A Theorem for Checking the Axioms

Theorem.

Theorem. Let V be a model of ZF.

Theorem. Let V be a model of ZF. Let M be a class in V. If M is

transitive,

Theorem. Let V be a model of ZF. Let M be a class in V. If M is

transitive,

- transitive,
- almost universal, and

- transitive,
- almost universal, and

- transitive,
- almost universal, and
- Octool of the state of the s

- transitive,
- almost universal, and
- Octool of the state of the s

Theorem. Let V be a model of ZF. Let M be a class in V. If M is

- transitive,
- almost universal, and
- sclosed under the Gödel operations,

then M is a model of ZF.

Theorem. Let V be a model of ZF. Let M be a class in V. If M is

- transitive,
- almost universal, and
- Oclosed under the Gödel operations,

then M is a model of ZF.

I may refer to V as "the universe".

Definitions.

① A class M in V is **transitive** if $x \in M$ implies $x \subseteq M$.

- **①** A class M in V is **transitive** if $x \in M$ implies $x \subseteq M$.
- ② A class M in V is **almost universal** if $x \in V$ and $x \subseteq M$ implies $\exists y \in M$ such that $x \subseteq y$.

- **①** A class M in V is **transitive** if $x \in M$ implies $x \subseteq M$.
- **②** A class M in V is **almost universal** if $x \in V$ and $x \subseteq M$ implies $\exists y \in M$ such that $x \subseteq y$.
- The Gödel operations are

- **①** A class M in V is **transitive** if $x \in M$ implies $x \subseteq M$.
- **②** A class M in V is **almost universal** if $x \in V$ and $x \subseteq M$ implies $\exists y \in M$ such that $x \subseteq y$.
- The Gödel operations are
 - $\Gamma_1(x,y) = \{x,y\}$

- **①** A class M in V is **transitive** if $x \in M$ implies $x \subseteq M$.
- **②** A class M in V is **almost universal** if $x \in V$ and $x \subseteq M$ implies $\exists y \in M$ such that $x \subseteq y$.
- The Gödel operations are
 - $\Gamma_1(x,y) = \{x,y\}$

- **①** A class M in V is **transitive** if $x \in M$ implies $x \subseteq M$.
- **②** A class M in V is **almost universal** if $x \in V$ and $x \subseteq M$ implies $\exists y \in M$ such that $x \subseteq y$.
- The Gödel operations are
 - $\Gamma_1(x,y) = \{x,y\}$
 - $\Gamma_2(x,y) = x y$

- **①** A class M in V is **transitive** if $x \in M$ implies $x \subseteq M$.
- **2** A class M in V is **almost universal** if $x \in V$ and $x \subseteq M$ implies $\exists y \in M$ such that $x \subseteq y$.
- The Gödel operations are
 - $\Gamma_1(x,y) = \{x,y\}$
 - $\Gamma_2(x,y) = x y$

- **①** A class M in V is **transitive** if $x \in M$ implies $x \subseteq M$.
- **②** A class M in V is **almost universal** if $x \in V$ and $x \subseteq M$ implies $\exists y \in M$ such that $x \subseteq y$.
- The Gödel operations are
 - $\Gamma_1(x,y) = \{x,y\}$
 - $\Gamma_2(x,y) = x y$

 - $\Gamma_4(x) = \operatorname{dom}(x)$

- **①** A class M in V is **transitive** if $x \in M$ implies $x \subseteq M$.
- **②** A class M in V is **almost universal** if $x \in V$ and $x \subseteq M$ implies $\exists y \in M$ such that $x \subseteq y$.
- The Gödel operations are
 - $\Gamma_1(x,y) = \{x,y\}$
 - $\Gamma_2(x,y) = x y$

 - $\Gamma_4(x) = \operatorname{dom}(x)$

- **①** A class M in V is **transitive** if $x \in M$ implies $x \subseteq M$.
- **②** A class M in V is **almost universal** if $x \in V$ and $x \subseteq M$ implies $\exists y \in M$ such that $x \subseteq y$.
- The Gödel operations are
 - $\Gamma_1(x,y) = \{x,y\}$
 - $\Gamma_2(x,y) = x y$

 - $\Gamma_4(x) = \operatorname{dom}(x)$

- **①** A class M in V is **transitive** if $x \in M$ implies $x \subseteq M$.
- **②** A class M in V is **almost universal** if $x \in V$ and $x \subseteq M$ implies $\exists y \in M$ such that $x \subseteq y$.
- The Gödel operations are
 - $\Gamma_1(x,y) = \{x,y\}$
 - $\Gamma_2(x,y) = x y$

 - $\Gamma_4(x) = \operatorname{dom}(x)$
 - $\Gamma_5(x) = \in |_x = \in \cap (x \times x)$

Axioms.

• Extensionality.

- Extensionality.
- 2 Pairing.

- Extensionality.
- Pairing.
- Union.

- Extensionality.
- Pairing.
- Union.
- Open Power set.

- Extensionality.
- Pairing.
- Union.
- Open Power set.
- Foundation.

- Extensionality.
- Pairing.
- Union.
- Power set.
- Soundation.
- **1** Infinity.

- Extensionality.
- Pairing.
- Union.
- Open Power set.
- Foundation.
- **1** Infinity.
- Replacement.

Axioms reminder

Axioms.

- Extensionality.
- Pairing.
- Union.
- Power set.
- Foundation.
- Infinity.
- Replacement.
- Omprehension.

Axioms reminder

Axioms.

- Extensionality.
- Pairing.
- Union.
- Power set.
- Foundation.
- Infinity.
- Replacement.
- Omprehension.

Axioms reminder

Axioms.

- Extensionality.
- Pairing.
- Union.
- Open Power set.
- Foundation.
- Infinity.
- Replacement.
- Omprehension.

Note: I will save Comprehension until the end, since it is the most difficult to verify.

Extensionality.

Extensionality.

We must show that if $x, y \in M$ have the same elements, then they are equal.

Extensionality.

We must show that if $x, y \in M$ have the same elements, then they are equal. Observe that $z \in x$ in M if and only if $z \in x$ in the universe V, since M is transitive.

