Fraenkel's First Model of ZFA

Our goal is to explain why, if ZF has a model, then ZFA has a model that does not satisfy AC.

Our goal is to explain why, if ZF has a model, then ZFA has a model that does not satisfy AC.

Let V be a model of ZFC.

Our goal is to explain why, if ZF has a model, then ZFA has a model that does not satisfy AC.

Let V be a model of ZFC. Choose a set $A \in V$.

Our goal is to explain why, if ZF has a model, then ZFA has a model that does not satisfy AC.

Our goal is to explain why, if ZF has a model, then ZFA has a model that does not satisfy AC.

Let V be a model of ZFC. Choose a set $A \in V$. Begin constructing the von Neumann Hierarchy within V, starting at A:

• $V_0(A) = A$.

Our goal is to explain why, if ZF has a model, then ZFA has a model that does not satisfy AC.

Let V be a model of ZFC. Choose a set $A \in V$. Begin constructing the von Neumann Hierarchy within V, starting at A:

• $V_0(A) = A$.

Our goal is to explain why, if ZF has a model, then ZFA has a model that does not satisfy AC.

- $V_0(A) = A$.
- $V_{\alpha+1}(A) = V_{\alpha}(A) \cup \mathcal{P}(V_{\alpha}(A)).$

Our goal is to explain why, if ZF has a model, then ZFA has a model that does not satisfy AC.

- $V_0(A) = A$.
- $V_{\alpha+1}(A) = V_{\alpha}(A) \cup \mathcal{P}(V_{\alpha}(A)).$

Our goal is to explain why, if ZF has a model, then ZFA has a model that does not satisfy AC.

- $V_0(A) = A$.
- $V_{\alpha+1}(A) = V_{\alpha}(A) \cup \mathcal{P}(V_{\alpha}(A)).$
- $V_{\lambda}(A) = \bigcup_{\beta < \lambda} V_{\beta}(A)$, λ limit.

Our goal is to explain why, if ZF has a model, then ZFA has a model that does not satisfy AC.

- $V_0(A) = A$.
- $V_{\alpha+1}(A) = V_{\alpha}(A) \cup \mathcal{P}(V_{\alpha}(A)).$
- $V_{\lambda}(A) = \bigcup_{\beta < \lambda} V_{\beta}(A)$, λ limit.

Our goal is to explain why, if ZF has a model, then ZFA has a model that does not satisfy AC.

- $V_0(A) = A$.
- $V_{\alpha+1}(A) = V_{\alpha}(A) \cup \mathcal{P}(V_{\alpha}(A)).$
- $V_{\lambda}(A) = \bigcup_{\beta < \lambda} V_{\beta}(A)$, λ limit.

Our goal is to explain why, if ZF has a model, then ZFA has a model that does not satisfy AC.

Let V be a model of ZFC. Choose a set $A \in V$. Begin constructing the von Neumann Hierarchy within V, starting at A:

- $V_0(A) = A$.
- $V_{\alpha+1}(A) = V_{\alpha}(A) \cup \mathcal{P}(V_{\alpha}(A)).$
- $V_{\lambda}(A) = \bigcup_{\beta < \lambda} V_{\beta}(A)$, λ limit.

V(A) is the class of all x for which there exists $\alpha \in ON$ with $x \in V_{\alpha}(A)$.

 \bullet $A \in V(A)$ is the set of **atoms**.

- \bullet $A \in V(A)$ is the set of **atoms**.
- $oldsymbol{\circ} x \in V(A)$ is a **pure set** if $(\{x\} \cup \operatorname{tr.cl}(x)) \cap A = \emptyset$.

- \bullet $A \in V(A)$ is the set of **atoms**.
- ② $x \in V(A)$ is a **pure set** if $(\{x\} \cup \text{tr.cl}(x)) \cap A = \emptyset$.
- **1** In V(A), an **ordinal** is a transitive set of transitive sets that is disjoint from A.

- \bullet $A \in V(A)$ is the set of **atoms**.
- ② $x \in V(A)$ is a **pure set** if $(\{x\} \cup \text{tr.cl}(x)) \cap A = \emptyset$.
- **1** In V(A), an **ordinal** is a transitive set of transitive sets that is disjoint from A.

