name and $p \in P$.

Claim. τ is a P-name iff τ is a binary relation such that for every $(\sigma, p) \in \tau$ it is the case that σ is a P-name and $p \in P$.

Claim. τ is a P-name iff τ is a binary relation such that for every $(\sigma, p) \in \tau$ it is the case that σ is a P-name and $p \in P$.

Reasoning:

 τ is a P-name

Claim. τ is a P-name iff τ is a binary relation such that for every $(\sigma, p) \in \tau$ it is the case that σ is a P-name and $p \in P$.

$$au$$
 is a P -name iff $F_P(au) = 1$

Claim. τ is a P-name iff τ is a binary relation such that for every $(\sigma, p) \in \tau$ it is the case that σ is a P-name and $p \in P$.

```
	au is a P-name \quad \text{iff} \quad F_P(	au) = 1 \quad \qquad \text{iff} \quad \text{if } 	au is a binary relation and for all (\sigma,p) \in 	au
```

Claim. τ is a P-name iff τ is a binary relation such that for every $(\sigma, p) \in \tau$ it is the case that σ is a P-name and $p \in P$.

```
	au is a P-name \quad iff \quad F_P(	au)=1 \quad iff \quad if 	au is a binary relation and for all (\sigma,p)\in 	au we have that p\in P and F_P(\sigma)=1
```

Claim. τ is a P-name iff τ is a binary relation such that for every $(\sigma, p) \in \tau$ it is the case that σ is a P-name and $p \in P$.

```
	au is a P-name iff F_P(	au)=1 iff if 	au is a binary relation and for all (\sigma,p)\in 	au we have that p\in P and F_P(\sigma)=1 iff if 	au is a binary relation and for all (\sigma,p)\in 	au
```

Claim. τ is a P-name iff τ is a binary relation such that for every $(\sigma, p) \in \tau$ it is the case that σ is a P-name and $p \in P$.

```
	au is a P-name iff F_P(	au)=1 iff if 	au is a binary relation and for all (\sigma,p)\in 	au we have that p\in P and F_P(\sigma)=1 iff if 	au is a binary relation and for all (\sigma,p)\in 	au we have that p\in P and \sigma is a P-name.
```

Claim. τ is a P-name iff τ is a binary relation such that for every $(\sigma, p) \in \tau$ it is the case that σ is a P-name and $p \in P$.

Reasoning:

```
	au is a P-name iff F_P(	au)=1 iff if 	au is a binary relation and for all (\sigma,p)\in 	au we have that p\in P and F_P(\sigma)=1 iff if 	au is a binary relation and for all (\sigma,p)\in 	au we have that p\in P and \sigma is a P-name.
```

Denote the P-names in V by V^P .

Claim. τ is a P-name iff τ is a binary relation such that for every $(\sigma, p) \in \tau$ it is the case that σ is a P-name and $p \in P$.

Reasoning:

$$au$$
 is a P -name iff $F_P(au)=1$ iff if au is a binary relation and for all $(\sigma,p)\in au$ we have that $p\in P$ and $F_P(\sigma)=1$ iff if au is a binary relation and for all $(\sigma,p)\in au$ we have that $p\in P$ and σ is a P -name.

Denote the P-names in V by V^P . If M is a c.t.m. in V, $M^P = M \cap V^P$ is the set of P-names in M.

Claim. τ is a P-name iff τ is a binary relation such that for every $(\sigma, p) \in \tau$ it is the case that σ is a P-name and $p \in P$.

Reasoning:

$$au$$
 is a P -name iff $F_P(au)=1$ iff if au is a binary relation and for all $(\sigma,p)\in au$ we have that $p\in P$ and $F_P(\sigma)=1$ iff if au is a binary relation and for all $(\sigma,p)\in au$ we have that $p\in P$ and σ is a P -name.

Denote the P-names in V by V^P . If M is a c.t.m. in V, $M^P = M \cap V^P$ is the set of P-names in M.

Examples of P-names

Examples of P-names

Using the characterization just given, we can see that the following are P-names.

Examples of P-names

Using the characterization just given, we can see that the following are P-names.

Using the characterization just given, we can see that the following are P-names.

• Justification:

Using the characterization just given, we can see that the following are P-names.

• Justification:

Using the characterization just given, we can see that the following are P-names.

• Justification: $\tau=\emptyset$ is a binary relation whose elements (σ,p) have the property that σ is a P-name and $p\in P$.

Using the characterization just given, we can see that the following are P-names.

• Justification: $\tau=\emptyset$ is a binary relation whose elements (σ,p) have the property that σ is a P-name and $p\in P$. (Vacuously.)

- **1** Ø.
- Justification: $\tau = \emptyset$ is a binary relation whose elements (σ, p) have the property that σ is a P-name and $p \in P$. (Vacuously.)
- Any binary relation of the form

- **1** Ø.
- Justification: $\tau = \emptyset$ is a binary relation whose elements (σ, p) have the property that σ is a P-name and $p \in P$. (Vacuously.)
- Any binary relation of the form

- **1** Ø.
- Justification: $\tau = \emptyset$ is a binary relation whose elements (σ, p) have the property that σ is a P-name and $p \in P$. (Vacuously.)
- ② Any binary relation of the form $\tau = \{(\emptyset, p), (\emptyset, q), \ldots\},\$

- **1** Ø.
- Justification: $\tau = \emptyset$ is a binary relation whose elements (σ, p) have the property that σ is a P-name and $p \in P$. (Vacuously.)
- ② Any binary relation of the form $\tau = \{(\emptyset, p), (\emptyset, q), \ldots\}, p, q, \ldots \in P$.

- **1** Ø.
- Justification: $\tau = \emptyset$ is a binary relation whose elements (σ, p) have the property that σ is a P-name and $p \in P$. (Vacuously.)
- **2** Any binary relation of the form $\tau = \{(\emptyset, p), (\emptyset, q), \ldots\}, p, q, \ldots \in P$.
- Any binary relation of the form

- **1** Ø.
- Justification: $\tau = \emptyset$ is a binary relation whose elements (σ, p) have the property that σ is a P-name and $p \in P$. (Vacuously.)
- **2** Any binary relation of the form $\tau = \{(\emptyset, p), (\emptyset, q), \ldots\}, p, q, \ldots \in P$.
- Any binary relation of the form

- **0** Ø.
- Justification: $\tau = \emptyset$ is a binary relation whose elements (σ, p) have the property that σ is a P-name and $p \in P$. (Vacuously.)
- **2** Any binary relation of the form $\tau = \{(\emptyset, p), (\emptyset, q), \ldots\}, p, q, \ldots \in P$.
- **3** Any binary relation of the form $\tau = \{(\emptyset, p), (\emptyset, q), \dots, \}$

- **0** Ø.
- Justification: $\tau = \emptyset$ is a binary relation whose elements (σ, p) have the property that σ is a P-name and $p \in P$. (Vacuously.)
- **②** Any binary relation of the form $\tau = \{(\emptyset, p), (\emptyset, q), \ldots\}, p, q, \ldots \in P$.
- **3** Any binary relation of the form $\tau = \{(\emptyset, p), (\emptyset, q), \dots, (\{(\emptyset, r), (\emptyset, s), \dots\}, t), \}$

- **0** Ø.
- Justification: $\tau = \emptyset$ is a binary relation whose elements (σ, p) have the property that σ is a P-name and $p \in P$. (Vacuously.)
- **②** Any binary relation of the form $\tau = \{(\emptyset, p), (\emptyset, q), \ldots\}, p, q, \ldots \in P$.
- **3** Any binary relation of the form $\tau = \{(\emptyset, p), (\emptyset, q), \dots, (\{(\emptyset, r), (\emptyset, s), \dots\}, t), \dots\},$

- **0** Ø.
- Justification: $\tau = \emptyset$ is a binary relation whose elements (σ, p) have the property that σ is a P-name and $p \in P$. (Vacuously.)
- **②** Any binary relation of the form $\tau = \{(\emptyset, p), (\emptyset, q), \ldots\}, p, q, \ldots \in P$.
- $\textbf{ Any binary relation of the form} \\ \tau = \{(\emptyset,p),(\emptyset,q),\ldots,(\{(\emptyset,r),(\emptyset,s),\ldots\},t),\ldots\},p,q,r,s,t,\ldots \in P.$

- **0** Ø.
- Justification: $\tau = \emptyset$ is a binary relation whose elements (σ, p) have the property that σ is a P-name and $p \in P$. (Vacuously.)
- **②** Any binary relation of the form $\tau = \{(\emptyset, p), (\emptyset, q), \ldots\}, p, q, \ldots \in P$.
- $\textbf{ Any binary relation of the form} \\ \tau = \{(\emptyset,p),(\emptyset,q),\ldots,(\{(\emptyset,r),(\emptyset,s),\ldots\},t),\ldots\},p,q,r,s,t,\ldots \in P.$

- $\ \, \mathbf{0} \ \, V_{\alpha+1}^P = \mathcal{P}(V_{\alpha}^P \times P).$

- $\ \, \mathbf{0} \ \, V_{\alpha+1}^P = \mathcal{P}(V_{\alpha}^P \times P).$

- $P_{\alpha+1} = \mathcal{P}(V_{\alpha}^P \times P).$

- $P_{\alpha+1} = \mathcal{P}(V_{\alpha}^P \times P).$

- $V_0^P = \emptyset.$
- $V_{\alpha+1}^P = \mathcal{P}(V_{\alpha}^P \times P).$

- $V_0^P = \emptyset.$
- $V_{\alpha+1}^P = \mathcal{P}(V_{\alpha}^P \times P).$

The P-names in V can be introduced by rank:

- $V_0^P = \emptyset.$
- $V_{\alpha+1}^P = \mathcal{P}(V_{\alpha}^P \times P).$

Note:

The P-names in V can be introduced by rank:

- $V_0^P = \emptyset.$
- $P_{\alpha+1} = \mathcal{P}(V_{\alpha}^P \times P).$
- $V^P = \bigcup V_\alpha^P.$

Note: Here, the notation V_{α}^{P} does not mean $V_{\alpha} \cap V^{P}$, but instead refers to the value assigned to α under the recursively-defined function above.

Theorem 28.6, NST.

