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The theorem to be proved

Theorem. Let V be a model of ZF. Let M be a class in V . If M is

1 transitive,
2 almost universal, and
3 closed under the Gödel operations,

then M is a model of ZF.

I may refer to V as “the universe”.
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Terminology reminder

Definitions.

1 A class M in V is transitive if x ∈ M implies x ⊆ M .
2 A class M in V is almost universal if x ∈ V and x ⊆ M implies

∃y ∈ M such that x ⊆ y.
3 The Gödel operations are

1 Γ1(x, y) = {x, y}
2 Γ2(x, y) = x − y
3 Γ3(x, y) = x × y
4 Γ4(x) = dom(x)
5 Γ5(x) =∈ |x =∈ ∩(x × x)
6 Γ6(x) = {(a, b, c) | (b, c, a) ∈ x}
7 Γ7(x) = {(a, b, c) | (c, b, a) ∈ x}
8 Γ8(x) = {(a, b, c) | (a, c, b) ∈ x}
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Axioms reminder

Axioms.

1 Extensionality.
2 Pairing.
3 Union.
4 Power set.
5 Foundation.
6 Infinity.
7 Replacement.
8 Comprehension.

Note: I will save Comprehension until the end, since it is the most difficult to
verify.
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Proof that the Axiom of Extensionality holds

Extensionality.
We must show that if x, y ∈ M have the same elements, then they are equal.
Observe that z ∈ x in M if and only if z ∈ x in the universe V , since M is
transitive. (I am using this: z ∈ x ∈ M , hence z ∈ M , and z ∈ x means the
same in M as in V .)
Now, if x, y ∈ M have the same elements in M , then they have the same
elements in V , hence x = y. 2
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Proof that the Axiom of Pairing holds

Pairing.
Assume that x, y ∈ M . Since M is closed in V under the Gödel operations,
{x, y} = Γ1(x, y) ∈ M . 2
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Proof that the Axiom of Union holds

We will verify a weak form of the Axiom of Union, which will reduce to the
full axiom provided the Axiom of Comprehension holds.

Union.
Assume that x ∈ M . The class of elements of element of x that lie in M may
be denoted

⋃M x. Since M is transitive,
⋃M x =

⋃V x ∈ V . Each element
of

⋃M x lies in M , since M is transitive. Since
⋃M x is a set in V whose

elements lie in M and M is almost universal, there is an element y ∈ M such
that

⋃M x ⊆ y. Once we have the Axiom of Comprehension, we can finish
this proof by separating

⋃M x from y using a formula that says “I am an
element of an element of x”. 2
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Proof that the Axiom of Power Set holds

We will verify a weak form of the Axiom of Power Set, which will reduce to
the full axiom provided the Axiom of Comprehension holds.

Power Set.
Assume that x ∈ M . Let PM (x) denote the class of subsets of x that lie in
M . Observe that

PM (x) = PV (x) ∩ M.

PV (x) ∩ M is the intersection of a set PV (x) ∈ V with a class in M of V , so
PV (x) ∩ M is a set in V . All elements of the set PV (x) ∩ M lie in M . Since
M is almost universal, there is a y ∈ M such that PM (x) = PV (x) ∩ M ⊆ y.
Once we have the Axiom of Comprehension, we can finish this proof by
separating PM (x) from y using a formula that says “I am a subset of x”. 2
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Proof that the Axiom of Foundation holds

Foundation.
Assume that x ∈ M is nonempty. The element x is also nonempty as an
element of V . Apply the Axiom of Foundation in V to obtain an ∈-minimal
element z ∈ x. The claim that z is an ∈-minimal element of x combines the
claims that (i) z ∈ x and (ii) z ∩ x = ∅. Since z ∈ x ∈ M and M is transitive,
z ∈ M . Since (i) and (ii) hold in V , they will also hold in M , since the
∈-relation holds between elements of M iff it holds between them when
considered to be elements of V . 2
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Proof that the Axiom of Infinity holds

We will verify a weak form of the Axiom of Infinity, which will reduce to the
full axiom provided the Axiom of Comprehension holds.