- \bullet $A \in V(A)$ is the set of **atoms**.
- ② $x \in V(A)$ is a **pure set** if $(\{x\} \cup \text{tr.cl}(x)) \cap A = \emptyset$.
- lacksquare In V(A), an **ordinal** is a transitive set of transitive sets that is disjoint from A. Equivalently, an ordinal is a transitive set of transitive sets that is a pure set.

- \bullet $A \in V(A)$ is the set of **atoms**.
- ② $x \in V(A)$ is a **pure set** if $(\{x\} \cup \text{tr.cl}(x)) \cap A = \emptyset$.
- **1** In V(A), an **ordinal** is a transitive set of transitive sets that is disjoint from A. Equivalently, an ordinal is a transitive set of transitive sets that is a pure set.
- **1** The class of pure sets in V(A) is called the **kernel** of V(A).

- \bullet $A \in V(A)$ is the set of **atoms**.
- ② $x \in V(A)$ is a **pure set** if $(\{x\} \cup \text{tr.cl}(x)) \cap A = \emptyset$.
- **1** In V(A), an **ordinal** is a transitive set of transitive sets that is disjoint from A. Equivalently, an ordinal is a transitive set of transitive sets that is a pure set.
- **1** The class of pure sets in V(A) is called the **kernel** of V(A).

- \bullet $A \in V(A)$ is the set of **atoms**.
- $oldsymbol{\circ} x \in V(A)$ is a **pure set** if $(\{x\} \cup \operatorname{tr.cl}(x)) \cap A = \emptyset$.
- **3** In V(A), an **ordinal** is a transitive set of transitive sets that is disjoint from A. Equivalently, an ordinal is a transitive set of transitive sets that is a pure set.
- The class of pure sets in V(A) is called the **kernel** of V(A).

There are first-order formulas $\varphi_{\mathrm{atom}}(x)$, $\varphi_{\mathrm{pure \ set}}(x)$, $\varphi_{\mathrm{ordinal}}(x)$ in the language whose nonlogical symbols are \in , A, 0 that define each of these types of sets.

Let $G \leq \operatorname{Sym}(A)$ be some group of permutations of the set of atoms.

Let $G \leq \operatorname{Sym}(A)$ be some group of permutations of the set of atoms.

Definition.

Let $G \leq \operatorname{Sym}(A)$ be some group of permutations of the set of atoms.

Let $G \leq \operatorname{Sym}(A)$ be some group of permutations of the set of atoms.

Let $G \leq \operatorname{Sym}(A)$ be some group of permutations of the set of atoms.

Definition. A **normal filter** in the subgroup lattice of G is a lattice filter $\mathcal{F} \subseteq \operatorname{Sub}(G)$ that is closed under conjugation and contains all 1-point stabilizers. This means that

Let $G \leq \operatorname{Sym}(A)$ be some group of permutations of the set of atoms.

- \bullet $H, K \in \mathcal{F}$ implies $H \cap K \in \mathcal{F}$

Let $G \leq \operatorname{Sym}(A)$ be some group of permutations of the set of atoms.

- \bullet $H, K \in \mathcal{F}$ implies $H \cap K \in \mathcal{F}$
- \bullet $H \in \mathcal{F}$ and $g \in G$ together imply $gHg^{-1} \in \mathcal{F}$.

Let $G \leq \operatorname{Sym}(A)$ be some group of permutations of the set of atoms.

- \bullet $H \in \mathcal{F}$ and $g \in G$ together imply $gHg^{-1} \in \mathcal{F}$.
- For each $a \in A$, G_a (= Stab(a)) $\in \mathcal{F}$.

Let $G \leq \operatorname{Sym}(A)$ be some group of permutations of the set of atoms.

- \bullet $H \in \mathcal{F}$ and $g \in G$ together imply $gHg^{-1} \in \mathcal{F}$.
- For each $a \in A$, G_a (= Stab(a)) $\in \mathcal{F}$.

Let $G \leq \operatorname{Sym}(A)$ be some group of permutations of the set of atoms.

Definition. A **normal filter** in the subgroup lattice of G is a lattice filter $\mathcal{F} \subseteq \operatorname{Sub}(G)$ that is closed under conjugation and contains all 1-point stabilizers. This means that

- \bullet $H, K \in \mathcal{F}$ implies $H \cap K \in \mathcal{F}$
- For each $a \in A$, G_a (= Stab(a)) $\in \mathcal{F}$.