Theorem 28.6, NST. For any set $G \subseteq P$

Theorem 28.6, NST. For any set $G \subseteq P$ there exists a unique class function

Theorem 28.6, NST. For any set $G \subseteq P$ there exists a unique class function

$$\operatorname{val}(-,G) = \operatorname{val}_P(-,G) \colon V \to V$$

Theorem 28.6, NST. For any set $G \subseteq P$ there exists a unique class function

$$val(-,G) = val_P(-,G) \colon V \to V$$

such that for any set τ ,

Theorem 28.6, NST. For any set $G \subseteq P$ there exists a unique class function

$$\operatorname{val}(-,G) = \operatorname{val}_P(-,G) \colon V \to V$$

such that for any set τ ,

$$\operatorname{val}(\tau, G) = \operatorname{val}_P(\tau, G) = \{\operatorname{val}(\sigma, G) \mid (\exists p \in G)((\sigma, p) \in \tau)\}.$$

Theorem 28.6, NST. For any set $G \subseteq P$ there exists a unique class function

$$\operatorname{val}(-,G) = \operatorname{val}_P(-,G) \colon V \to V$$

such that for any set τ ,

$$\operatorname{val}(\tau,G) = \operatorname{val}_P(\tau,G) = \{\operatorname{val}(\sigma,G) \mid (\exists p \in G)((\sigma,p) \in \tau)\}.$$

The 6-line proof in NST uses class recursion.

Theorem 28.6, NST. For any set $G \subseteq P$ there exists a unique class function

$$\operatorname{val}(-,G) = \operatorname{val}_P(-,G) \colon V \to V$$

such that for any set τ ,

$$\operatorname{val}(\tau, G) = \operatorname{val}_P(\tau, G) = \{ \operatorname{val}(\sigma, G) \mid (\exists p \in G) ((\sigma, p) \in \tau) \}.$$

The 6-line proof in NST uses class recursion.

The data defining val are absolute, so val is absolute.

Theorem 28.6, NST. For any set $G \subseteq P$ there exists a unique class function

$$\operatorname{val}(-,G) = \operatorname{val}_P(-,G) \colon V \to V$$

such that for any set τ ,

$$\operatorname{val}(\tau, G) = \operatorname{val}_P(\tau, G) = \{ \operatorname{val}(\sigma, G) \mid (\exists p \in G) ((\sigma, p) \in \tau) \}.$$

The 6-line proof in NST uses class recursion.

The data defining val are absolute, so val is absolute.

Write τ_G for val (τ, G) .

Theorem 28.6, NST. For any set $G \subseteq P$ there exists a unique class function

$$\operatorname{val}(-,G) = \operatorname{val}_P(-,G) \colon V \to V$$

such that for any set τ ,

$$\operatorname{val}(\tau, G) = \operatorname{val}_P(\tau, G) = \{\operatorname{val}(\sigma, G) \mid (\exists p \in G)((\sigma, p) \in \tau)\}.$$

The 6-line proof in NST uses class recursion.

The data defining val are absolute, so val is absolute.

Write τ_G for val (τ, G) . In this notation

Theorem 28.6, NST. For any set $G \subseteq P$ there exists a unique class function

$$\operatorname{val}(-,G) = \operatorname{val}_P(-,G) \colon V \to V$$

such that for any set τ ,

$$\operatorname{val}(\tau, G) = \operatorname{val}_P(\tau, G) = \{\operatorname{val}(\sigma, G) \mid (\exists p \in G)((\sigma, p) \in \tau)\}.$$

The 6-line proof in NST uses class recursion.

The data defining val are absolute, so val is absolute.

Write τ_G for val (τ, G) . In this notation

$$\tau_G = \{ \sigma_G \mid (\exists p \in G) ((\sigma, p) \in \tau) \}.$$

Theorem 28.6, NST. For any set $G \subseteq P$ there exists a unique class function

$$\operatorname{val}(-,G) = \operatorname{val}_P(-,G) \colon V \to V$$

such that for any set τ ,

$$\operatorname{val}(\tau, G) = \operatorname{val}_P(\tau, G) = \{\operatorname{val}(\sigma, G) \mid (\exists p \in G)((\sigma, p) \in \tau)\}.$$

The 6-line proof in NST uses class recursion.

The data defining val are absolute, so val is absolute.

Write τ_G for val (τ, G) . In this notation

$$\tau_G = \{ \sigma_G \mid (\exists p \in G) ((\sigma, p) \in \tau) \}.$$

Definition.

The Definition of $\overline{M[G]}$

Definition.(page 600, NST)

Definition.(page 600, NST) If M is a c.t.m.

Definition.(page 600, NST) If M is a c.t.m. and $G \subseteq P \in M$,

Definition.(page 600, NST) If M is a c.t.m. and $G \subseteq P \in M$, then $M[G] = \{\tau_G \mid \tau \in M^P\}$.

Definition.(page 600, NST) If M is a c.t.m. and $G \subseteq P \in M$, then $M[G] = \{\tau_G \mid \tau \in M^P\}$.

Definition.(page 600, NST) If M is a c.t.m. and $G \subseteq P \in M$, then $M[G] = \{\tau_G \mid \tau \in M^P\}$.

Remarks.

Definition.(page 600, NST) If M is a c.t.m. and $G \subseteq P \in M$, then $M[G] = \{\tau_G \mid \tau \in M^P\}$.

Remarks.

Definition.(page 600, NST) If M is a c.t.m. and $G \subseteq P \in M$, then $M[G] = \{\tau_G \mid \tau \in M^P\}$.

Remarks.

Definition.(page 600, NST) If M is a c.t.m. and $G \subseteq P \in M$, then $M[G] = \{\tau_G \mid \tau \in M^P\}$.

Remarks.

Definition.(page 600, NST) If M is a c.t.m. and $G \subseteq P \in M$, then $M[G] = \{\tau_G \mid \tau \in M^P\}$.

Remarks.

• (For $\tau \in M^P$, $\tau_G = \{ \sigma_G \mid \sigma \in M^P, (\exists p \in G)((\sigma, p) \in \tau) \}$) We only need to explain why, if $\tau \in M$, then $\sigma \in M$:

Definition.(page 600, NST) If M is a c.t.m. and $G \subseteq P \in M$, then $M[G] = \{\tau_G \mid \tau \in M^P\}$.

Remarks.

• (For $\tau \in M^P$, $\tau_G = \{ \sigma_G \mid \sigma \in M^P, (\exists p \in G)((\sigma, p) \in \tau) \}$) We only need to explain why, if $\tau \in M$, then $\sigma \in M$: M is transitive and $\sigma \in \{\sigma\} \in \{\{\sigma\}, \{\sigma, p\}\} \in \tau \in M$.

Definition.(page 600, NST) If M is a c.t.m. and $G \subseteq P \in M$, then $M[G] = \{\tau_G \mid \tau \in M^P\}$.

- (For $\tau \in M^P$, $\tau_G = \{ \sigma_G \mid \sigma \in M^P, (\exists p \in G)((\sigma, p) \in \tau) \}$) We only need to explain why, if $\tau \in M$, then $\sigma \in M$: M is transitive and $\sigma \in \{\sigma\} \in \{\{\sigma\}, \{\sigma, p\}\} \in \tau \in M$.
- \bigcirc (M[G] is a countable set in V)

Definition.(page 600, NST) If M is a c.t.m. and $G \subseteq P \in M$, then $M[G] = \{\tau_G \mid \tau \in M^P\}$.

- (For $\tau \in M^P$, $\tau_G = \{ \sigma_G \mid \sigma \in M^P, (\exists p \in G)((\sigma, p) \in \tau) \}$) We only need to explain why, if $\tau \in M$, then $\sigma \in M$: M is transitive and $\sigma \in \{\sigma\} \in \{\{\sigma\}, \{\sigma, p\}\} \in \tau \in M$.
- \bigcirc (M[G] is a countable set in V)

Definition.(page 600, NST) If M is a c.t.m. and $G \subseteq P \in M$, then $M[G] = \{\tau_G \mid \tau \in M^P\}$.

- (For $\tau \in M^P$, $\tau_G = \{ \sigma_G \mid \sigma \in M^P, (\exists p \in G)((\sigma, p) \in \tau) \}$) We only need to explain why, if $\tau \in M$, then $\sigma \in M$: M is transitive and $\sigma \in \{\sigma\} \in \{\{\sigma\}, \{\sigma, p\}\} \in \tau \in M$.
- ② (M[G] is a countable set in V)Since $M^P \subseteq M$,

Definition.(page 600, NST) If M is a c.t.m. and $G \subseteq P \in M$, then $M[G] = \{\tau_G \mid \tau \in M^P\}$.

- (For $\tau \in M^P$, $\tau_G = \{\sigma_G \mid \sigma \in M^P, (\exists p \in G)((\sigma, p) \in \tau)\}$) We only need to explain why, if $\tau \in M$, then $\sigma \in M$: M is transitive and $\sigma \in \{\sigma\} \in \{\{\sigma\}, \{\sigma, p\}\} \in \tau \in M$.
- ② (M[G] is a countable set in V)Since $M^P \subseteq M$, M^P is a set in V

Definition.(page 600, NST) If M is a c.t.m. and $G \subseteq P \in M$, then $M[G] = \{\tau_G \mid \tau \in M^P\}$.

- (For $\tau \in M^P$, $\tau_G = \{ \sigma_G \mid \sigma \in M^P, (\exists p \in G)((\sigma, p) \in \tau) \}$) We only need to explain why, if $\tau \in M$, then $\sigma \in M$: M is transitive and $\sigma \in \{\sigma\} \in \{\{\sigma\}, \{\sigma, p\}\} \in \tau \in M$.
- ② (M[G] is a countable set in V) Since $M^P \subseteq M$, M^P is a set in V that is countable in V.

Definition.(page 600, NST) If M is a c.t.m. and $G \subseteq P \in M$, then $M[G] = \{\tau_G \mid \tau \in M^P\}$.

- (For $\tau \in M^P$, $\tau_G = \{\sigma_G \mid \sigma \in M^P, (\exists p \in G)((\sigma, p) \in \tau)\}$) We only need to explain why, if $\tau \in M$, then $\sigma \in M$: M is transitive and $\sigma \in \{\sigma\} \in \{\{\sigma\}, \{\sigma, p\}\} \in \tau \in M$.
- ② (M[G] is a countable set in V) Since $M^P \subseteq M$, M^P is a set in V that is countable in V. The assignment $\tau \mapsto \tau^G$ is given by the class function val,

Definition.(page 600, NST) If M is a c.t.m. and $G \subseteq P \in M$, then $M[G] = \{\tau_G \mid \tau \in M^P\}$.

- (For $\tau \in M^P$, $\tau_G = \{\sigma_G \mid \sigma \in M^P, (\exists p \in G)((\sigma, p) \in \tau)\}$) We only need to explain why, if $\tau \in M$, then $\sigma \in M$: M is transitive and $\sigma \in \{\sigma\} \in \{\{\sigma\}, \{\sigma, p\}\} \in \tau \in M$.
- ② (M[G] is a countable set in V) Since $M^P \subseteq M$, M^P is a set in V that is countable in V. The assignment $\tau \mapsto \tau^G$ is given by the class function val, so by the Axiom of Replacement in V

Definition.(page 600, NST) If M is a c.t.m. and $G \subseteq P \in M$, then $M[G] = \{\tau_G \mid \tau \in M^P\}$.