Infinity.
The universe V contains an inductive set, I . The set I contains ∅ and is closed
under successor. We want to show that M has a set with these properties.

Claim 1. M ̸= ∅.
Since M is almost universal, it must contain a set. (Choose ∅ ∈ V . Since
∅ ⊆ M , there must exist y ∈ M such that ∅ ⊆ y. This y ∈ M witnesses that
M ̸= ∅.)

Claim 2. ∅ ∈ M and the successor operation S(x) = x ∪ {x} is a class
function on M .
Construct ∅ by applying Comprehension to the set from Claim 1. Construct
S(x) using pairing and union.
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Proof that the Axiom of Infinity holds, Part 2

Choose I = ωV . Let J = I ∩ M . J is a set in V that consists of the finite
ordinals in V that lie in M . Since M is almost universal, there is a y ∈ M
such that J ⊆ y.

Goal. Argue that, if Comprehension holds, then it is possible to separate an
inductive set from y.

Exercise. Achieve this goal! (Figure out how to separate out an inductive set
from a set y containing J = I ∩ M = ωV ∩ M .)
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Proof that the Axiom of Infinity holds, Part 3

Last step.
We can write down formulas that express

1 φ∅(u): “u is the empty set”.
2 ord(u): “u is an ordinal”. (u is a transitive set of transitive sets.)
3 pred(u, v): “u and v are ordinals and S(u) = v”.

Now, suppose that J = ωV ∩ M and y ∈ M satisfies J ⊆ y. Use
Comprehension to create the set y′ of ordinals in y. We still have J ⊆ y′,
since J consists of ordinals. Use Union to create y′′ := S(

⋃
y′). We still have

J ⊆ y′′, but now y′′ is an inital segment of ordinals that contains all finite
ordinals. Use Comprehension to create the set y′′′ of all t ∈ y′′ such that t = ∅
or any nonzero s ∈ t has an immediate predecessor. The element y′′′ ∈ M is a
set of ordinals that (i) contains all finite ordinals, (ii) is transitive, and (iii)
contains no limit ordinal. Necessarily, y′′′ ∈ M is the set of all finite ordinals,
hence it is an example of an inductive set in M . 2
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Proof that the Axiom of Replacement holds

We will verify a weak form of the Axiom of Replacement, which will reduce
to the full axiom provided the Axiom of Comprehension holds.

Replacement.
Let F be a class function relative to M . (That is, the formula that says that F
satisfies the function rule holds in ⟨M ; ∈⟩.) Choose A ∈ M . The goal is to
prove that the image F [A] is an element of M .
F V [A] ∈ V . F V [A] contains each F (a), a ∈ A. Since each F (a) ∈ M and
M is almost universal, there is a y ∈ M such that F V [A] ⊆ y. Construct
F M [A] from y by Comprehension using the property “I am in the image of
F ”. 2
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prove that the image F [A] is an element of M .
F V [A] ∈ V . F V [A] contains each F (a), a ∈ A.

Since each F (a) ∈ M and
M is almost universal, there is a y ∈ M such that F V [A] ⊆ y. Construct
F M [A] from y by Comprehension using the property “I am in the image of
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Proof that the Axiom of Comprehension holds

The Axiom of Comprehension will hold in M if, whenever A ∈ M and φ is a
formula,

{x ∈ A | φ(x)}

is a set in M . The proof for this axiom is accomplished by induction on the
complexity of the formula φ. Recall that formulas are defined by recursion as
follows: The set of all first-order formulas whose only nonlogical symbol is ∈
is the smallest set F such that

1 The atomic formulas are in F . E.g., (x ∈ y), (x = y).
2 F is closed under the logical connectives. E.g. ¬α, α ∧ β.
3 F is closed under applications of quantifiers. E.g., (∀x)α, (∃y)β.

We proceed by induction on the complexity of the defining formula, using the
Gödel operations to show the the required sets must be member of M .
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