An element $x \in V(A)$ is called **symmetric** if $G_x \in \mathcal{F}$.

Let $G \leq \operatorname{Sym}(A)$ be some group of permutations of the set of atoms.

Definition. A **normal filter** in the subgroup lattice of G is a lattice filter $\mathcal{F} \subseteq \operatorname{Sub}(G)$ that is closed under conjugation and contains all 1-point stabilizers. This means that

- \bullet $H \in \mathcal{F}$ and $g \in G$ together imply $gHg^{-1} \in \mathcal{F}$.
- For each $a \in A$, G_a (= Stab(a)) $\in \mathcal{F}$.

An element $x \in V(A)$ is called **symmetric** if $G_x \in \mathcal{F}$. The element x is **hereditarily symmetric** if $\{x\} \cup \text{tr.cl}(x)$ consists of symmetric elements.

Let $G \leq \operatorname{Sym}(A)$ be some group of permutations of the set of atoms.

Definition. A **normal filter** in the subgroup lattice of G is a lattice filter $\mathcal{F} \subseteq \operatorname{Sub}(G)$ that is closed under conjugation and contains all 1-point stabilizers. This means that

- \bullet $H \in \mathcal{F}$ and $g \in G$ together imply $gHg^{-1} \in \mathcal{F}$.
- For each $a \in A$, G_a (= Stab(a)) $\in \mathcal{F}$.

An element $x \in V(A)$ is called **symmetric** if $G_x \in \mathcal{F}$. The element x is **hereditarily symmetric** if $\{x\} \cup \text{tr.cl}(x)$ consists of symmetric elements.

Examples.

Permutation models

Let $G \leq \operatorname{Sym}(A)$ be some group of permutations of the set of atoms.

Definition. A **normal filter** in the subgroup lattice of G is a lattice filter $\mathcal{F} \subseteq \operatorname{Sub}(G)$ that is closed under conjugation and contains all 1-point stabilizers. This means that

- \bullet $H \in \mathcal{F}$ and $g \in G$ together imply $gHg^{-1} \in \mathcal{F}$.
- For each $a \in A$, G_a (= Stab(a)) $\in \mathcal{F}$.

An element $x \in V(A)$ is called **symmetric** if $G_x \in \mathcal{F}$. The element x is **hereditarily symmetric** if $\{x\} \cup \text{tr.cl}(x)$ consists of symmetric elements.

Examples. Pure sets are hereditarily symmetric.

Permutation models

Let $G \leq \operatorname{Sym}(A)$ be some group of permutations of the set of atoms.

Definition. A **normal filter** in the subgroup lattice of G is a lattice filter $\mathcal{F} \subseteq \operatorname{Sub}(G)$ that is closed under conjugation and contains all 1-point stabilizers. This means that

- \bullet $H \in \mathcal{F}$ and $g \in G$ together imply $gHg^{-1} \in \mathcal{F}$.
- For each $a \in A$, G_a (= Stab(a)) $\in \mathcal{F}$.

An element $x \in V(A)$ is called **symmetric** if $G_x \in \mathcal{F}$. The element x is **hereditarily symmetric** if $\{x\} \cup \text{tr.cl}(x)$ consists of symmetric elements.

Examples. Pure sets are hereditarily symmetric. The set A of atoms is hereditarily symmetric.

Theorem.

Theorem. For any choice of a subgroup $G \leq \operatorname{Sym}(A)$

Theorem. For any choice of a subgroup $G \leq \operatorname{Sym}(A)$ and any choice of a normal filter $\mathcal{F} \subseteq \operatorname{Sub}(G)$

Theorem. For any choice of a subgroup $G \leq \operatorname{Sym}(A)$ and any choice of a normal filter $\mathcal{F} \subseteq \operatorname{Sub}(G)$ the class of hereditarily symmetric elements of V(A) is a model of ZFA that contains the kernel and the set A.

Theorem. For any choice of a subgroup $G \leq \operatorname{Sym}(A)$ and any choice of a normal filter $\mathcal{F} \subseteq \operatorname{Sub}(G)$ the class of hereditarily symmetric elements of V(A) is a model of ZFA that contains the kernel and the set A.