- (For $\tau \in M^P$, $\tau_G = \{\sigma_G \mid \sigma \in M^P, (\exists p \in G)((\sigma, p) \in \tau)\}$) We only need to explain why, if $\tau \in M$, then $\sigma \in M$: M is transitive and $\sigma \in \{\sigma\} \in \{\{\sigma\}, \{\sigma, p\}\} \in \tau \in M$.
- ② (M[G]) is a countable set in V) Since $M^P \subseteq M$, M^P is a set in V that is countable in V. The assignment $\tau \mapsto \tau^G$ is given by the class function val, so by the Axiom of Replacement in V we get that M[G] is a set in V that is countable in V.

Definition.(page 600, NST) If M is a c.t.m. and $G \subseteq P \in M$, then $M[G] = \{\tau_G \mid \tau \in M^P\}$.

- (For $\tau \in M^P$, $\tau_G = \{\sigma_G \mid \sigma \in M^P, (\exists p \in G)((\sigma, p) \in \tau)\}$) We only need to explain why, if $\tau \in M$, then $\sigma \in M$: M is transitive and $\sigma \in \{\sigma\} \in \{\{\sigma\}, \{\sigma, p\}\} \in \tau \in M$.
- ② (M[G] is a countable set in V) Since $M^P \subseteq M$, M^P is a set in V that is countable in V. The assignment $\tau \mapsto \tau^G$ is given by the class function val, so by the Axiom of Replacement in V we get that M[G] is a set in V that is countable in V.
- (M[G] is a transitive set in V)

Definition.(page 600, NST) If M is a c.t.m. and $G \subseteq P \in M$, then $M[G] = \{\tau_G \mid \tau \in M^P\}$.

- (For $\tau \in M^P$, $\tau_G = \{\sigma_G \mid \sigma \in M^P, (\exists p \in G)((\sigma, p) \in \tau)\}$) We only need to explain why, if $\tau \in M$, then $\sigma \in M$: M is transitive and $\sigma \in \{\sigma\} \in \{\{\sigma\}, \{\sigma, p\}\} \in \tau \in M$.
- ② (M[G] is a countable set in V) Since $M^P \subseteq M$, M^P is a set in V that is countable in V. The assignment $\tau \mapsto \tau^G$ is given by the class function val, so by the Axiom of Replacement in V we get that M[G] is a set in V that is countable in V.
- (M[G] is a transitive set in V)

Definition.(page 600, NST) If M is a c.t.m. and $G \subseteq P \in M$, then $M[G] = \{\tau_G \mid \tau \in M^P\}$.

- (For $\tau \in M^P$, $\tau_G = \{\sigma_G \mid \sigma \in M^P, (\exists p \in G)((\sigma, p) \in \tau)\}$) We only need to explain why, if $\tau \in M$, then $\sigma \in M$: M is transitive and $\sigma \in \{\sigma\} \in \{\{\sigma\}, \{\sigma, p\}\} \in \tau \in M$.
- ② (M[G]) is a countable set in V) Since $M^P \subseteq M$, M^P is a set in V that is countable in V. The assignment $\tau \mapsto \tau^G$ is given by the class function val, so by the Axiom of Replacement in V we get that M[G] is a set in V that is countable in V.
- (M[G] is a transitive set in V) Choose $x \in y \in M[G]$.

Definition.(page 600, NST) If M is a c.t.m. and $G \subseteq P \in M$, then $M[G] = \{\tau_G \mid \tau \in M^P\}$.

- (For $\tau \in M^P$, $\tau_G = \{\sigma_G \mid \sigma \in M^P, (\exists p \in G)((\sigma, p) \in \tau)\}$) We only need to explain why, if $\tau \in M$, then $\sigma \in M$: M is transitive and $\sigma \in \{\sigma\} \in \{\{\sigma\}, \{\sigma, p\}\} \in \tau \in M$.
- ② (M[G] is a countable set in V) Since $M^P \subseteq M$, M^P is a set in V that is countable in V. The assignment $\tau \mapsto \tau^G$ is given by the class function val, so by the Axiom of Replacement in V we get that M[G] is a set in V that is countable in V.
- **③** (M[G]) is a transitive set in V) Choose $x \in y \in M[G]$. Necessarily $y = \tau_G$ for some $\tau \in M^P$.

Definition.(page 600, NST) If M is a c.t.m. and $G \subseteq P \in M$, then $M[G] = \{\tau_G \mid \tau \in M^P\}$.

- (For $\tau \in M^P$, $\tau_G = \{\sigma_G \mid \sigma \in M^P, (\exists p \in G)((\sigma, p) \in \tau)\}$) We only need to explain why, if $\tau \in M$, then $\sigma \in M$: M is transitive and $\sigma \in \{\sigma\} \in \{\{\sigma\}, \{\sigma, p\}\} \in \tau \in M$.
- ② (M[G] is a countable set in V) Since $M^P \subseteq M$, M^P is a set in V that is countable in V. The assignment $\tau \mapsto \tau^G$ is given by the class function val, so by the Axiom of Replacement in V we get that M[G] is a set in V that is countable in V.
- **③** (M[G] is a transitive set in V)Choose $x \in y \in M[G]$. Necessarily $y = \tau_G$ for some $\tau \in M^P$. Since $x \in y = \tau_G$, we must have $x = \sigma_G$ for some $\sigma \in M^P$.

Definition.(page 600, NST) If M is a c.t.m. and $G \subseteq P \in M$, then $M[G] = \{\tau_G \mid \tau \in M^P\}$.

- (For $\tau \in M^P$, $\tau_G = \{\sigma_G \mid \sigma \in M^P, (\exists p \in G)((\sigma, p) \in \tau)\}$) We only need to explain why, if $\tau \in M$, then $\sigma \in M$: M is transitive and $\sigma \in \{\sigma\} \in \{\{\sigma\}, \{\sigma, p\}\} \in \tau \in M$.
- ② (M[G]) is a countable set in V) Since $M^P \subseteq M$, M^P is a set in V that is countable in V. The assignment $\tau \mapsto \tau^G$ is given by the class function val, so by the Axiom of Replacement in V we get that M[G] is a set in V that is countable in V.
- **③** (M[G]) is a transitive set in V) Choose $x \in y \in M[G]$. Necessarily $y = \tau_G$ for some $\tau \in M^P$. Since $x \in y = \tau_G$, we must have $x = \sigma_G$ for some $\sigma \in M^P$. Hence $x \in M[G]$.

$\overline{M} \subseteq M[G]$

$M \subseteq M[G]$

To prove that $M\subseteq M[G]$, we need to show that for any $x\in M$ there exists $\tau\in M^P$ such that $\tau_G=x$.

$M \subseteq M[G]$

To prove that $M\subseteq M[G]$, we need to show that for any $x\in M$ there exists $\tau\in M^P$ such that $\tau_G=x$. Given a forcing poset $\mathbb{P}=\langle P;\leq,1\rangle\in M$,

$M \subseteq M[G]$

To prove that $M \subseteq M[G]$, we need to show that for any $x \in M$ there exists $\tau \in M^P$ such that $\tau_G = x$. Given a forcing poset $\mathbb{P} = \langle P; \leq, 1 \rangle \in M$, use class recursion over the class V with the E-relation $E = \in$ to define a function $H: V \to V$ by

To prove that $M\subseteq M[G]$, we need to show that for any $x\in M$ there exists $\tau\in M^P$ such that $\tau_G=x$. Given a forcing poset $\mathbb{P}=\langle P;\leq,1\rangle\in M$, use class recursion over the class V with the E-relation $E=\in$ to define a function $H\colon V\to V$ by

$$H(x) = \{ (H(y), 1) \mid y \in x \}.$$

To prove that $M\subseteq M[G]$, we need to show that for any $x\in M$ there exists $\tau\in M^P$ such that $\tau_G=x$. Given a forcing poset $\mathbb{P}=\langle P;\leq,1\rangle\in M$, use class recursion over the class V with the E-relation $E=\in$ to define a function $H\colon V\to V$ by

$$H(x) = \{ (H(y), 1) \mid y \in x \}.$$

Write \check{x} for H(x).

To prove that $M\subseteq M[G]$, we need to show that for any $x\in M$ there exists $\tau\in M^P$ such that $\tau_G=x$. Given a forcing poset $\mathbb{P}=\langle P;\leq,1\rangle\in M$, use class recursion over the class V with the E-relation $E=\in$ to define a function $H\colon V\to V$ by

$$H(x) = \{ (H(y), 1) \mid y \in x \}.$$

Write \check{x} for H(x). The P-name \check{x} is called the **canonical** P-name for x.

To prove that $M\subseteq M[G]$, we need to show that for any $x\in M$ there exists $\tau\in M^P$ such that $\tau_G=x$. Given a forcing poset $\mathbb{P}=\langle P;\leq,1\rangle\in M$, use class recursion over the class V with the E-relation $E=\in$ to define a function $H\colon V\to V$ by

$$H(x) = \{ (H(y), 1) \mid y \in x \}.$$

Write \check{x} for H(x). The P-name \check{x} is called the **canonical** P-name for x. In this notation, $\check{x} = \{(\check{y}, 1) \mid y \in x\}$.

To prove that $M\subseteq M[G]$, we need to show that for any $x\in M$ there exists $\tau\in M^P$ such that $\tau_G=x$. Given a forcing poset $\mathbb{P}=\langle P;\leq,1\rangle\in M$, use class recursion over the class V with the E-relation $E=\in$ to define a function $H\colon V\to V$ by

$$H(x) = \{ (H(y), 1) \mid y \in x \}.$$

Write \check{x} for H(x). The P-name \check{x} is called the **canonical** P-name for x. In this notation, $\check{x} = \{(\check{y},1) \mid y \in x\}$. We claim that for every $x \in M$ we have (i) $\check{x} \in M^P$ and (ii) $\check{x}_G = x$.

To prove that $M\subseteq M[G]$, we need to show that for any $x\in M$ there exists $\tau\in M^P$ such that $\tau_G=x$. Given a forcing poset $\mathbb{P}=\langle P;\leq,1\rangle\in M$, use class recursion over the class V with the E-relation $E=\in$ to define a function $H\colon V\to V$ by

$$H(x) = \{ (H(y), 1) \mid y \in x \}.$$

Write \check{x} for H(x). The P-name \check{x} is called the **canonical** P-name for x. In this notation, $\check{x} = \{(\check{y},1) \mid y \in x\}$. We claim that for every $x \in M$ we have (i) $\check{x} \in M^P$ and (ii) $\check{x}_G = x$.