Extensionality.

We must show that if $x,y \in M$ have the same elements, then they are equal. Observe that $z \in x$ in M if and only if $z \in x$ in the universe V, since M is transitive. (I am using this: $z \in x \in M$, hence $z \in M$, and $z \in x$ means the same in M as in V.)

Extensionality.

We must show that if $x,y \in M$ have the same elements, then they are equal. Observe that $z \in x$ in M if and only if $z \in x$ in the universe V, since M is transitive. (I am using this: $z \in x \in M$, hence $z \in M$, and $z \in x$ means the same in M as in V.)

Now, if $x, y \in M$ have the same elements in M,

Extensionality.

We must show that if $x,y\in M$ have the same elements, then they are equal. Observe that $z\in x$ in M if and only if $z\in x$ in the universe V, since M is transitive. (I am using this: $z\in x\in M$, hence $z\in M$, and $z\in x$ means the same in M as in V.)

Now, if $x, y \in M$ have the same elements in M, then they have the same elements in V,

Extensionality.

We must show that if $x,y\in M$ have the same elements, then they are equal. Observe that $z\in x$ in M if and only if $z\in x$ in the universe V, since M is transitive. (I am using this: $z\in x\in M$, hence $z\in M$, and $z\in x$ means the same in M as in V.)

Now, if $x, y \in M$ have the same elements in M, then they have the same elements in V, hence x = y.

Extensionality.

We must show that if $x,y\in M$ have the same elements, then they are equal. Observe that $z\in x$ in M if and only if $z\in x$ in the universe V, since M is transitive. (I am using this: $z\in x\in M$, hence $z\in M$, and $z\in x$ means the same in M as in V.)

Now, if $x, y \in M$ have the same elements in M, then they have the same elements in V, hence x = y. \square

Pairing.

Pairing.

Assume that $x, y \in M$.

Pairing.

Assume that $x,y\in M$. Since M is closed in V under the Gödel operations, $\{x,y\}=\Gamma_1(x,y)\in M$.

Pairing.

Assume that $x,y\in M.$ Since M is closed in V under the Gödel operations, $\{x,y\}=\Gamma_1(x,y)\in M.$ \square

We will verify a weak form of the Axiom of Union,

We will verify a weak form of the Axiom of Union, which will reduce to the full axiom provided the Axiom of Comprehension holds.

We will verify a weak form of the Axiom of Union, which will reduce to the full axiom provided the Axiom of Comprehension holds.

Union.

We will verify a weak form of the Axiom of Union, which will reduce to the full axiom provided the Axiom of Comprehension holds.

Union.

Assume that $x \in M$.

We will verify a weak form of the Axiom of Union, which will reduce to the full axiom provided the Axiom of Comprehension holds.

Union.

Assume that $x \in M$. The class of elements of element of x that lie in M may be denoted $\bigcup^M x$.

We will verify a weak form of the Axiom of Union, which will reduce to the full axiom provided the Axiom of Comprehension holds.

Union.

Assume that $x \in M$. The class of elements of element of x that lie in M may be denoted $\bigcup^M x$. Since M is transitive, $\bigcup^M x = \bigcup^V x$

We will verify a weak form of the Axiom of Union, which will reduce to the full axiom provided the Axiom of Comprehension holds.

Union.

Assume that $x \in M$. The class of elements of element of x that lie in M may be denoted $\bigcup^M x$. Since M is transitive, $\bigcup^M x = \bigcup^V x \in V$. Each element of $\bigcup^M x$ lies in M, since M is transitive.

We will verify a weak form of the Axiom of Union, which will reduce to the full axiom provided the Axiom of Comprehension holds.

Union.

Assume that $x \in M$. The class of elements of element of x that lie in M may be denoted $\bigcup^M x$. Since M is transitive, $\bigcup^M x = \bigcup^V x \in V$. Each element of $\bigcup^M x$ lies in M, since M is transitive. Since $\bigcup^M x$ is a set in V whose elements lie in M

We will verify a weak form of the Axiom of Union, which will reduce to the full axiom provided the Axiom of Comprehension holds.

Union.

Assume that $x \in M$. The class of elements of element of x that lie in M may be denoted $\bigcup^M x$. Since M is transitive, $\bigcup^M x = \bigcup^V x \in V$. Each element of $\bigcup^M x$ lies in M, since M is transitive. Since $\bigcup^M x$ is a set in V whose elements lie in M and M is almost universal,

We will verify a weak form of the Axiom of Union, which will reduce to the full axiom provided the Axiom of Comprehension holds.

Union.

Assume that $x \in M$. The class of elements of element of x that lie in M may be denoted $\bigcup^M x$. Since M is transitive, $\bigcup^M x = \bigcup^V x \in V$. Each element of $\bigcup^M x$ lies in M, since M is transitive. Since $\bigcup^M x$ is a set in V whose elements lie in M and M is almost universal, there is an element $y \in M$ such that $\bigcup^M x \subseteq y$.

We will verify a weak form of the Axiom of Union, which will reduce to the full axiom provided the Axiom of Comprehension holds.

Union.

Assume that $x \in M$. The class of elements of element of x that lie in M may be denoted $\bigcup^M x$. Since M is transitive, $\bigcup^M x = \bigcup^V x \in V$. Each element of $\bigcup^M x$ lies in M, since M is transitive. Since $\bigcup^M x$ is a set in V whose elements lie in M and M is almost universal, there is an element $y \in M$ such that $\bigcup^M x \subseteq y$. Once we have the Axiom of Comprehension, we can finish this proof by separating $\bigcup^M x$ from y using a formula that says "I am an element of an element of x".

We will verify a weak form of the Axiom of Union, which will reduce to the full axiom provided the Axiom of Comprehension holds.

Union.