PROOF GOES HERE.

Theorem. For any choice of a subgroup $G \leq \operatorname{Sym}(A)$ and any choice of a normal filter $\mathcal{F} \subseteq \operatorname{Sub}(G)$ the class of hereditarily symmetric elements of V(A) is a model of ZFA that contains the kernel and the set A.

PROOF GOES HERE.

Choose V to be a model of ZFC.

Choose V to be a model of ZFC. Choose $A \in V$ to be an infinite set in V.

Choose V to be a model of ZFC. Choose $A \in V$ to be an infinite set in V. Choose $G = \operatorname{Sym}(A)$ to be the group of all permutations of A.

Choose V to be a model of ZFC. Choose $A \in V$ to be an infinite set in V. Choose $G = \operatorname{Sym}(A)$ to be the group of all permutations of A. Let $\mathcal F$ consist of those subgroups of G that contain a pointwise stabilizer of a finite subset $\{a_1,\ldots,a_m\}\subseteq A$:

Choose V to be a model of ZFC. Choose $A \in V$ to be an infinite set in V. Choose $G = \operatorname{Sym}(A)$ to be the group of all permutations of A. Let \mathcal{F} consist of those subgroups of G that contain a pointwise stabilizer of a finite subset $\{a_1, \ldots, a_m\} \subseteq A$: for $H \leq G$

Choose V to be a model of ZFC. Choose $A \in V$ to be an infinite set in V. Choose $G = \operatorname{Sym}(A)$ to be the group of all permutations of A. Let $\mathcal F$ consist of those subgroups of G that contain a pointwise stabilizer of a finite subset $\{a_1,\ldots,a_m\}\subseteq A$: for $H\leq G$

$$H \in \mathcal{F} \quad \Leftrightarrow \quad (\exists a_1, \dots a_m \in A)(H \supseteq G_{a_1,\dots,a_m}).$$

Choose V to be a model of ZFC. Choose $A \in V$ to be an infinite set in V. Choose $G = \operatorname{Sym}(A)$ to be the group of all permutations of A. Let $\mathcal F$ consist of those subgroups of G that contain a pointwise stabilizer of a finite subset $\{a_1,\ldots,a_m\}\subseteq A$: for $H\leq G$

$$H \in \mathcal{F} \quad \Leftrightarrow \quad (\exists a_1, \dots a_m \in A)(H \supseteq G_{a_1,\dots,a_m}).$$

Choose V to be a model of ZFC. Choose $A \in V$ to be an infinite set in V. Choose $G = \operatorname{Sym}(A)$ to be the group of all permutations of A. Let $\mathcal F$ consist of those subgroups of G that contain a pointwise stabilizer of a finite subset $\{a_1,\ldots,a_m\}\subseteq A$: for $H\leq G$

$$H \in \mathcal{F} \quad \Leftrightarrow \quad (\exists a_1, \dots a_m \in A)(H \supseteq G_{a_1,\dots,a_m}).$$

$$\bullet H \supseteq G_{a_1,\ldots,a_m} \text{ and } H \leq K \leq G$$

Choose V to be a model of ZFC. Choose $A \in V$ to be an infinite set in V. Choose $G = \operatorname{Sym}(A)$ to be the group of all permutations of A. Let $\mathcal F$ consist of those subgroups of G that contain a pointwise stabilizer of a finite subset $\{a_1,\ldots,a_m\}\subseteq A$: for $H\leq G$

$$H \in \mathcal{F} \quad \Leftrightarrow \quad (\exists a_1, \dots a_m \in A)(H \supseteq G_{a_1,\dots,a_m}).$$

$$\bullet H \supseteq G_{a_1,\ldots,a_m} \text{ and } H \leq K \leq G$$

Choose V to be a model of ZFC. Choose $A \in V$ to be an infinite set in V. Choose $G = \operatorname{Sym}(A)$ to be the group of all permutations of A. Let $\mathcal F$ consist of those subgroups of G that contain a pointwise stabilizer of a finite subset $\{a_1,\ldots,a_m\}\subseteq A$: for $H\leq G$

$$H \in \mathcal{F} \quad \Leftrightarrow \quad (\exists a_1, \dots a_m \in A)(H \supseteq G_{a_1,\dots,a_m}).$$

Let's check that \mathcal{F} is a normal filter.