Assume that this is not the case

To prove that $M\subseteq M[G]$, we need to show that for any $x\in M$ there exists $\tau\in M^P$ such that $\tau_G=x$. Given a forcing poset $\mathbb{P}=\langle P;\leq,1\rangle\in M$, use class recursion over the class V with the E-relation $E=\in$ to define a function $H\colon V\to V$ by

$$H(x) = \{ (H(y), 1) \mid y \in x \}.$$

Write \check{x} for H(x). The P-name \check{x} is called the **canonical** P-name for x. In this notation, $\check{x} = \{(\check{y},1) \mid y \in x\}$. We claim that for every $x \in M$ we have (i) $\check{x} \in M^P$ and (ii) $\check{x}_G = x$.

Assume that this is not the case (i.e., (i) or (ii) fails),

To prove that $M\subseteq M[G]$, we need to show that for any $x\in M$ there exists $\tau\in M^P$ such that $\tau_G=x$. Given a forcing poset $\mathbb{P}=\langle P;\leq,1\rangle\in M$, use class recursion over the class V with the E-relation $E=\in$ to define a function $H\colon V\to V$ by

$$H(x) = \{ (H(y), 1) \mid y \in x \}.$$

Write \check{x} for H(x). The P-name \check{x} is called the **canonical** P-name for x. In this notation, $\check{x} = \{(\check{y},1) \mid y \in x\}$. We claim that for every $x \in M$ we have (i) $\check{x} \in M^P$ and (ii) $\check{x}_G = x$.

Assume that this is not the case (i.e., (i) or (ii) fails), and choose an \in -minimal x witnessing this.

To prove that $M\subseteq M[G]$, we need to show that for any $x\in M$ there exists $\tau\in M^P$ such that $\tau_G=x$. Given a forcing poset $\mathbb{P}=\langle P;\leq,1\rangle\in M$, use class recursion over the class V with the E-relation $E=\in$ to define a function $H\colon V\to V$ by

$$H(x) = \{ (H(y), 1) \mid y \in x \}.$$

Write \check{x} for H(x). The P-name \check{x} is called the **canonical** P-name for x. In this notation, $\check{x} = \{(\check{y},1) \mid y \in x\}$. We claim that for every $x \in M$ we have (i) $\check{x} \in M^P$ and (ii) $\check{x}_G = x$.

Assume that this is not the case (i.e., (i) or (ii) fails), and choose an \in -minimal x witnessing this. We have $\check{x} = \{(\check{y},1) \mid y \in x\}$, where the \check{y} 's belong to M^P , so \check{x} is a P-name. We have $x \in M^P$ using Replacement in M with the absolute class function $y \mapsto (\check{y},1)$.

To prove that $M\subseteq M[G]$, we need to show that for any $x\in M$ there exists $\tau\in M^P$ such that $\tau_G=x$. Given a forcing poset $\mathbb{P}=\langle P;\leq,1\rangle\in M$, use class recursion over the class V with the E-relation $E=\in$ to define a function $H\colon V\to V$ by

$$H(x) = \{ (H(y), 1) \mid y \in x \}.$$

Write \check{x} for H(x). The P-name \check{x} is called the **canonical** P-name for x. In this notation, $\check{x} = \{(\check{y},1) \mid y \in x\}$. We claim that for every $x \in M$ we have (i) $\check{x} \in M^P$ and (ii) $\check{x}_G = x$.

Assume that this is not the case (i.e., (i) or (ii) fails), and choose an \in -minimal x witnessing this. We have $\check{x}=\{(\check{y},1)\mid y\in x\}$, where the \check{y} 's belong to M^P , so \check{x} is a P-name. We have $x\in M^P$ using Replacement in M with the absolute class function $y\mapsto (\check{y},1)$. We have

To prove that $M\subseteq M[G]$, we need to show that for any $x\in M$ there exists $\tau\in M^P$ such that $\tau_G=x$. Given a forcing poset $\mathbb{P}=\langle P;\leq,1\rangle\in M$, use class recursion over the class V with the E-relation $E=\in$ to define a function $H\colon V\to V$ by

$$H(x) = \{ (H(y), 1) \mid y \in x \}.$$

Write \check{x} for H(x). The P-name \check{x} is called the **canonical** P-name for x. In this notation, $\check{x} = \{(\check{y},1) \mid y \in x\}$. We claim that for every $x \in M$ we have (i) $\check{x} \in M^P$ and (ii) $\check{x}_G = x$.

Assume that this is not the case (i.e., (i) or (ii) fails), and choose an \in -minimal x witnessing this. We have $\check{x}=\{(\check{y},1)\mid y\in x\}$, where the \check{y} 's belong to M^P , so \check{x} is a P-name. We have $x\in M^P$ using Replacement in M with the absolute class function $y\mapsto (\check{y},1)$. We have

$$\check{x}_G = \{\check{y}_G \mid y \in x\} = \{y \mid y \in x\} = x.$$

To prove that $M\subseteq M[G]$, we need to show that for any $x\in M$ there exists $\tau\in M^P$ such that $\tau_G=x$. Given a forcing poset $\mathbb{P}=\langle P;\leq,1\rangle\in M$, use class recursion over the class V with the E-relation $E=\in$ to define a function $H\colon V\to V$ by

$$H(x) = \{(H(y), 1) \mid y \in x\}.$$

Write \check{x} for H(x). The P-name \check{x} is called the **canonical** P-name for x. In this notation, $\check{x} = \{(\check{y},1) \mid y \in x\}$. We claim that for every $x \in M$ we have (i) $\check{x} \in M^P$ and (ii) $\check{x}_G = x$.

Assume that this is not the case (i.e., (i) or (ii) fails), and choose an \in -minimal x witnessing this. We have $\check{x}=\{(\check{y},1)\mid y\in x\}$, where the \check{y} 's belong to M^P , so \check{x} is a P-name. We have $x\in M^P$ using Replacement in M with the absolute class function $y\mapsto (\check{y},1)$. We have

$$\check{x}_G = \{\check{y}_G \mid y \in x\} = \{y \mid y \in x\} = x.$$

This contradicts the assumption from the first line of this paragraph.

To prove that $M \subseteq M[G]$, we need to show that for any $x \in M$ there exists $\tau \in M^P$ such that $\tau_G = x$. Given a forcing poset $\mathbb{P} = \langle P; \leq, 1 \rangle \in M$, use class recursion over the class V with the E-relation $E = \in$ to define a function $H: V \to V$ by

$$H(x) = \{ (H(y), 1) \mid y \in x \}.$$

Write \check{x} for H(x). The P-name \check{x} is called the **canonical** P-name for x. In this notation, $\check{x} = \{(\check{y},1) \mid y \in x\}$. We claim that for every $x \in M$ we have (i) $\check{x} \in M^P$ and (ii) $\check{x}_G = x$.

Assume that this is not the case (i.e., (i) or (ii) fails), and choose an \in -minimal x witnessing this. We have $\check{x}=\{(\check{y},1)\mid y\in x\}$, where the \check{y} 's belong to M^P , so \check{x} is a P-name. We have $x\in M^P$ using Replacement in M with the absolute class function $y\mapsto (\check{y},1)$. We have

$$\check{x}_G = \{\check{y}_G \mid y \in x\} = \{y \mid y \in x\} = x.$$

This contradicts the assumption from the first line of this paragraph.

Let

$$G \in M[G]$$

Let

$$\Gamma = \{(\check{p}, p) \mid p \in P\}.$$

$$G \in M[G]$$

Let

$$\Gamma = \{(\check{p}, p) \mid p \in P\}.$$

 Γ is a P-name, according to our characterization of P-names.

Let

$$\Gamma = \{(\check{p}, p) \mid p \in P\}.$$

 Γ is a P-name, according to our characterization of P-names. Since M is a c.t.m. and $\mathbb{P} \in M$, we must have $\Gamma \in M$.

Let

$$\Gamma = \{(\check{p}, p) \mid p \in P\}.$$

Let

$$\Gamma = \{(\check{p}, p) \mid p \in P\}.$$

Let

$$\Gamma = \{ (\check{p}, p) \mid p \in P \}.$$

Let

$$\Gamma = \{(\check{p}, p) \mid p \in P\}.$$

$$\Gamma_G = \{ \check{p}_G \mid (\exists p \in G) ((\check{p}, p) \in \Gamma) \}$$

Let

$$\Gamma = \{ (\check{p}, p) \mid p \in P \}.$$

$$\Gamma_G = \{ \check{p}_G \mid (\exists p \in G) ((\check{p}, p) \in \Gamma) \} = \{ \check{p}_G \mid p \in G \}$$

Let

$$\Gamma = \{ (\check{p}, p) \mid p \in P \}.$$

$$\Gamma_G = \{ \check{p}_G \mid (\exists p \in G) ((\check{p}, p) \in \Gamma) \} = \{ \check{p}_G \mid p \in G \} = \{ p \mid p \in G \}$$

Let

$$\Gamma = \{ (\check{p}, p) \mid p \in P \}.$$

$$\Gamma_G = \{ \check{p}_G \mid (\exists p \in G) ((\check{p}, p) \in \Gamma) \} = \{ \check{p}_G \mid p \in G \} = \{ p \mid p \in G \} = G.$$

Let

$$\Gamma = \{(\check{p}, p) \mid p \in P\}.$$

$$\Gamma_G = \{ \check{p}_G \mid (\exists p \in G) ((\check{p}, p) \in \Gamma) \} = \{ \check{p}_G \mid p \in G \} = \{ p \mid p \in G \} = G. \quad \Box$$

$$M \subseteq N^{\text{c.t.m.}} \& G \in N \implies M[G] \subseteq N$$

If M is a c.t.m.,

$$M \subseteq N^{\text{c.t.m.}} \& G \in N \implies M[G] \subseteq N$$

If M is a c.t.m., $\mathbb{P} \in M$ is a forcing poset,

If M is a c.t.m., $\mathbb{P} \in M$ is a forcing poset, and $G \subseteq P$ is a \mathbb{P} -generic filter,

If M is a c.t.m., $\mathbb{P} \in M$ is a forcing poset, and $G \subseteq P$ is a \mathbb{P} -generic filter, then we know that M[G] is a countable transitive <u>set</u>.

If M is a c.t.m., $\mathbb{P} \in M$ is a forcing poset, and $G \subseteq P$ is a \mathbb{P} -generic filter, then we know that M[G] is a countable transitive <u>set</u>. We postpone our goal to prove that M[G] is a c.t.<u>m.</u>.