Assume that $x \in M$. The class of elements of element of x that lie in M may be denoted $\bigcup^M x$. Since M is transitive, $\bigcup^M x = \bigcup^V x \in V$. Each element of $\bigcup^M x$ lies in M, since M is transitive. Since $\bigcup^M x$ is a set in V whose elements lie in M and M is almost universal, there is an element $y \in M$ such that $\bigcup^M x \subseteq y$. Once we have the Axiom of Comprehension, we can finish this proof by separating $\bigcup^M x$ from y using a formula that says "I am an element of an element of x". \square

We will verify a weak form of the Axiom of Power Set,

We will verify a weak form of the Axiom of Power Set, which will reduce to the full axiom provided the Axiom of Comprehension holds.

We will verify a weak form of the Axiom of Power Set, which will reduce to the full axiom provided the Axiom of Comprehension holds.

Power Set.

We will verify a weak form of the Axiom of Power Set, which will reduce to the full axiom provided the Axiom of Comprehension holds.

Power Set.

Assume that $x \in M$.

We will verify a weak form of the Axiom of Power Set, which will reduce to the full axiom provided the Axiom of Comprehension holds.

Power Set.

Assume that $x \in M$. Let $\mathcal{P}^M(x)$ denote the class of subsets of x that lie in M.

We will verify a weak form of the Axiom of Power Set, which will reduce to the full axiom provided the Axiom of Comprehension holds.

Power Set.

Assume that $x \in M$. Let $\mathcal{P}^M(x)$ denote the class of subsets of x that lie in M. Observe that

We will verify a weak form of the Axiom of Power Set, which will reduce to the full axiom provided the Axiom of Comprehension holds.

Power Set.

Assume that $x \in M$. Let $\mathcal{P}^M(x)$ denote the class of subsets of x that lie in M. Observe that

$$\mathcal{P}^M(x) = \mathcal{P}^V(x) \cap M.$$

We will verify a weak form of the Axiom of Power Set, which will reduce to the full axiom provided the Axiom of Comprehension holds.

Power Set.

Assume that $x \in M$. Let $\mathcal{P}^M(x)$ denote the class of subsets of x that lie in M. Observe that

$$\mathcal{P}^M(x) = \mathcal{P}^V(x) \cap M.$$

 $\mathcal{P}^V(x) \cap M$ is the intersection of a set $\mathcal{P}^V(x) \in V$ with a class in M of V,

We will verify a weak form of the Axiom of Power Set, which will reduce to the full axiom provided the Axiom of Comprehension holds.

Power Set.

Assume that $x \in M$. Let $\mathcal{P}^M(x)$ denote the class of subsets of x that lie in M. Observe that

$$\mathcal{P}^M(x) = \mathcal{P}^V(x) \cap M.$$

 $\mathcal{P}^V(x)\cap M$ is the intersection of a set $\mathcal{P}^V(x)\in V$ with a class in M of V, so $\mathcal{P}^V(x)\cap M$ is a set in V.

We will verify a weak form of the Axiom of Power Set, which will reduce to the full axiom provided the Axiom of Comprehension holds.

Power Set.

Assume that $x \in M$. Let $\mathcal{P}^M(x)$ denote the class of subsets of x that lie in M. Observe that

$$\mathcal{P}^M(x) = \mathcal{P}^V(x) \cap M.$$

 $\mathcal{P}^V(x)\cap M$ is the intersection of a set $\mathcal{P}^V(x)\in V$ with a class in M of V, so $\mathcal{P}^V(x)\cap M$ is a set in V. All elements of the set $\mathcal{P}^V(x)\cap M$ lie in M.

We will verify a weak form of the Axiom of Power Set, which will reduce to the full axiom provided the Axiom of Comprehension holds.

Power Set.

Assume that $x \in M$. Let $\mathcal{P}^M(x)$ denote the class of subsets of x that lie in M. Observe that

$$\mathcal{P}^M(x) = \mathcal{P}^V(x) \cap M.$$

 $\mathcal{P}^V(x)\cap M$ is the intersection of a set $\mathcal{P}^V(x)\in V$ with a class in M of V, so $\mathcal{P}^V(x)\cap M$ is a set in V. All elements of the set $\mathcal{P}^V(x)\cap M$ lie in M. Since M is almost universal, there is a $y\in M$ such that $\mathcal{P}^M(x)=\mathcal{P}^V(x)\cap M\subseteq y$.

We will verify a weak form of the Axiom of Power Set, which will reduce to the full axiom provided the Axiom of Comprehension holds.

Power Set.

Assume that $x \in M$. Let $\mathcal{P}^M(x)$ denote the class of subsets of x that lie in M. Observe that

$$\mathcal{P}^M(x) = \mathcal{P}^V(x) \cap M.$$

 $\mathcal{P}^V(x)\cap M$ is the intersection of a set $\mathcal{P}^V(x)\in V$ with a class in M of V, so $\mathcal{P}^V(x)\cap M$ is a set in V. All elements of the set $\mathcal{P}^V(x)\cap M$ lie in M. Since M is almost universal, there is a $y\in M$ such that $\mathcal{P}^M(x)=\mathcal{P}^V(x)\cap M\subseteq y$. Once we have the Axiom of Comprehension, we can finish this proof by separating $\mathcal{P}^M(x)$ from y using a formula that says "I am a subset of x".

We will verify a weak form of the Axiom of Power Set, which will reduce to the full axiom provided the Axiom of Comprehension holds.

Power Set.

Assume that $x \in M$. Let $\mathcal{P}^M(x)$ denote the class of subsets of x that lie in M. Observe that

$$\mathcal{P}^M(x) = \mathcal{P}^V(x) \cap M.$$

 $\mathcal{P}^V(x)\cap M$ is the intersection of a set $\mathcal{P}^V(x)\in V$ with a class in M of V, so $\mathcal{P}^V(x)\cap M$ is a set in V. All elements of the set $\mathcal{P}^V(x)\cap M$ lie in M. Since M is almost universal, there is a $y\in M$ such that $\mathcal{P}^M(x)=\mathcal{P}^V(x)\cap M\subseteq y$. Once we have the Axiom of Comprehension, we can finish this proof by separating $\mathcal{P}^M(x)$ from y using a formula that says "I am a subset of x". \square

Foundation.

Foundation.

Assume that $x \in M$ is nonempty.