 \bullet $H \supseteq G_{a_1,...,a_m}$ and $H \le K \le G$ together imply $K \supseteq G_{a_1,...,a_m}$.

Choose V to be a model of ZFC. Choose $A \in V$ to be an infinite set in V. Choose $G = \operatorname{Sym}(A)$ to be the group of all permutations of A. Let $\mathcal F$ consist of those subgroups of G that contain a pointwise stabilizer of a finite subset $\{a_1,\ldots,a_m\}\subseteq A$: for $H\leq G$

$$H \in \mathcal{F} \quad \Leftrightarrow \quad (\exists a_1, \dots a_m \in A)(H \supseteq G_{a_1,\dots,a_m}).$$

Let's check that \mathcal{F} is a normal filter.

• $H \supseteq G_{a_1,...,a_m}$ and $H \le K \le G$ together imply $K \supseteq G_{a_1,...,a_m}$.

Choose V to be a model of ZFC. Choose $A \in V$ to be an infinite set in V. Choose $G = \operatorname{Sym}(A)$ to be the group of all permutations of A. Let $\mathcal F$ consist of those subgroups of G that contain a pointwise stabilizer of a finite subset $\{a_1,\ldots,a_m\}\subseteq A$: for $H\leq G$

$$H \in \mathcal{F} \quad \Leftrightarrow \quad (\exists a_1, \dots a_m \in A)(H \supseteq G_{a_1,\dots,a_m}).$$

- \bullet $H \supseteq G_{a_1,...,a_m}$ and $H \le K \le G$ together imply $K \supseteq G_{a_1,...,a_m}$. \checkmark

Choose V to be a model of ZFC. Choose $A \in V$ to be an infinite set in V. Choose $G = \operatorname{Sym}(A)$ to be the group of all permutations of A. Let $\mathcal F$ consist of those subgroups of G that contain a pointwise stabilizer of a finite subset $\{a_1,\ldots,a_m\}\subseteq A$: for $H\leq G$

$$H \in \mathcal{F} \quad \Leftrightarrow \quad (\exists a_1, \dots a_m \in A)(H \supseteq G_{a_1,\dots,a_m}).$$

- \bullet $H \supseteq G_{a_1,...,a_m}$ and $H \le K \le G$ together imply $K \supseteq G_{a_1,...,a_m}$. \checkmark

Choose V to be a model of ZFC. Choose $A \in V$ to be an infinite set in V. Choose $G = \operatorname{Sym}(A)$ to be the group of all permutations of A. Let \mathcal{F} consist of those subgroups of G that contain a pointwise stabilizer of a finite subset $\{a_1, \ldots, a_m\} \subseteq A$: for $H \leq G$

$$H \in \mathcal{F} \quad \Leftrightarrow \quad (\exists a_1, \dots a_m \in A)(H \supseteq G_{a_1,\dots,a_m}).$$

- \bullet $H \supseteq G_{a_1,\ldots,a_m}$ and $H \le K \le G$ together imply $K \supseteq G_{a_1,\ldots,a_m}$. \checkmark
- $P = G_{a_1,\dots,a_m}$ and $K \supseteq G_{b_1,\dots,b_n}$ together imply $H \cap K \supseteq G_{a_1,\dots,a_m,b_1,\dots,b_n}$.

Choose V to be a model of ZFC. Choose $A \in V$ to be an infinite set in V. Choose $G = \operatorname{Sym}(A)$ to be the group of all permutations of A. Let $\mathcal F$ consist of those subgroups of G that contain a pointwise stabilizer of a finite subset $\{a_1,\ldots,a_m\}\subseteq A$: for $H\leq G$

$$H \in \mathcal{F} \quad \Leftrightarrow \quad (\exists a_1, \dots a_m \in A)(H \supseteq G_{a_1,\dots,a_m}).$$

- \bullet $H \supseteq G_{a_1,\ldots,a_m}$ and $H \le K \le G$ together imply $K \supseteq G_{a_1,\ldots,a_m}$. \checkmark