If M is a c.t.m., $\mathbb{P} \in M$ is a forcing poset, and $G \subseteq P$ is a \mathbb{P} -generic filter, then we know that M[G] is a countable transitive <u>set</u>. We postpone our goal to prove that M[G] is a c.t.<u>m.</u>. Here we show that:

If N is a c.t.m.,

If M is a c.t.m., $\mathbb{P} \in M$ is a forcing poset, and $G \subseteq P$ is a \mathbb{P} -generic filter, then we know that M[G] is a countable transitive <u>set</u>. We postpone our goal to prove that M[G] is a c.t.<u>m.</u>. Here we show that:

If N is a c.t.m.,

If M is a c.t.m., $\mathbb{P} \in M$ is a forcing poset, and $G \subseteq P$ is a \mathbb{P} -generic filter, then we know that M[G] is a countable transitive <u>set</u>. We postpone our goal to prove that M[G] is a c.t.<u>m.</u>. Here we show that:

If N is a c.t.m., $M \subseteq N$,

If M is a c.t.m., $\mathbb{P} \in M$ is a forcing poset, and $G \subseteq P$ is a \mathbb{P} -generic filter, then we know that M[G] is a countable transitive <u>set</u>. We postpone our goal to prove that M[G] is a c.t.<u>m.</u>. Here we show that:

If N is a c.t.m., $M \subseteq N$, and $G \in N$,

If M is a c.t.m., $\mathbb{P} \in M$ is a forcing poset, and $G \subseteq P$ is a \mathbb{P} -generic filter, then we know that M[G] is a countable transitive <u>set</u>. We postpone our goal to prove that M[G] is a c.t.<u>m.</u>. Here we show that:

If N is a c.t.m., $M \subseteq N$, and $G \in N$, then $M[G] \subseteq N$.

If M is a c.t.m., $\mathbb{P} \in M$ is a forcing poset, and $G \subseteq P$ is a \mathbb{P} -generic filter, then we know that M[G] is a countable transitive <u>set</u>. We postpone our goal to prove that M[G] is a c.t.<u>m.</u>. Here we show that:

If N is a c.t.m., $M \subseteq N$, and $G \in N$, then $M[G] \subseteq N$.

Once we know that M[G] is a c.t.m.,

If M is a c.t.m., $\mathbb{P} \in M$ is a forcing poset, and $G \subseteq P$ is a \mathbb{P} -generic filter, then we know that M[G] is a countable transitive <u>set</u>. We postpone our goal to prove that M[G] is a c.t.<u>m.</u>. Here we show that:

If N is a c.t.m., $M \subseteq N$, and $G \in N$, then $M[G] \subseteq N$.

Once we know that M[G] is a c.t.m., this fact will characterize M[G] as the least c.t.m. extending M to contain G as an element.

If M is a c.t.m., $\mathbb{P} \in M$ is a forcing poset, and $G \subseteq P$ is a \mathbb{P} -generic filter, then we know that M[G] is a countable transitive <u>set</u>. We postpone our goal to prove that M[G] is a c.t.<u>m.</u>. Here we show that:

If N is a c.t.m., $M \subseteq N$, and $G \in N$, then $M[G] \subseteq N$.

Once we know that M[G] is a c.t.m., this fact will characterize M[G] as the least c.t.m. extending M to contain G as an element.

Argument:

If M is a c.t.m., $\mathbb{P} \in M$ is a forcing poset, and $G \subseteq P$ is a \mathbb{P} -generic filter, then we know that M[G] is a countable transitive <u>set</u>. We postpone our goal to prove that M[G] is a c.t.<u>m.</u>. Here we show that:

If N is a c.t.m., $M \subseteq N$, and $G \in N$, then $M[G] \subseteq N$.

Once we know that M[G] is a c.t.m., this fact will characterize M[G] as the least c.t.m. extending M to contain G as an element.

Argument: Choose any $x \in M[G]$.

If M is a c.t.m., $\mathbb{P} \in M$ is a forcing poset, and $G \subseteq P$ is a \mathbb{P} -generic filter, then we know that M[G] is a countable transitive <u>set</u>. We postpone our goal to prove that M[G] is a c.t.<u>m.</u>. Here we show that:

If N is a c.t.m., $M \subseteq N$, and $G \in N$, then $M[G] \subseteq N$.

Once we know that M[G] is a c.t.m., this fact will characterize M[G] as the least c.t.m. extending M to contain G as an element.

Argument: Choose any $x \in M[G]$. Necessarily, $x = \tau_G$ for some $\tau \in M^P$.

If M is a c.t.m., $\mathbb{P} \in M$ is a forcing poset, and $G \subseteq P$ is a \mathbb{P} -generic filter, then we know that M[G] is a countable transitive <u>set</u>. We postpone our goal to prove that M[G] is a c.t.<u>m.</u>. Here we show that:

If N is a c.t.m., $M \subseteq N$, and $G \in N$, then $M[G] \subseteq N$.

Once we know that M[G] is a c.t.m., this fact will characterize M[G] as the least c.t.m. extending M to contain G as an element.

Argument: Choose any $x \in M[G]$. Necessarily, $x = \tau_G$ for some $\tau \in M^P$. We have $\tau \in M^P$

If M is a c.t.m., $\mathbb{P} \in M$ is a forcing poset, and $G \subseteq P$ is a \mathbb{P} -generic filter, then we know that M[G] is a countable transitive <u>set</u>. We postpone our goal to prove that M[G] is a c.t.<u>m.</u>. Here we show that:

If N is a c.t.m., $M \subseteq N$, and $G \in N$, then $M[G] \subseteq N$.

Once we know that M[G] is a c.t.m., this fact will characterize M[G] as the least c.t.m. extending M to contain G as an element.

Argument: Choose any $x \in M[G]$. Necessarily, $x = \tau_G$ for some $\tau \in M^P$. We have $\tau \in M^P \subseteq M$

If M is a c.t.m., $\mathbb{P} \in M$ is a forcing poset, and $G \subseteq P$ is a \mathbb{P} -generic filter, then we know that M[G] is a countable transitive <u>set</u>. We postpone our goal to prove that M[G] is a c.t.<u>m.</u>. Here we show that:

If N is a c.t.m., $M \subseteq N$, and $G \in N$, then $M[G] \subseteq N$.

Once we know that M[G] is a c.t.m., this fact will characterize M[G] as the least c.t.m. extending M to contain G as an element.

Argument: Choose any $x \in M[G]$. Necessarily, $x = \tau_G$ for some $\tau \in M^P$. We have $\tau \in M^P \subseteq M \subseteq N$,

If M is a c.t.m., $\mathbb{P} \in M$ is a forcing poset, and $G \subseteq P$ is a \mathbb{P} -generic filter, then we know that M[G] is a countable transitive <u>set</u>. We postpone our goal to prove that M[G] is a c.t.<u>m.</u>. Here we show that:

If N is a c.t.m., $M \subseteq N$, and $G \in N$, then $M[G] \subseteq N$.

Once we know that M[G] is a c.t.m., this fact will characterize M[G] as the least c.t.m. extending M to contain G as an element.

Argument: Choose any $x \in M[G]$. Necessarily, $x = \tau_G$ for some $\tau \in M^P$. We have $\tau \in M^P \subseteq M \subseteq N$, and also $G \in N$.

If M is a c.t.m., $\mathbb{P} \in M$ is a forcing poset, and $G \subseteq P$ is a \mathbb{P} -generic filter, then we know that M[G] is a countable transitive <u>set</u>. We postpone our goal to prove that M[G] is a c.t.<u>m.</u>. Here we show that:

If N is a c.t.m., $M \subseteq N$, and $G \in N$, then $M[G] \subseteq N$.

Once we know that M[G] is a c.t.m., this fact will characterize M[G] as the least c.t.m. extending M to contain G as an element.

Argument: Choose any $x \in M[G]$. Necessarily, $x = \tau_G$ for some $\tau \in M^P$. We have $\tau \in M^P \subseteq M \subseteq N$, and also $G \in N$. By the absoluteness of $\operatorname{val}(-,G)$,

If M is a c.t.m., $\mathbb{P} \in M$ is a forcing poset, and $G \subseteq P$ is a \mathbb{P} -generic filter, then we know that M[G] is a countable transitive <u>set</u>. We postpone our goal to prove that M[G] is a c.t.<u>m.</u>. Here we show that:

If N is a c.t.m., $M \subseteq N$, and $G \in N$, then $M[G] \subseteq N$.

Once we know that M[G] is a c.t.m., this fact will characterize M[G] as the least c.t.m. extending M to contain G as an element.

Argument: Choose any $x \in M[G]$. Necessarily, $x = \tau_G$ for some $\tau \in M^P$. We have $\tau \in M^P \subseteq M \subseteq N$, and also $G \in N$. By the absoluteness of val(-,G), we get that x

If M is a c.t.m., $\mathbb{P} \in M$ is a forcing poset, and $G \subseteq P$ is a \mathbb{P} -generic filter, then we know that M[G] is a countable transitive <u>set</u>. We postpone our goal to prove that M[G] is a c.t.<u>m.</u>. Here we show that:

If N is a c.t.m., $M \subseteq N$, and $G \in N$, then $M[G] \subseteq N$.

Once we know that M[G] is a c.t.m., this fact will characterize M[G] as the least c.t.m. extending M to contain G as an element.

Argument: Choose any $x \in M[G]$. Necessarily, $x = \tau_G$ for some $\tau \in M^P$. We have $\tau \in M^P \subseteq M \subseteq N$, and also $G \in N$. By the absoluteness of val(-,G), we get that $x = \tau_G$

If M is a c.t.m., $\mathbb{P} \in M$ is a forcing poset, and $G \subseteq P$ is a \mathbb{P} -generic filter, then we know that M[G] is a countable transitive <u>set</u>. We postpone our goal to prove that M[G] is a c.t.<u>m.</u>. Here we show that:

If N is a c.t.m., $M \subseteq N$, and $G \in N$, then $M[G] \subseteq N$.

Once we know that M[G] is a c.t.m., this fact will characterize M[G] as the least c.t.m. extending M to contain G as an element.

Argument: Choose any $x \in M[G]$. Necessarily, $x = \tau_G$ for some $\tau \in M^P$. We have $\tau \in M^P \subseteq M \subseteq N$, and also $G \in N$. By the absoluteness of $\operatorname{val}(-,G)$, we get that $x = \tau_G = \operatorname{val}(\tau,G)$

If M is a c.t.m., $\mathbb{P} \in M$ is a forcing poset, and $G \subseteq P$ is a \mathbb{P} -generic filter, then we know that M[G] is a countable transitive <u>set</u>. We postpone our goal to prove that M[G] is a c.t.<u>m.</u>. Here we show that:

If N is a c.t.m., $M \subseteq N$, and $G \in N$, then $M[G] \subseteq N$.