Foundation.

Assume that $x \in M$ is nonempty. The element x is also nonempty as an element of V.

Foundation.

Assume that $x \in M$ is nonempty. The element x is also nonempty as an element of V. Apply the Axiom of Foundation in V to obtain an \in -minimal element $z \in x$.

Foundation.

Assume that $x \in M$ is nonempty. The element x is also nonempty as an element of V. Apply the Axiom of Foundation in V to obtain an \in -minimal element $z \in x$. The claim that z is an \in -minimal element of x combines the claims that (i) $z \in x$ and (ii) $z \cap x = \emptyset$.

Foundation.

Assume that $x \in M$ is nonempty. The element x is also nonempty as an element of V. Apply the Axiom of Foundation in V to obtain an \in -minimal element $z \in x$. The claim that z is an \in -minimal element of x combines the claims that (i) $z \in x$ and (ii) $z \cap x = \emptyset$. Since $z \in x \in M$ and M is transitive,

Foundation.

Assume that $x \in M$ is nonempty. The element x is also nonempty as an element of V. Apply the Axiom of Foundation in V to obtain an \in -minimal element $z \in x$. The claim that z is an \in -minimal element of x combines the claims that (i) $z \in x$ and (ii) $z \cap x = \emptyset$. Since $z \in x \in M$ and $x \in X$ is transitive, $x \in X$.

Foundation.

Assume that $x \in M$ is nonempty. The element x is also nonempty as an element of V. Apply the Axiom of Foundation in V to obtain an \in -minimal element $z \in x$. The claim that z is an \in -minimal element of x combines the claims that (i) $z \in x$ and (ii) $z \cap x = \emptyset$. Since $z \in x \in M$ and M is transitive, $z \in M$. Since (i) and (ii) hold in V, they will also hold in M, since the \in -relation holds between elements of M iff it holds between them when considered to be elements of V.

Foundation.

Assume that $x \in M$ is nonempty. The element x is also nonempty as an element of V. Apply the Axiom of Foundation in V to obtain an \in -minimal element $z \in x$. The claim that z is an \in -minimal element of x combines the claims that (i) $z \in x$ and (ii) $z \cap x = \emptyset$. Since $z \in x \in M$ and M is transitive, $z \in M$. Since (i) and (ii) hold in V, they will also hold in M, since the \in -relation holds between elements of M iff it holds between them when considered to be elements of V. \square

We will verify a weak form of the Axiom of Infinity,

We will verify a weak form of the Axiom of Infinity, which will reduce to the full axiom provided the Axiom of Comprehension holds.

We will verify a weak form of the Axiom of Infinity, which will reduce to the full axiom provided the Axiom of Comprehension holds.

Infinity.

We will verify a weak form of the Axiom of Infinity, which will reduce to the full axiom provided the Axiom of Comprehension holds.

Infinity.

The universe V contains an inductive set, I.

We will verify a weak form of the Axiom of Infinity, which will reduce to the full axiom provided the Axiom of Comprehension holds.

Infinity.

The universe V contains an inductive set, I. The set I contains \emptyset and is closed under successor.

We will verify a weak form of the Axiom of Infinity, which will reduce to the full axiom provided the Axiom of Comprehension holds.

Infinity.

The universe V contains an inductive set, I. The set I contains \emptyset and is closed under successor. We want to show that M has a set with these properties.

We will verify a weak form of the Axiom of Infinity, which will reduce to the full axiom provided the Axiom of Comprehension holds.

Infinity.

The universe V contains an inductive set, I. The set I contains \emptyset and is closed under successor. We want to show that M has a set with these properties.

Claim 1.

We will verify a weak form of the Axiom of Infinity, which will reduce to the full axiom provided the Axiom of Comprehension holds.

Infinity.

The universe V contains an inductive set, I. The set I contains \emptyset and is closed under successor. We want to show that M has a set with these properties.

Claim 1. $M \neq \emptyset$.

We will verify a weak form of the Axiom of Infinity, which will reduce to the full axiom provided the Axiom of Comprehension holds.

Infinity.

The universe V contains an inductive set, I. The set I contains \emptyset and is closed under successor. We want to show that M has a set with these properties.

Claim 1. $M \neq \emptyset$.

Since M is almost universal, it must contain a set.

We will verify a weak form of the Axiom of Infinity, which will reduce to the full axiom provided the Axiom of Comprehension holds.

Infinity.

The universe V contains an inductive set, I. The set I contains \emptyset and is closed under successor. We want to show that M has a set with these properties.

Claim 1. $M \neq \emptyset$.

Since M is almost universal, it must contain a set. (Choose $\emptyset \in V$.

We will verify a weak form of the Axiom of Infinity, which will reduce to the full axiom provided the Axiom of Comprehension holds.

Infinity.

The universe V contains an inductive set, I. The set I contains \emptyset and is closed under successor. We want to show that M has a set with these properties.

Claim 1. $M \neq \emptyset$.

Since M is almost universal, it must contain a set. (Choose $\emptyset \in V$. Since $\emptyset \subseteq M$, there must exist $y \in M$ such that $\emptyset \subseteq y$.

We will verify a weak form of the Axiom of Infinity, which will reduce to the full axiom provided the Axiom of Comprehension holds.

Infinity.

The universe V contains an inductive set, I. The set I contains \emptyset and is closed under successor. We want to show that M has a set with these properties.

Claim 1. $M \neq \emptyset$.

Since M is almost universal, it must contain a set. (Choose $\emptyset \in V$. Since $\emptyset \subseteq M$, there must exist $y \in M$ such that $\emptyset \subseteq y$. This $y \in M$ witnesses that $M \neq \emptyset$.)

We will verify a weak form of the Axiom of Infinity, which will reduce to the full axiom provided the Axiom of Comprehension holds.

Infinity.

The universe V contains an inductive set, I. The set I contains \emptyset and is closed under successor. We want to show that M has a set with these properties.

Claim 1. $M \neq \emptyset$.

