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The theorem to be proved

Theorem. Let V' be a model of ZF. Let M be a class in V. If M is
@ transitive,
© almost universal, and
© closed under the Godel operations,

then M is a model of ZF.

I may refer to V' as “the universe”.
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Definitions.
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Definitions.
@ Aclass M in V is transitive if x € M implies x C M.

© Aclass M in V is almost universal if z € V and x C M implies
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© The Godel operations are
o Fl( 73/) - {'I,y}
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Terminology reminder

Definitions.
@ Aclass M in V is transitive if x € M implies x C M.

© Aclass M in V is almost universal if z € V and x C M implies
Jy € M such that x C y.
© The Godel operations are

Fl(Iay) - {'I,y}

) =€ | =€ N(z X z)
z) = {(a,b,c) | (b,c,a) € z}
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Definitions.
@ Aclass M in V is transitive if x € M implies x C M.

© Aclass M in V is almost universal if z € V and x C M implies
Jy € M such that x C y.
© The Godel operations are

0 Fl(xay) = {'I,y}

@ Iy(z,y)=z—y

@ I'3(z,y) =z xy

0 T'y(x) = dom(z)

0 I's5(z) =€, =€ N(z x x)
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Jy € M such that x C y.
© The Godel operations are
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@ Iy(z,y)=z—y

0 I's(z,y) =xzxy

0 T'y(x) = dom(z)

0 I's5(z) =€, =€ N(z x x)
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Axioms.
Extensionality.
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Union.

Power set.
Foundation.
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Comprehension.

Note: I will save Comprehension until the end, since it is the most difficult to
verify.
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We must show that if x,y € M have the same elements, then they are equal.
Observe that z € x in M if and only if 2z € x in the universe V, since M is
transitive. (I am using this: z € x € M, hence z € M, and z € x means the
same in M asin V)

Now, if z,y € M have the same elements in M, then they have the same
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We must show that if x,y € M have the same elements, then they are equal.
Observe that z € x in M if and only if 2z € x in the universe V, since M is
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z € M. Since (i) and (ii) hold in V, they will also hold in M, since the
€-relation holds between elements of M iff it holds between them when
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is the smallest set F such that

@ The atomic formulas are in F. E.g., (z € y), (x = y).
@ F is closed under the logical connectives. E.g. —a, a A .

@ F is closed under applications of quantifiers. E.g., (Vz)a, (3y)p.

We proceed by induction on the complexity of the defining formula, using the
Godel operations to show the the required sets must be member of M.
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