Once we know that M[G] is a c.t.m., this fact will characterize M[G] as the least c.t.m. extending M to contain G as an element.

Argument: Choose any $x \in M[G]$. Necessarily, $x = \tau_G$ for some $\tau \in M^P$. We have $\tau \in M^P \subseteq M \subseteq N$, and also $G \in N$. By the absoluteness of $\operatorname{val}(-,G)$, we get that $x = \tau_G = \operatorname{val}(\tau,G) \in N$.

If M is a c.t.m., $\mathbb{P} \in M$ is a forcing poset, and $G \subseteq P$ is a \mathbb{P} -generic filter, then we know that M[G] is a countable transitive <u>set</u>. We postpone our goal to prove that M[G] is a c.t.<u>m.</u>. Here we show that:

If N is a c.t.m., $M \subseteq N$, and $G \in N$, then $M[G] \subseteq N$.

Once we know that M[G] is a c.t.m., this fact will characterize M[G] as the least c.t.m. extending M to contain G as an element.

Argument: Choose any $x \in M[G]$. Necessarily, $x = \tau_G$ for some $\tau \in M^P$. We have $\tau \in M^P \subseteq M \subseteq N$, and also $G \in N$. By the absoluteness of $\operatorname{val}(-,G)$, we get that $x = \tau_G = \operatorname{val}(\tau,G) \in N$. Since $x \in M[G]$ was arbitrarily chosen,

If M is a c.t.m., $\mathbb{P} \in M$ is a forcing poset, and $G \subseteq P$ is a \mathbb{P} -generic filter, then we know that M[G] is a countable transitive <u>set</u>. We postpone our goal to prove that M[G] is a c.t.<u>m.</u>. Here we show that:

If N is a c.t.m., $M \subseteq N$, and $G \in N$, then $M[G] \subseteq N$.

Once we know that M[G] is a c.t.m., this fact will characterize M[G] as the least c.t.m. extending M to contain G as an element.

Argument: Choose any $x \in M[G]$. Necessarily, $x = \tau_G$ for some $\tau \in M^P$. We have $\tau \in M^P \subseteq M \subseteq N$, and also $G \in N$. By the absoluteness of $\operatorname{val}(-,G)$, we get that $x = \tau_G = \operatorname{val}(\tau,G) \in N$. Since $x \in M[G]$ was arbitrarily chosen, $M[G] \subseteq N$. \square

Theorem.

Theorem. Assume that M is a c.t.m.,

Theorem. Assume that M is a c.t.m., $\mathbb{P} = \langle P; \leq, 1 \rangle$ is a forcing order,

Theorem. Assume that M is a c.t.m., $\mathbb{P}=\langle P;\leq,1\rangle$ is a forcing order, and G is a generic filter of P.

Theorem. Assume that M is a c.t.m., $\mathbb{P} = \langle P; \leq, 1 \rangle$ is a forcing order, and G is a generic filter of P.

• $\operatorname{rank}(\tau_G) \leq \operatorname{rank}(\tau)$ for all $\tau \in M^P$.

Theorem. Assume that M is a c.t.m., $\mathbb{P} = \langle P; \leq, 1 \rangle$ is a forcing order, and G is a generic filter of P.

• $\operatorname{rank}(\tau_G) \leq \operatorname{rank}(\tau)$ for all $\tau \in M^P$.

Theorem. Assume that M is a c.t.m., $\mathbb{P} = \langle P; \leq, 1 \rangle$ is a forcing order, and G is a generic filter of P.

- $\operatorname{rank}(\tau_G) \leq \operatorname{rank}(\tau)$ for all $\tau \in M^P$.
- ② M and M[G] have the same ordinals.

Theorem. Assume that M is a c.t.m., $\mathbb{P} = \langle P; \leq, 1 \rangle$ is a forcing order, and G is a generic filter of P.

- $\operatorname{rank}(\tau_G) \leq \operatorname{rank}(\tau)$ for all $\tau \in M^P$.
- ② M and M[G] have the same ordinals.

Theorem. Assume that M is a c.t.m., $\mathbb{P} = \langle P; \leq, 1 \rangle$ is a forcing order, and G is a generic filter of P.

- $\operatorname{rank}(\tau_G) \leq \operatorname{rank}(\tau)$ for all $\tau \in M^P$.
- ② M and M[G] have the same ordinals.

Proof:

Theorem. Assume that M is a c.t.m., $\mathbb{P} = \langle P; \leq, 1 \rangle$ is a forcing order, and G is a generic filter of P.

- $\operatorname{rank}(\tau_G) \leq \operatorname{rank}(\tau)$ for all $\tau \in M^P$.
- ② M and M[G] have the same ordinals.

Proof: Assume that (1) fails for some $\tau \in M^P$.

Theorem. Assume that M is a c.t.m., $\mathbb{P} = \langle P; \leq, 1 \rangle$ is a forcing order, and G is a generic filter of P.

- $\operatorname{rank}(\tau_G) \leq \operatorname{rank}(\tau)$ for all $\tau \in M^P$.
- ② M and M[G] have the same ordinals.

Proof: Assume that (1) fails for some $\tau \in M^P$. Choose a τ of least rank for this failure.

Theorem. Assume that M is a c.t.m., $\mathbb{P} = \langle P; \leq, 1 \rangle$ is a forcing order, and G is a generic filter of P.

- ② M and M[G] have the same ordinals.

Proof: Assume that (1) fails for some $\tau \in M^P$. Choose a τ of least rank for this failure. Recall that we have proved the general fact

Theorem. Assume that M is a c.t.m., $\mathbb{P} = \langle P; \leq, 1 \rangle$ is a forcing order, and G is a generic filter of P.

- $\operatorname{rank}(\tau_G) \leq \operatorname{rank}(\tau)$ for all $\tau \in M^P$.
- \bullet M and M[G] have the same ordinals.

Proof: Assume that (1) fails for some $\tau \in M^P$. Choose a τ of least rank for this failure. Recall that we have proved the general fact

$$\operatorname{rank}(x) = \bigcup_{y \in x} (\operatorname{rank}(y) + 1).$$

Theorem. Assume that M is a c.t.m., $\mathbb{P} = \langle P; \leq, 1 \rangle$ is a forcing order, and G is a generic filter of P.

- $\operatorname{rank}(\tau_G) \leq \operatorname{rank}(\tau)$ for all $\tau \in M^P$.
- $oldsymbol{0}$ M and M[G] have the same ordinals.

Proof: Assume that (1) fails for some $\tau \in M^P$. Choose a τ of least rank for this failure. Recall that we have proved the general fact

$$\operatorname{rank}(x) = \bigcup_{y \in x} (\operatorname{rank}(y) + 1).$$

We have also explained why

Theorem. Assume that M is a c.t.m., $\mathbb{P} = \langle P; \leq, 1 \rangle$ is a forcing order, and G is a generic filter of P.

- $\operatorname{rank}(\tau_G) \leq \operatorname{rank}(\tau)$ for all $\tau \in M^P$.
- $oldsymbol{0}$ M and M[G] have the same ordinals.

Proof: Assume that (1) fails for some $\tau \in M^P$. Choose a τ of least rank for this failure. Recall that we have proved the general fact

$$\operatorname{rank}(x) = \bigcup_{y \in x} (\operatorname{rank}(y) + 1).$$

We have also explained why

$$\tau_G = \{ \sigma_G \mid \sigma \in M^P, (\exists p \in G)((\sigma, p) \in \tau) \}$$

Theorem. Assume that M is a c.t.m., $\mathbb{P} = \langle P; \leq, 1 \rangle$ is a forcing order, and G is a generic filter of P.

- $\operatorname{rank}(\tau_G) \leq \operatorname{rank}(\tau)$ for all $\tau \in M^P$.
- extstyle extstyle extstyle M and M[G] have the same ordinals.

Proof: Assume that (1) fails for some $\tau \in M^P$. Choose a τ of least rank for this failure. Recall that we have proved the general fact

$$\operatorname{rank}(x) = \bigcup_{y \in x} (\operatorname{rank}(y) + 1).$$

We have also explained why

$$\tau_G = \{ \sigma_G \mid \sigma \in M^P, (\exists p \in G) ((\sigma, p) \in \tau) \}$$

for all $\tau \in M^P$ when M is a c.t.m. and $G \subseteq P \in M$.

Theorem. Assume that M is a c.t.m., $\mathbb{P} = \langle P; \leq, 1 \rangle$ is a forcing order, and G is a generic filter of P.

- $\operatorname{rank}(\tau_G) \leq \operatorname{rank}(\tau)$ for all $\tau \in M^P$.
- ② M and M[G] have the same ordinals.

Proof: Assume that (1) fails for some $\tau \in M^P$. Choose a τ of least rank for this failure. Recall that we have proved the general fact

$$\operatorname{rank}(x) = \bigcup_{y \in x} (\operatorname{rank}(y) + 1).$$

We have also explained why

$$\tau_G = \{ \sigma_G \mid \sigma \in M^P, (\exists p \in G) ((\sigma, p) \in \tau) \}$$

for all $\tau \in M^P$ when M is a c.t.m. and $G \subseteq P \in M$. (Slide 9!)

Theorem. Assume that M is a c.t.m., $\mathbb{P} = \langle P; \leq, 1 \rangle$ is a forcing order, and G is a generic filter of P.

- $\operatorname{rank}(\tau_G) \leq \operatorname{rank}(\tau)$ for all $\tau \in M^P$.
- ② M and M[G] have the same ordinals.

Proof: Assume that (1) fails for some $\tau \in M^P$. Choose a τ of least rank for this failure. Recall that we have proved the general fact

$$\operatorname{rank}(x) = \bigcup_{y \in x} (\operatorname{rank}(y) + 1).$$

We have also explained why

$$\tau_G = \{ \sigma_G \mid \sigma \in M^P, (\exists p \in G) ((\sigma, p) \in \tau) \}$$

for all $\tau \in M^P$ when M is a c.t.m. and $G \subseteq P \in M$. (Slide 9!) Hence

Theorem. Assume that M is a c.t.m., $\mathbb{P} = \langle P; \leq, 1 \rangle$ is a forcing order, and G is a generic filter of P.

- ② M and M[G] have the same ordinals.