Since M is almost universal, it must contain a set. (Choose $\emptyset \in V$. Since $\emptyset \subseteq M$, there must exist $y \in M$ such that $\emptyset \subseteq y$. This $y \in M$ witnesses that $M \neq \emptyset$.)

Claim 2.

We will verify a weak form of the Axiom of Infinity, which will reduce to the full axiom provided the Axiom of Comprehension holds.

Infinity.

The universe V contains an inductive set, I. The set I contains \emptyset and is closed under successor. We want to show that M has a set with these properties.

Claim 1. $M \neq \emptyset$.

Since M is almost universal, it must contain a set. (Choose $\emptyset \in V$. Since $\emptyset \subseteq M$, there must exist $y \in M$ such that $\emptyset \subseteq y$. This $y \in M$ witnesses that $M \neq \emptyset$.)

Claim 2. $\emptyset \in M$ and the successor operation $S(x) = x \cup \{x\}$ is a class function on M.

We will verify a weak form of the Axiom of Infinity, which will reduce to the full axiom provided the Axiom of Comprehension holds.

Infinity.

The universe V contains an inductive set, I. The set I contains \emptyset and is closed under successor. We want to show that M has a set with these properties.

Claim 1. $M \neq \emptyset$.

Since M is almost universal, it must contain a set. (Choose $\emptyset \in V$. Since $\emptyset \subseteq M$, there must exist $y \in M$ such that $\emptyset \subseteq y$. This $y \in M$ witnesses that $M \neq \emptyset$.)

Claim 2. $\emptyset \in M$ and the successor operation $S(x) = x \cup \{x\}$ is a class function on M.

Construct \emptyset by applying Comprehension to the set from Claim 1.

We will verify a weak form of the Axiom of Infinity, which will reduce to the full axiom provided the Axiom of Comprehension holds.

Infinity.

The universe V contains an inductive set, I. The set I contains \emptyset and is closed under successor. We want to show that M has a set with these properties.

Claim 1. $M \neq \emptyset$.

Since M is almost universal, it must contain a set. (Choose $\emptyset \in V$. Since $\emptyset \subseteq M$, there must exist $y \in M$ such that $\emptyset \subseteq y$. This $y \in M$ witnesses that $M \neq \emptyset$.)

Claim 2. $\emptyset \in M$ and the successor operation $S(x) = x \cup \{x\}$ is a class function on M.

Construct \emptyset by applying Comprehension to the set from Claim 1. Construct S(x) using pairing and union.

We will verify a weak form of the Axiom of Infinity, which will reduce to the full axiom provided the Axiom of Comprehension holds.

Infinity.

The universe V contains an inductive set, I. The set I contains \emptyset and is closed under successor. We want to show that M has a set with these properties.

Claim 1. $M \neq \emptyset$.

Since M is almost universal, it must contain a set. (Choose $\emptyset \in V$. Since $\emptyset \subseteq M$, there must exist $y \in M$ such that $\emptyset \subseteq y$. This $y \in M$ witnesses that $M \neq \emptyset$.)

Claim 2. $\emptyset \in M$ and the successor operation $S(x) = x \cup \{x\}$ is a class function on M.

Construct \emptyset by applying Comprehension to the set from Claim 1. Construct S(x) using pairing and union.

Choose $I = \omega^V$.

Choose
$$I = \omega^V$$
. Let $J = I \cap M$.

Choose $I = \omega^V$. Let $J = I \cap M$. J is a set in V that consists of the finite ordinals in V that lie in M.

Choose $I = \omega^V$. Let $J = I \cap M$. J is a set in V that consists of the finite ordinals in V that lie in M. Since M is almost universal, there is a $y \in M$ such that $J \subseteq y$.

Choose $I = \omega^V$. Let $J = I \cap M$. J is a set in V that consists of the finite ordinals in V that lie in M. Since M is almost universal, there is a $y \in M$ such that $J \subseteq y$.

Goal.

Choose $I=\omega^V$. Let $J=I\cap M$. J is a set in V that consists of the finite ordinals in V that lie in M. Since M is almost universal, there is a $y\in M$ such that $J\subseteq y$.

Goal. Argue that, if Comprehension holds, then it is possible to separate an inductive set from y.

Choose $I=\omega^V$. Let $J=I\cap M$. J is a set in V that consists of the finite ordinals in V that lie in M. Since M is almost universal, there is a $y\in M$ such that $J\subseteq y$.

Goal. Argue that, if Comprehension holds, then it is possible to separate an inductive set from y.

Exercise.

Choose $I=\omega^V$. Let $J=I\cap M$. J is a set in V that consists of the finite ordinals in V that lie in M. Since M is almost universal, there is a $y\in M$ such that $J\subseteq y$.

Goal. Argue that, if Comprehension holds, then it is possible to separate an inductive set from y.

Exercise. Achieve this goal!

Choose $I=\omega^V$. Let $J=I\cap M$. J is a set in V that consists of the finite ordinals in V that lie in M. Since M is almost universal, there is a $y\in M$ such that $J\subseteq y$.

Goal. Argue that, if Comprehension holds, then it is possible to separate an inductive set from y.

Exercise. Achieve this goal! (Figure out how to separate out an inductive set from a set y containing $J = I \cap M = \omega^V \cap M$.)

Choose $I=\omega^V$. Let $J=I\cap M$. J is a set in V that consists of the finite ordinals in V that lie in M. Since M is almost universal, there is a $y\in M$ such that $J\subseteq y$.

Goal. Argue that, if Comprehension holds, then it is possible to separate an inductive set from y.

Exercise. Achieve this goal! (Figure out how to separate out an inductive set from a set y containing $J = I \cap M = \omega^V \cap M$.)



Last step.

Last step.

Last step.

We can write down formulas that express

Last step.

We can write down formulas that express

Last step.

We can write down formulas that express

• $\varphi_{\emptyset}(u)$: "u is the empty set".

Last step.

- \bullet $\varphi_{\emptyset}(u)$: "u is the empty set".
- ord(u):

Last step.

- \bullet $\varphi_{\emptyset}(u)$: "u is the empty set".
- ord(u):

Last step.