Choose V to be a model of ZFC. Choose $A \in V$ to be an infinite set in V. Choose $G = \operatorname{Sym}(A)$ to be the group of all permutations of A. Let $\mathcal F$ consist of those subgroups of G that contain a pointwise stabilizer of a finite subset $\{a_1,\ldots,a_m\}\subseteq A$: for $H\leq G$

$$H \in \mathcal{F} \quad \Leftrightarrow \quad (\exists a_1, \dots a_m \in A)(H \supseteq G_{a_1,\dots,a_m}).$$

- ② $H \supseteq G_{a_1,...,a_m}$ and $K \supseteq G_{b_1,...,b_n}$ together imply $H \cap K \supseteq G_{a_1,...,a_m,b_1,...,b_n}$. \checkmark
- $\bullet H\supseteq G_{a_1,\ldots,a_m} \text{ and } g\in G$

Choose V to be a model of ZFC. Choose $A \in V$ to be an infinite set in V. Choose $G = \operatorname{Sym}(A)$ to be the group of all permutations of A. Let $\mathcal F$ consist of those subgroups of G that contain a pointwise stabilizer of a finite subset $\{a_1,\ldots,a_m\}\subseteq A$: for $H\leq G$

$$H \in \mathcal{F} \quad \Leftrightarrow \quad (\exists a_1, \dots a_m \in A)(H \supseteq G_{a_1,\dots,a_m}).$$

- ② $H \supseteq G_{a_1,...,a_m}$ and $K \supseteq G_{b_1,...,b_n}$ together imply $H \cap K \supseteq G_{a_1,...,a_m,b_1,...,b_n}$. \checkmark
- $\bullet H\supseteq G_{a_1,\ldots,a_m} \text{ and } g\in G$

Choose V to be a model of ZFC. Choose $A \in V$ to be an infinite set in V. Choose $G = \operatorname{Sym}(A)$ to be the group of all permutations of A. Let $\mathcal F$ consist of those subgroups of G that contain a pointwise stabilizer of a finite subset $\{a_1,\ldots,a_m\}\subseteq A$: for $H\leq G$

$$H \in \mathcal{F} \quad \Leftrightarrow \quad (\exists a_1, \dots a_m \in A)(H \supseteq G_{a_1,\dots,a_m}).$$

- ② $H \supseteq G_{a_1,...,a_m}$ and $K \supseteq G_{b_1,...,b_n}$ together imply $H \cap K \supseteq G_{a_1,...,a_m,b_1,...,b_n}$. \checkmark
- \bullet $H \supseteq G_{a_1,\ldots,a_m}$ and $g \in G$ together imply $gHg^{-1} \supseteq G_{g(a_1),\ldots,g(a_m)}$.

Choose V to be a model of ZFC. Choose $A \in V$ to be an infinite set in V. Choose $G = \operatorname{Sym}(A)$ to be the group of all permutations of A. Let $\mathcal F$ consist of those subgroups of G that contain a pointwise stabilizer of a finite subset $\{a_1,\ldots,a_m\}\subseteq A$: for $H\leq G$

$$H \in \mathcal{F} \quad \Leftrightarrow \quad (\exists a_1, \dots a_m \in A)(H \supseteq G_{a_1,\dots,a_m}).$$

- $P = G_{a_1,\dots,a_m}$ and $K \supseteq G_{b_1,\dots,b_n}$ together imply $H \cap K \supseteq G_{a_1,\dots,a_m,b_1,\dots,b_n}$. \checkmark
- \bullet $H \supseteq G_{a_1,\ldots,a_m}$ and $g \in G$ together imply $gHg^{-1} \supseteq G_{g(a_1),\ldots,g(a_m)}$. \checkmark

Choose V to be a model of ZFC. Choose $A \in V$ to be an infinite set in V. Choose $G = \operatorname{Sym}(A)$ to be the group of all permutations of A. Let $\mathcal F$ consist of those subgroups of G that contain a pointwise stabilizer of a finite subset $\{a_1,\ldots,a_m\}\subseteq A$: for $H\leq G$

$$H \in \mathcal{F} \quad \Leftrightarrow \quad (\exists a_1, \dots a_m \in A)(H \supseteq G_{a_1,\dots,a_m}).$$

- $lackbox{0} \ H\supseteq G_{a_1,\ldots,a_m} \ \text{and} \ H\leq K\leq G \ \text{together imply} \ K\supseteq G_{a_1,\ldots,a_m}. \ \checkmark$
- ② $H \supseteq G_{a_1,...,a_m}$ and $K \supseteq G_{b_1,...,b_n}$ together imply $H \cap K \supseteq G_{a_1,...,a_m,b_1,...,b_n}$. \checkmark
- \bullet $H \supseteq G_{a_1,\ldots,a_m}$ and $g \in G$ together imply $gHg^{-1} \supseteq G_{g(a_1),\ldots,g(a_m)}$. \checkmark
- For each $a \in A$, $G_a \supseteq G_a$.