Proof: Assume that (1) fails for some $\tau \in M^P$. Choose a τ of least rank for this failure. Recall that we have proved the general fact

$$\operatorname{rank}(x) = \bigcup_{y \in x} (\operatorname{rank}(y) + 1).$$

We have also explained why

$$\tau_G = \{ \sigma_G \mid \sigma \in M^P, (\exists p \in G) ((\sigma, p) \in \tau) \}$$

$$\operatorname{rank}(\tau_G)$$

Theorem. Assume that M is a c.t.m., $\mathbb{P} = \langle P; \leq, 1 \rangle$ is a forcing order, and G is a generic filter of P.

- $\operatorname{rank}(\tau_G) \leq \operatorname{rank}(\tau)$ for all $\tau \in M^P$.
- ② M and M[G] have the same ordinals.

Proof: Assume that (1) fails for some $\tau \in M^P$. Choose a τ of least rank for this failure. Recall that we have proved the general fact

$$\operatorname{rank}(x) = \bigcup_{y \in x} (\operatorname{rank}(y) + 1).$$

We have also explained why

$$\tau_G = \{ \sigma_G \mid \sigma \in M^P, (\exists p \in G) ((\sigma, p) \in \tau) \}$$

$$rank(\tau_G) = \bigcup \{ rank(\sigma_G) + 1 \mid (\exists p) (\sigma \in (\sigma, p) \in \tau) \}$$

Theorem. Assume that M is a c.t.m., $\mathbb{P} = \langle P; \leq, 1 \rangle$ is a forcing order, and G is a generic filter of P.

- $\operatorname{rank}(\tau_G) \leq \operatorname{rank}(\tau)$ for all $\tau \in M^P$.
- ② M and M[G] have the same ordinals.

Proof: Assume that (1) fails for some $\tau \in M^P$. Choose a τ of least rank for this failure. Recall that we have proved the general fact

$$\operatorname{rank}(x) = \bigcup_{y \in x} (\operatorname{rank}(y) + 1).$$

We have also explained why

$$\tau_G = \{ \sigma_G \mid \sigma \in M^P, (\exists p \in G) ((\sigma, p) \in \tau) \}$$

$$\begin{array}{ll} \operatorname{rank}(\tau_G) &= \bigcup \{\operatorname{rank}(\sigma_G) + 1 \mid (\exists p) (\sigma \in (\sigma,p) \in \tau)\} \\ &\leq \bigcup \{\operatorname{rank}(\sigma) + 1 \mid (\exists p) (\sigma \in (\sigma,p) \in \tau)\} \end{array}$$

Theorem. Assume that M is a c.t.m., $\mathbb{P} = \langle P; \leq, 1 \rangle$ is a forcing order, and G is a generic filter of P.

- $\operatorname{rank}(\tau_G) \leq \operatorname{rank}(\tau)$ for all $\tau \in M^P$.
- $oldsymbol{2}$ M and M[G] have the same ordinals.

Proof: Assume that (1) fails for some $\tau \in M^P$. Choose a τ of least rank for this failure. Recall that we have proved the general fact

$$\operatorname{rank}(x) = \bigcup_{y \in x} (\operatorname{rank}(y) + 1).$$

We have also explained why

$$\tau_G = \{ \sigma_G \mid \sigma \in M^P, (\exists p \in G) ((\sigma, p) \in \tau) \}$$

$$\begin{array}{ll} \operatorname{rank}(\tau_G) &= \bigcup \{\operatorname{rank}(\sigma_G) + 1 \mid (\exists p) (\sigma \in (\sigma,p) \in \tau)\} \\ &\leq \bigcup \{\operatorname{rank}(\sigma) + 1 \mid (\exists p) (\sigma \in (\sigma,p) \in \tau)\} &\leq \operatorname{rank}(\tau). \end{array}$$

Theorem. Assume that M is a c.t.m., $\mathbb{P} = \langle P; \leq, 1 \rangle$ is a forcing order, and G is a generic filter of P.

- **1** $\operatorname{rank}(\tau_G) \leq \operatorname{rank}(\tau)$ for all $\tau \in M^P$.
- \bigcirc M and M[G] have the same ordinals.

Proof: Assume that (1) fails for some $\tau \in M^P$. Choose a τ of least rank for this failure. Recall that we have proved the general fact

$$\operatorname{rank}(x) = \bigcup_{y \in x} (\operatorname{rank}(y) + 1).$$

We have also explained why

$$\tau_G = \{ \sigma_G \mid \sigma \in M^P, (\exists p \in G) ((\sigma, p) \in \tau) \}$$

$$\begin{aligned} \operatorname{rank}(\tau_G) &= \bigcup \{ \operatorname{rank}(\sigma_G) + 1 \mid (\exists p) (\sigma \in (\sigma, p) \in \tau) \} \\ &\leq \bigcup \{ \operatorname{rank}(\sigma) + 1 \mid (\exists p) (\sigma \in (\sigma, p) \in \tau) \} \\ &\leq \operatorname{rank}(\tau). \quad \mathbf{\underline{g}} \end{aligned}$$

Our goal is to prove that M and M[G] have the same ordinals.

Our goal is to prove that M and M[G] have the same ordinals. We have already established that $\varphi_{\operatorname{ordinal}}(x)$ is absolute for transitive classes,

Our goal is to prove that M and M[G] have the same ordinals. We have already established that $\varphi_{\operatorname{ordinal}}(x)$ is absolute for transitive classes, so ordinals in M are ordinals in M[G].

Our goal is to prove that M and M[G] have the same ordinals. We have already established that $\varphi_{\text{ordinal}}(x)$ is absolute for transitive classes, so ordinals in M are ordinals in M[G]. Could M[G] have extra ordinals?

Our goal is to prove that M and M[G] have the same ordinals. We have already established that $\varphi_{\operatorname{ordinal}}(x)$ is absolute for transitive classes, so ordinals in M are ordinals in M[G]. Could M[G] have extra ordinals?

No.

Our goal is to prove that M and M[G] have the same ordinals. We have already established that $\varphi_{\operatorname{ordinal}}(x)$ is absolute for transitive classes, so ordinals in M are ordinals in M[G]. Could M[G] have extra ordinals?

No. Let $\alpha \in M[G]$ be an ordinal.

Our goal is to prove that M and M[G] have the same ordinals. We have already established that $\varphi_{\operatorname{ordinal}}(x)$ is absolute for transitive classes, so ordinals in M are ordinals in M[G]. Could M[G] have extra ordinals?

No. Let $\alpha \in M[G]$ be an ordinal. $\alpha = \tau_G$ for some $\tau \in M^P$.

Our goal is to prove that M and M[G] have the same ordinals. We have already established that $\varphi_{\operatorname{ordinal}}(x)$ is absolute for transitive classes, so ordinals in M are ordinals in M[G]. Could M[G] have extra ordinals?

No. Let $\alpha \in M[G]$ be an ordinal. $\alpha = \tau_G$ for some $\tau \in M^P$. Since the rank function is absolute for transitive class models,

Our goal is to prove that M and M[G] have the same ordinals. We have already established that $\varphi_{\operatorname{ordinal}}(x)$ is absolute for transitive classes, so ordinals in M are ordinals in M[G]. Could M[G] have extra ordinals?

No. Let $\alpha \in M[G]$ be an ordinal. $\alpha = \tau_G$ for some $\tau \in M^P$. Since the rank function is absolute for transitive class models, $\tau \in M^P$

Our goal is to prove that M and M[G] have the same ordinals. We have already established that $\varphi_{\operatorname{ordinal}}(x)$ is absolute for transitive classes, so ordinals in M are ordinals in M[G]. Could M[G] have extra ordinals?

No. Let $\alpha \in M[G]$ be an ordinal. $\alpha = \tau_G$ for some $\tau \in M^P$. Since the rank function is absolute for transitive class models, $\tau \in M^P \subseteq M$

Our goal is to prove that M and M[G] have the same ordinals. We have already established that $\varphi_{\operatorname{ordinal}}(x)$ is absolute for transitive classes, so ordinals in M are ordinals in M[G]. Could M[G] have extra ordinals?

Our goal is to prove that M and M[G] have the same ordinals. We have already established that $\varphi_{\operatorname{ordinal}}(x)$ is absolute for transitive classes, so ordinals in M are ordinals in M[G]. Could M[G] have extra ordinals?

Our goal is to prove that M and M[G] have the same ordinals. We have already established that $\varphi_{\operatorname{ordinal}}(x)$ is absolute for transitive classes, so ordinals in M are ordinals in M[G]. Could M[G] have extra ordinals?

No. Let $\alpha \in M[G]$ be an ordinal. $\alpha = \tau_G$ for some $\tau \in M^P$. Since the rank function is absolute for transitive class models, $\tau \in M^P \subseteq M$ implies $\operatorname{rank}(\tau) \in M$. This leads to

 α

Our goal is to prove that M and M[G] have the same ordinals. We have already established that $\varphi_{\operatorname{ordinal}}(x)$ is absolute for transitive classes, so ordinals in M are ordinals in M[G]. Could M[G] have extra ordinals?

$$\alpha = \operatorname{rank}(\alpha)$$

Our goal is to prove that M and M[G] have the same ordinals. We have already established that $\varphi_{\operatorname{ordinal}}(x)$ is absolute for transitive classes, so ordinals in M are ordinals in M[G]. Could M[G] have extra ordinals?

$$\alpha = \operatorname{rank}(\alpha) = \operatorname{rank}(\tau_G)$$

Our goal is to prove that M and M[G] have the same ordinals. We have already established that $\varphi_{\operatorname{ordinal}}(x)$ is absolute for transitive classes, so ordinals in M are ordinals in M[G]. Could M[G] have extra ordinals?

$$\alpha = \operatorname{rank}(\alpha) = \operatorname{rank}(\tau_G) \le \operatorname{rank}(\tau)$$

Our goal is to prove that M and M[G] have the same ordinals. We have already established that $\varphi_{\operatorname{ordinal}}(x)$ is absolute for transitive classes, so ordinals in M are ordinals in M[G]. Could M[G] have extra ordinals?

$$\alpha = \operatorname{rank}(\alpha) = \operatorname{rank}(\tau_G) \le \operatorname{rank}(\tau) \in M$$

Our goal is to prove that M and M[G] have the same ordinals. We have already established that $\varphi_{\operatorname{ordinal}}(x)$ is absolute for transitive classes, so ordinals in M are ordinals in M[G]. Could M[G] have extra ordinals?

$$\alpha = \operatorname{rank}(\alpha) = \operatorname{rank}(\tau_G) \le \operatorname{rank}(\tau) \in M \subseteq M[G].$$

Our goal is to prove that M and M[G] have the same ordinals. We have already established that $\varphi_{\operatorname{ordinal}}(x)$ is absolute for transitive classes, so ordinals in M are ordinals in M[G]. Could M[G] have extra ordinals?