- \bullet $\varphi_{\emptyset}(u)$: "u is the empty set".

Last step.

- \bullet $\varphi_{\emptyset}(u)$: "u is the empty set".
- \circ ord(u): "u is an ordinal". (u is a transitive set of transitive sets.)

Last step.

- $\varphi_{\emptyset}(u)$: "u is the empty set".
- ② ord(u): "u is an ordinal". (u is a transitive set of transitive sets.)
- \bigcirc pred(u, v):

Last step.

- $\varphi_{\emptyset}(u)$: "u is the empty set".
- ② ord(u): "u is an ordinal". (u is a transitive set of transitive sets.)
- \bigcirc pred(u, v):

Last step.

- $\varphi_{\emptyset}(u)$: "u is the empty set".
- lacktriangledown pred(u,v): "u and v are ordinals and S(u)=v".

Last step.

We can write down formulas that express

- $\varphi_{\emptyset}(u)$: "u is the empty set".
- \circ ord(u): "u is an ordinal". (u is a transitive set of transitive sets.)
- $lacksquare{1}{3}$ pred(u,v): "u and v are ordinals and S(u)=v".

Now, suppose that $J=\omega^V\cap M$ and $y\in M$ satisfies $J\subseteq y$.

Last step.

We can write down formulas that express

- $\varphi_{\emptyset}(u)$: "u is the empty set".
- pred(u, v): "u and v are ordinals and S(u) = v".

Now, suppose that $J=\omega^V\cap M$ and $y\in M$ satisfies $J\subseteq y$. Use Comprehension to create the set y' of ordinals in y.

Last step.

We can write down formulas that express

- $\varphi_{\emptyset}(u)$: "u is the empty set".
- pred(u, v): "u and v are ordinals and S(u) = v".

Now, suppose that $J=\omega^V\cap M$ and $y\in M$ satisfies $J\subseteq y$. Use Comprehension to create the set y' of ordinals in y. We still have $J\subseteq y'$, since J consists of ordinals.

Last step.

We can write down formulas that express

- $\varphi_{\emptyset}(u)$: "u is the empty set".
- lacktriangledown pred(u,v): "u and v are ordinals and S(u)=v".

Now, suppose that $J=\omega^V\cap M$ and $y\in M$ satisfies $J\subseteq y$. Use Comprehension to create the set y' of ordinals in y. We still have $J\subseteq y'$, since J consists of ordinals. Use Union to create $y'':=S(\bigcup y')$.

Last step.

We can write down formulas that express

- $\varphi_{\emptyset}(u)$: "u is the empty set".
- pred(u, v): "u and v are ordinals and S(u) = v".

Now, suppose that $J=\omega^V\cap M$ and $y\in M$ satisfies $J\subseteq y$. Use Comprehension to create the set y' of ordinals in y. We still have $J\subseteq y'$, since J consists of ordinals. Use Union to create $y'':=S(\bigcup y')$. We still have $J\subseteq y''$, but now y'' is an inital segment of ordinals that contains all finite ordinals.

Last step.

We can write down formulas that express

- $\varphi_{\emptyset}(u)$: "*u* is the empty set".
- lacktriangledown pred(u,v): "u and v are ordinals and S(u)=v".

Now, suppose that $J=\omega^V\cap M$ and $y\in M$ satisfies $J\subseteq y$. Use Comprehension to create the set y' of ordinals in y. We still have $J\subseteq y'$, since J consists of ordinals. Use Union to create $y'':=S(\bigcup y')$. We still have $J\subseteq y''$, but now y'' is an inital segment of ordinals that contains all finite ordinals. Use Comprehension to create the set y''' of all $t\in y''$ such that $t=\emptyset$ or any nonzero $s\in t$ has an immediate predecessor.

Last step.

We can write down formulas that express

- $\varphi_{\emptyset}(u)$: "*u* is the empty set".
- \circ ord(u): "u is an ordinal". (u is a transitive set of transitive sets.)
- pred(u, v): "u and v are ordinals and S(u) = v".

Now, suppose that $J=\omega^V\cap M$ and $y\in M$ satisfies $J\subseteq y$. Use Comprehension to create the set y' of ordinals in y. We still have $J\subseteq y'$, since J consists of ordinals. Use Union to create $y'':=S(\bigcup y')$. We still have $J\subseteq y''$, but now y'' is an inital segment of ordinals that contains all finite ordinals. Use Comprehension to create the set y''' of all $t\in y''$ such that $t=\emptyset$ or any nonzero $s\in t$ has an immediate predecessor. The element $y'''\in M$ is a set of ordinals that (i) contains all finite ordinals,

Last step.

We can write down formulas that express

- $\varphi_{\emptyset}(u)$: "u is the empty set".
- \circ ord(u): "u is an ordinal". (u is a transitive set of transitive sets.)
- pred(u, v): "u and v are ordinals and S(u) = v".

Now, suppose that $J=\omega^V\cap M$ and $y\in M$ satisfies $J\subseteq y$. Use Comprehension to create the set y' of ordinals in y. We still have $J\subseteq y'$, since J consists of ordinals. Use Union to create $y'':=S(\bigcup y')$. We still have $J\subseteq y''$, but now y'' is an inital segment of ordinals that contains all finite ordinals. Use Comprehension to create the set y''' of all $t\in y''$ such that $t=\emptyset$ or any nonzero $s\in t$ has an immediate predecessor. The element $y'''\in M$ is a set of ordinals that (i) contains all finite ordinals, (ii) is transitive,

Last step.

We can write down formulas that express

- $\varphi_{\emptyset}(u)$: "*u* is the empty set".
- \circ ord(u): "u is an ordinal". (u is a transitive set of transitive sets.)
- pred(u, v): "u and v are ordinals and S(u) = v".