Choose V to be a model of ZFC. Choose $A \in V$ to be an infinite set in V. Choose $G = \operatorname{Sym}(A)$ to be the group of all permutations of A. Let $\mathcal F$ consist of those subgroups of G that contain a pointwise stabilizer of a finite subset $\{a_1,\ldots,a_m\}\subseteq A$: for $H\leq G$

$$H \in \mathcal{F} \quad \Leftrightarrow \quad (\exists a_1, \dots a_m \in A)(H \supseteq G_{a_1,\dots,a_m}).$$

- $lackbox{0} \ H\supseteq G_{a_1,\ldots,a_m} \ \text{and} \ H\leq K\leq G \ \text{together imply} \ K\supseteq G_{a_1,\ldots,a_m}. \ \checkmark$
- ② $H \supseteq G_{a_1,...,a_m}$ and $K \supseteq G_{b_1,...,b_n}$ together imply $H \cap K \supseteq G_{a_1,...,a_m,b_1,...,b_n}$. \checkmark
- \bullet $H \supseteq G_{a_1,\ldots,a_m}$ and $g \in G$ together imply $gHg^{-1} \supseteq G_{g(a_1),\ldots,g(a_m)}$. \checkmark
- For each $a \in A$, $G_a \supseteq G_a$.

Choose V to be a model of ZFC. Choose $A \in V$ to be an infinite set in V. Choose $G = \operatorname{Sym}(A)$ to be the group of all permutations of A. Let \mathcal{F} consist of those subgroups of G that contain a pointwise stabilizer of a finite subset $\{a_1, \ldots, a_m\} \subseteq A$: for $H \leq G$

$$H \in \mathcal{F} \quad \Leftrightarrow \quad (\exists a_1, \dots a_m \in A)(H \supseteq G_{a_1,\dots,a_m}).$$

- \bullet $H \supseteq G_{a_1,\ldots,a_m}$ and $H \le K \le G$ together imply $K \supseteq G_{a_1,\ldots,a_m}$. \checkmark
- ② $H \supseteq G_{a_1,...,a_m}$ and $K \supseteq G_{b_1,...,b_n}$ together imply $H \cap K \supseteq G_{a_1,...,a_m,b_1,...,b_n}$. \checkmark
- \bullet $H \supseteq G_{a_1,\ldots,a_m}$ and $g \in G$ together imply $gHg^{-1} \supseteq G_{g(a_1),\ldots,g(a_m)}$. \checkmark
- For each $a \in A$, $G_a \supseteq G_a$. \checkmark

Choose V to be a model of ZFC. Choose $A \in V$ to be an infinite set in V. Choose $G = \operatorname{Sym}(A)$ to be the group of all permutations of A. Let $\mathcal F$ consist of those subgroups of G that contain a pointwise stabilizer of a finite subset $\{a_1,\ldots,a_m\}\subseteq A$: for $H\leq G$

$$H \in \mathcal{F} \quad \Leftrightarrow \quad (\exists a_1, \dots a_m \in A)(H \supseteq G_{a_1,\dots,a_m}).$$

- \bullet $H \supseteq G_{a_1,\ldots,a_m}$ and $H \le K \le G$ together imply $K \supseteq G_{a_1,\ldots,a_m}$. \checkmark
- ② $H \supseteq G_{a_1,...,a_m}$ and $K \supseteq G_{b_1,...,b_n}$ together imply $H \cap K \supseteq G_{a_1,...,a_m,b_1,...,b_n}$. \checkmark
- \bullet $H \supseteq G_{a_1,\ldots,a_m}$ and $g \in G$ together imply $gHg^{-1} \supseteq G_{g(a_1),\ldots,g(a_m)}$. \checkmark
- For each $a \in A$, $G_a \supseteq G_a$. \checkmark