No. Let $\alpha \in M[G]$ be an ordinal. $\alpha = \tau_G$ for some $\tau \in M^P$. Since the rank function is absolute for transitive class models, $\tau \in M^P \subseteq M$ implies $\operatorname{rank}(\tau) \in M$. This leads to

$$\alpha = \operatorname{rank}(\alpha) = \operatorname{rank}(\tau_G) \le \operatorname{rank}(\tau) \in M \subseteq M[G].$$

To summarize:

Our goal is to prove that M and M[G] have the same ordinals. We have already established that $\varphi_{\operatorname{ordinal}}(x)$ is absolute for transitive classes, so ordinals in M are ordinals in M[G]. Could M[G] have extra ordinals?

No. Let $\alpha \in M[G]$ be an ordinal. $\alpha = \tau_G$ for some $\tau \in M^P$. Since the rank function is absolute for transitive class models, $\tau \in M^P \subseteq M$ implies $\operatorname{rank}(\tau) \in M$. This leads to

$$\alpha = \operatorname{rank}(\alpha) = \operatorname{rank}(\tau_G) \le \operatorname{rank}(\tau) \in M \subseteq M[G].$$

To summarize: α is an ordinal in M[G] that is an element of an ordinal,

Our goal is to prove that M and M[G] have the same ordinals. We have already established that $\varphi_{\operatorname{ordinal}}(x)$ is absolute for transitive classes, so ordinals in M are ordinals in M[G]. Could M[G] have extra ordinals?

No. Let $\alpha \in M[G]$ be an ordinal. $\alpha = \tau_G$ for some $\tau \in M^P$. Since the rank function is absolute for transitive class models, $\tau \in M^P \subseteq M$ implies $\operatorname{rank}(\tau) \in M$. This leads to

$$\alpha = \operatorname{rank}(\alpha) = \operatorname{rank}(\tau_G) \le \operatorname{rank}(\tau) \in M \subseteq M[G].$$

To summarize: α is an ordinal in M[G] that is an element of an ordinal, $\mathrm{rank}(\tau)$,

Our goal is to prove that M and M[G] have the same ordinals. We have already established that $\varphi_{\operatorname{ordinal}}(x)$ is absolute for transitive classes, so ordinals in M are ordinals in M[G]. Could M[G] have extra ordinals?

No. Let $\alpha \in M[G]$ be an ordinal. $\alpha = \tau_G$ for some $\tau \in M^P$. Since the rank function is absolute for transitive class models, $\tau \in M^P \subseteq M$ implies $\operatorname{rank}(\tau) \in M$. This leads to

$$\alpha = \operatorname{rank}(\alpha) = \operatorname{rank}(\tau_G) \le \operatorname{rank}(\tau) \in M \subseteq M[G].$$

To summarize: α is an ordinal in M[G] that is an element of an ordinal, $\mathrm{rank}(\tau)$, which is an element of M.

Our goal is to prove that M and M[G] have the same ordinals. We have already established that $\varphi_{\operatorname{ordinal}}(x)$ is absolute for transitive classes, so ordinals in M are ordinals in M[G]. Could M[G] have extra ordinals?

No. Let $\alpha \in M[G]$ be an ordinal. $\alpha = \tau_G$ for some $\tau \in M^P$. Since the rank function is absolute for transitive class models, $\tau \in M^P \subseteq M$ implies $\operatorname{rank}(\tau) \in M$. This leads to

$$\alpha = \operatorname{rank}(\alpha) = \operatorname{rank}(\tau_G) \le \operatorname{rank}(\tau) \in M \subseteq M[G].$$

To summarize: α is an ordinal in M[G] that is an element of an ordinal, rank (τ) , which is an element of M. By the transitivity of M, $\alpha \in M$.

Our goal is to prove that M and M[G] have the same ordinals. We have already established that $\varphi_{\operatorname{ordinal}}(x)$ is absolute for transitive classes, so ordinals in M are ordinals in M[G]. Could M[G] have extra ordinals?

No. Let $\alpha \in M[G]$ be an ordinal. $\alpha = \tau_G$ for some $\tau \in M^P$. Since the rank function is absolute for transitive class models, $\tau \in M^P \subseteq M$ implies $\operatorname{rank}(\tau) \in M$. This leads to

$$\alpha = \operatorname{rank}(\alpha) = \operatorname{rank}(\tau_G) \le \operatorname{rank}(\tau) \in M \subseteq M[G].$$

To summarize: α is an ordinal in M[G] that is an element of an ordinal, rank (τ) , which is an element of M. By the transitivity of M, $\alpha \in M$.

Next step:

Our goal is to prove that M and M[G] have the same ordinals. We have already established that $\varphi_{\operatorname{ordinal}}(x)$ is absolute for transitive classes, so ordinals in M are ordinals in M[G]. Could M[G] have extra ordinals?

No. Let $\alpha \in M[G]$ be an ordinal. $\alpha = \tau_G$ for some $\tau \in M^P$. Since the rank function is absolute for transitive class models, $\tau \in M^P \subseteq M$ implies $\operatorname{rank}(\tau) \in M$. This leads to

$$\alpha = \operatorname{rank}(\alpha) = \operatorname{rank}(\tau_G) \le \operatorname{rank}(\tau) \in M \subseteq M[G].$$

To summarize: α is an ordinal in M[G] that is an element of an ordinal, $\operatorname{rank}(\tau)$, which is an element of M. By the transitivity of M, $\alpha \in M$.

Next step: Prove that M[G] is a c.t.m.

Our goal is to prove that M and M[G] have the same ordinals. We have already established that $\varphi_{\operatorname{ordinal}}(x)$ is absolute for transitive classes, so ordinals in M are ordinals in M[G]. Could M[G] have extra ordinals?

No. Let $\alpha \in M[G]$ be an ordinal. $\alpha = \tau_G$ for some $\tau \in M^P$. Since the rank function is absolute for transitive class models, $\tau \in M^P \subseteq M$ implies $\operatorname{rank}(\tau) \in M$. This leads to

$$\alpha = \operatorname{rank}(\alpha) = \operatorname{rank}(\tau_G) \le \operatorname{rank}(\tau) \in M \subseteq M[G].$$

To summarize: α is an ordinal in M[G] that is an element of an ordinal, $\operatorname{rank}(\tau)$, which is an element of M. By the transitivity of M, $\alpha \in M$.

Next step: Prove that M[G] is a c.t.m. State and prove the Forcing Theorem.

Our goal is to prove that M and M[G] have the same ordinals. We have already established that $\varphi_{\operatorname{ordinal}}(x)$ is absolute for transitive classes, so ordinals in M are ordinals in M[G]. Could M[G] have extra ordinals?

No. Let $\alpha \in M[G]$ be an ordinal. $\alpha = \tau_G$ for some $\tau \in M^P$. Since the rank function is absolute for transitive class models, $\tau \in M^P \subseteq M$ implies $\operatorname{rank}(\tau) \in M$. This leads to

$$\alpha = \operatorname{rank}(\alpha) = \operatorname{rank}(\tau_G) \le \operatorname{rank}(\tau) \in M \subseteq M[G].$$

To summarize: α is an ordinal in M[G] that is an element of an ordinal, $\operatorname{rank}(\tau)$, which is an element of M. By the transitivity of M, $\alpha \in M$.

Next step: Prove that M[G] is a c.t.m. State and prove the Forcing Theorem. See pages 603-611, NST.

Next Goals

Next Goals

Theorem.

Next Goals

Theorem. (Cohen)

Theorem. (Cohen) Let M be a c.t.m.,

Theorem. (Cohen) Let M be a c.t.m., let κ be an infinite cardinal in M,

Theorem. (Cohen) Let M be a c.t.m., let κ be an infinite cardinal in M, let $\mathbb{P} = \langle F(\kappa \times \omega, 2, \omega); \supseteq, \emptyset \rangle$,

Theorem. (Cohen) Let M be a c.t.m., let κ be an infinite cardinal in M, let $\mathbb{P} = \langle F(\kappa \times \omega, 2, \omega); \supseteq, \emptyset \rangle$, and let $G \subseteq F(\kappa \times \omega, 2, \omega)$ be a \mathbb{P} -generic filter.

 $lackbox{0}\ M[G]$ is a c.t.m. with the same ordinals as M.

Theorem. (Cohen) Let M be a c.t.m., let κ be an infinite cardinal in M, let $\mathbb{P} = \langle F(\kappa \times \omega, 2, \omega); \supseteq, \emptyset \rangle$, and let $G \subseteq F(\kappa \times \omega, 2, \omega)$ be a \mathbb{P} -generic filter.

 $lackbox{0}\ M[G]$ is a c.t.m. with the same ordinals as M.

Theorem. (Cohen) Let M be a c.t.m., let κ be an infinite cardinal in M, let $\mathbb{P} = \langle F(\kappa \times \omega, 2, \omega); \supseteq, \emptyset \rangle$, and let $G \subseteq F(\kappa \times \omega, 2, \omega)$ be a \mathbb{P} -generic filter.

 $lackbox{0}\ M[G]$ is a c.t.m. with the same ordinals as M. (Still need: M[G] is a model.)

- $lackbox{0}\ M[G]$ is a c.t.m. with the same ordinals as M. (Still need: M[G] is a model.)
- M[G] has the same cardinals and the same cofinalities of limit ordinals as M.

- $lackbox{0}\ M[G]$ is a c.t.m. with the same ordinals as M. (Still need: M[G] is a model.)
- M[G] has the same cardinals and the same cofinalities of limit ordinals as M.

- $lackbox{0}\ M[G]$ is a c.t.m. with the same ordinals as M. (Still need: M[G] is a model.)
- ② M[G] has the same cardinals and the same cofinalities of limit ordinals as M. (No part of this has been proven yet.)

- $lackbox{0}\ M[G]$ is a c.t.m. with the same ordinals as M. (Still need: M[G] is a model.)
- ② M[G] has the same cardinals and the same cofinalities of limit ordinals as M. (No part of this has been proven yet.)
- $\bullet \quad \kappa \leq 2^{\omega} \text{ in } M[G].$

- $lackbox{0}\ M[G]$ is a c.t.m. with the same ordinals as M. (Still need: M[G] is a model.)
- ② M[G] has the same cardinals and the same cofinalities of limit ordinals as M. (No part of this has been proven yet.)
- $\bullet \quad \kappa \leq 2^{\omega} \text{ in } M[G].$

- $lackbox{0}\ M[G]$ is a c.t.m. with the same ordinals as M. (Still need: M[G] is a model.)
- ② M[G] has the same cardinals and the same cofinalities of limit ordinals as M. (No part of this has been proven yet.)
- \bullet $\kappa \leq 2^{\omega}$ in M[G]. (Completed, assuming the above parts.)