Now, suppose that $J=\omega^V\cap M$ and $y\in M$ satisfies $J\subseteq y$. Use Comprehension to create the set y' of ordinals in y. We still have $J\subseteq y'$, since J consists of ordinals. Use Union to create $y'':=S(\bigcup y')$. We still have $J\subseteq y''$, but now y'' is an inital segment of ordinals that contains all finite ordinals. Use Comprehension to create the set y''' of all $t\in y''$ such that $t=\emptyset$ or any nonzero $s\in t$ has an immediate predecessor. The element $y'''\in M$ is a set of ordinals that (i) contains all finite ordinals, (ii) is transitive, and (iii) contains no limit ordinal.

Last step.

We can write down formulas that express

- $\varphi_{\emptyset}(u)$: "*u* is the empty set".
- lacktriangledown pred(u,v): "u and v are ordinals and S(u)=v".

Now, suppose that $J=\omega^V\cap M$ and $y\in M$ satisfies $J\subseteq y$. Use Comprehension to create the set y' of ordinals in y. We still have $J\subseteq y'$, since J consists of ordinals. Use Union to create $y'':=S(\bigcup y')$. We still have $J\subseteq y''$, but now y'' is an inital segment of ordinals that contains all finite ordinals. Use Comprehension to create the set y''' of all $t\in y''$ such that $t=\emptyset$ or any nonzero $s\in t$ has an immediate predecessor. The element $y'''\in M$ is a set of ordinals that (i) contains all finite ordinals, (ii) is transitive, and (iii) contains no limit ordinal. Necessarily, $y'''\in M$ is the set of all finite ordinals, hence it is an example of an inductive set in M.

Last step.

We can write down formulas that express

- $\varphi_{\emptyset}(u)$: "*u* is the empty set".
- \circ ord(u): "u is an ordinal". (u is a transitive set of transitive sets.)
- lacktriangledown pred(u,v): "u and v are ordinals and S(u)=v".

Now, suppose that $J=\omega^V\cap M$ and $y\in M$ satisfies $J\subseteq y$. Use Comprehension to create the set y' of ordinals in y. We still have $J\subseteq y'$, since J consists of ordinals. Use Union to create $y'':=S(\bigcup y')$. We still have $J\subseteq y''$, but now y'' is an inital segment of ordinals that contains all finite ordinals. Use Comprehension to create the set y''' of all $t\in y''$ such that $t=\emptyset$ or any nonzero $s\in t$ has an immediate predecessor. The element $y'''\in M$ is a set of ordinals that (i) contains all finite ordinals, (ii) is transitive, and (iii) contains no limit ordinal. Necessarily, $y'''\in M$ is the set of all finite ordinals, hence it is an example of an inductive set in M. \square

Proof that the Axiom of Replacement holds

We will verify a weak form of the Axiom of Replacement,

We will verify a weak form of the Axiom of Replacement, which will reduce to the full axiom provided the Axiom of Comprehension holds.

We will verify a weak form of the Axiom of Replacement, which will reduce to the full axiom provided the Axiom of Comprehension holds.

Replacement.

We will verify a weak form of the Axiom of Replacement, which will reduce to the full axiom provided the Axiom of Comprehension holds.

Replacement.

Let F be a class function relative to M.

We will verify a weak form of the Axiom of Replacement, which will reduce to the full axiom provided the Axiom of Comprehension holds.

Replacement.

Let F be a class function relative to M. (That is, the formula that says that F satisfies the function rule holds in $\langle M; \in \rangle$.)

We will verify a weak form of the Axiom of Replacement, which will reduce to the full axiom provided the Axiom of Comprehension holds.

Replacement.

Let F be a class function relative to M. (That is, the formula that says that F satisfies the function rule holds in $\langle M; \in \rangle$.) Choose $A \in M$.

We will verify a weak form of the Axiom of Replacement, which will reduce to the full axiom provided the Axiom of Comprehension holds.

Replacement.

Let F be a class function relative to M. (That is, the formula that says that F satisfies the function rule holds in $\langle M; \in \rangle$.) Choose $A \in M$. The goal is to prove that the image F[A] is an element of M.

We will verify a weak form of the Axiom of Replacement, which will reduce to the full axiom provided the Axiom of Comprehension holds.

Replacement.

Let F be a class function relative to M. (That is, the formula that says that F satisfies the function rule holds in $\langle M; \in \rangle$.) Choose $A \in M$. The goal is to prove that the image F[A] is an element of M. $F^V[A] \in V$.

We will verify a weak form of the Axiom of Replacement, which will reduce to the full axiom provided the Axiom of Comprehension holds.

Replacement.

Let F be a class function relative to M. (That is, the formula that says that F satisfies the function rule holds in $\langle M; \in \rangle$.) Choose $A \in M$. The goal is to prove that the image F[A] is an element of M.

$$F^{V}[A] \in V$$
. $F^{V}[A]$ contains each $F(a)$, $a \in A$.

We will verify a weak form of the Axiom of Replacement, which will reduce to the full axiom provided the Axiom of Comprehension holds.

Replacement.

Let F be a class function relative to M. (That is, the formula that says that F satisfies the function rule holds in $\langle M; \in \rangle$.) Choose $A \in M$. The goal is to prove that the image F[A] is an element of M.

 $F^V[A] \in V$. $F^V[A]$ contains each F(a), $a \in A$. Since each $F(a) \in M$ and M is almost universal, there is a $y \in M$ such that $F^V[A] \subseteq y$.

We will verify a weak form of the Axiom of Replacement, which will reduce to the full axiom provided the Axiom of Comprehension holds.

Replacement.

Let F be a class function relative to M. (That is, the formula that says that F satisfies the function rule holds in $\langle M; \in \rangle$.) Choose $A \in M$. The goal is to prove that the image F[A] is an element of M.

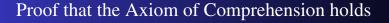
 $F^V[A] \in V$. $F^V[A]$ contains each F(a), $a \in A$. Since each $F(a) \in M$ and M is almost universal, there is a $y \in M$ such that $F^V[A] \subseteq y$. Construct $F^M[A]$ from y by Comprehension using the property "I am in the image of F".

We will verify a weak form of the Axiom of Replacement, which will reduce to the full axiom provided the Axiom of Comprehension holds.

Replacement.

Let F be a class function relative to M. (That is, the formula that says that F satisfies the function rule holds in $\langle M; \in \rangle$.) Choose $A \in M$. The goal is to prove that the image F[A] is an element of M.

 $F^V[A] \in V$. $F^V[A]$ contains each F(a), $a \in A$. Since each $F(a) \in M$ and M is almost universal, there is a $y \in M$ such that $F^V[A] \subseteq y$. Construct $F^M[A]$ from y by Comprehension using the property "I am in the image of F". \square



The Axiom of Comprehension will hold in M if, whenever $A \in M$ and φ is a formula,

The Axiom of Comprehension will hold in M if, whenever $A \in M$ and φ is a formula,

$$\{x \in A \mid \varphi(x)\}$$

The Axiom of Comprehension will hold in M if, whenever $A \in M$ and φ is a formula,

$$\{x \in A \mid \varphi(x)\}$$

is a set in M.

The Axiom of Comprehension will hold in M if, whenever $A \in M$ and φ is a formula,

$$\{x \in A \mid \varphi(x)\}$$

is a set in M. The proof for this axiom is accomplished by induction on the complexity of the formula φ .

The Axiom of Comprehension will hold in M if, whenever $A \in M$ and φ is a formula,

$$\{x \in A \mid \varphi(x)\}$$

is a set in M. The proof for this axiom is accomplished by induction on the complexity of the formula φ . Recall that formulas are defined by recursion as follows:

The Axiom of Comprehension will hold in M if, whenever $A \in M$ and φ is a formula,

$$\{x \in A \mid \varphi(x)\}$$

The Axiom of Comprehension will hold in M if, whenever $A \in M$ and φ is a formula,

$$\{x \in A \mid \varphi(x)\}$$

is a set in M. The proof for this axiom is accomplished by induction on the complexity of the formula φ . Recall that formulas are defined by recursion as follows: The set of all first-order formulas whose only nonlogical symbol is \in is the smallest set \mathcal{F} such that

1 The atomic formulas are in \mathcal{F} .

The Axiom of Comprehension will hold in M if, whenever $A \in M$ and φ is a formula,

$$\{x \in A \mid \varphi(x)\}$$

is a set in M. The proof for this axiom is accomplished by induction on the complexity of the formula φ . Recall that formulas are defined by recursion as follows: The set of all first-order formulas whose only nonlogical symbol is \in is the smallest set $\mathcal F$ such that

1 The atomic formulas are in \mathcal{F} .

The Axiom of Comprehension will hold in M if, whenever $A \in M$ and φ is a formula,

$$\{x \in A \mid \varphi(x)\}$$

is a set in M. The proof for this axiom is accomplished by induction on the complexity of the formula φ . Recall that formulas are defined by recursion as follows: The set of all first-order formulas whose only nonlogical symbol is \in is the smallest set \mathcal{F} such that

• The atomic formulas are in \mathcal{F} . E.g., $(x \in y)$, (x = y).

The Axiom of Comprehension will hold in M if, whenever $A \in M$ and φ is a formula,

$$\{x \in A \mid \varphi(x)\}$$

- The atomic formulas are in \mathcal{F} . E.g., $(x \in y)$, (x = y).
- $\ \ \ \mathcal{F}$ is closed under the logical connectives.

The Axiom of Comprehension will hold in M if, whenever $A \in M$ and φ is a formula,

$$\{x \in A \mid \varphi(x)\}$$

- The atomic formulas are in \mathcal{F} . E.g., $(x \in y)$, (x = y).
- $\ \ \ \mathcal{F}$ is closed under the logical connectives.

The Axiom of Comprehension will hold in M if, whenever $A \in M$ and φ is a formula,

$$\{x \in A \mid \varphi(x)\}$$

- The atomic formulas are in \mathcal{F} . E.g., $(x \in y)$, (x = y).
- ② \mathcal{F} is closed under the logical connectives. E.g. $\neg \alpha$, $\alpha \wedge \beta$.

The Axiom of Comprehension will hold in M if, whenever $A \in M$ and φ is a formula,

$$\{x \in A \mid \varphi(x)\}$$

- The atomic formulas are in \mathcal{F} . E.g., $(x \in y)$, (x = y).
- ② \mathcal{F} is closed under the logical connectives. E.g. $\neg \alpha$, $\alpha \wedge \beta$.
- \circ \mathcal{F} is closed under applications of quantifiers.

The Axiom of Comprehension will hold in M if, whenever $A \in M$ and φ is a formula,

$$\{x \in A \mid \varphi(x)\}$$

- The atomic formulas are in \mathcal{F} . E.g., $(x \in y)$, (x = y).
- ② \mathcal{F} is closed under the logical connectives. E.g. $\neg \alpha$, $\alpha \wedge \beta$.
- \circ \mathcal{F} is closed under applications of quantifiers.

The Axiom of Comprehension will hold in M if, whenever $A \in M$ and φ is a formula,

$$\{x \in A \mid \varphi(x)\}$$

- The atomic formulas are in \mathcal{F} . E.g., $(x \in y)$, (x = y).
- ② \mathcal{F} is closed under the logical connectives. E.g. $\neg \alpha$, $\alpha \wedge \beta$.
- **3** \mathcal{F} is closed under applications of quantifiers. E.g., $(\forall x)\alpha$, $(\exists y)\beta$.

The Axiom of Comprehension will hold in M if, whenever $A \in M$ and φ is a formula,

$$\{x \in A \mid \varphi(x)\}$$

is a set in M. The proof for this axiom is accomplished by induction on the complexity of the formula φ . Recall that formulas are defined by recursion as follows: The set of all first-order formulas whose only nonlogical symbol is \in is the smallest set $\mathcal F$ such that

- The atomic formulas are in \mathcal{F} . E.g., $(x \in y)$, (x = y).
- ② \mathcal{F} is closed under the logical connectives. E.g. $\neg \alpha$, $\alpha \wedge \beta$.
- **3** \mathcal{F} is closed under applications of quantifiers. E.g., $(\forall x)\alpha$, $(\exists y)\beta$.

We proceed by induction on the complexity of the defining formula, using the Gödel operations to show the the required sets must be member of M.