Choose V to be a model of ZFC. Choose $A \in V$ to be an infinite set in V. Choose $G = \operatorname{Sym}(A)$ to be the group of all permutations of A. Let $\mathcal F$ consist of those subgroups of G that contain a pointwise stabilizer of a finite subset $\{a_1,\ldots,a_m\}\subseteq A$: for $H\leq G$

$$H \in \mathcal{F} \quad \Leftrightarrow \quad (\exists a_1, \dots a_m \in A)(H \supseteq G_{a_1,\dots,a_m}).$$

Let's check that \mathcal{F} is a normal filter.

- $lackbox{0} \ H\supseteq G_{a_1,\ldots,a_m} \ \text{and} \ H\leq K\leq G \ \text{together imply} \ K\supseteq G_{a_1,\ldots,a_m}. \ \checkmark$
- ② $H \supseteq G_{a_1,...,a_m}$ and $K \supseteq G_{b_1,...,b_n}$ together imply $H \cap K \supseteq G_{a_1,...,a_m,b_1,...,b_n}$. \checkmark
- \bullet $H \supseteq G_{a_1,\ldots,a_m}$ and $g \in G$ together imply $gHg^{-1} \supseteq G_{g(a_1),\ldots,g(a_m)}$. \checkmark
- For each $a \in A$, $G_a \supseteq G_a$. \checkmark

Fraenkel's First model is the permutation model \mathfrak{M} associated to this choice for A, G, \mathcal{F} .

Fraenkel's first model satisfies ZFA - WO

Fraenkel's first model satisfies ZFA - WO

The Main Theorem states that Fraenkel's model is a model of ZFA.

The Main Theorem states that Fraenkel's model is a model of ZFA. We postpone that proof.

The Main Theorem states that Fraenkel's model is a model of ZFA. We postpone that proof. Here we explain why Fraenkel's first model fails WO.

The Main Theorem states that Fraenkel's model is a model of ZFA. We postpone that proof. Here we explain why Fraenkel's first model fails WO.

Proof by contradiction:

The Main Theorem states that Fraenkel's model is a model of ZFA. We postpone that proof. Here we explain why Fraenkel's first model fails WO.

Proof by contradiction: Assume that Fraenkel's model, \mathfrak{M} , satisfies WO.

The Main Theorem states that Fraenkel's model is a model of ZFA. We postpone that proof. Here we explain why Fraenkel's first model fails WO.

Proof by contradiction: Assume that Fraenkel's model, \mathfrak{M} , satisfies WO. For the set A of atoms to be well-orderable in \mathfrak{M} ,

The Main Theorem states that Fraenkel's model is a model of ZFA. We postpone that proof. Here we explain why Fraenkel's first model fails WO.

Proof by contradiction: Assume that Fraenkel's model, \mathfrak{M} , satisfies WO. For the set A of atoms to be well-orderable $\underline{in} \mathfrak{M}$, there must exist an ordinal $\alpha \underline{in} \mathfrak{M}$

The Main Theorem states that Fraenkel's model is a model of ZFA. We postpone that proof. Here we explain why Fraenkel's first model fails WO.

Proof by contradiction: Assume that Fraenkel's model, \mathfrak{M} , satisfies WO. For the set A of atoms to be well-orderable $\underline{in\ \mathfrak{M}}$, there must exist an ordinal $\alpha\ \underline{in\ \mathfrak{M}}$ and a bijection $f^{\text{bij}} \colon \alpha \to A$ that is $\underline{in\ \mathfrak{M}}$.

The Main Theorem states that Fraenkel's model is a model of ZFA. We postpone that proof. Here we explain why Fraenkel's first model fails WO.

Proof by contradiction: Assume that Fraenkel's model, \mathfrak{M} , satisfies WO. For the set A of atoms to be well-orderable $\underline{in\ \mathfrak{M}}$, there must exist an ordinal $\alpha\ \underline{in\ \mathfrak{M}}$ and a bijection $f^{\text{bij}} \colon \alpha \to A$ that is $\underline{in\ \mathfrak{M}}$. That is,

The Main Theorem states that Fraenkel's model is a model of ZFA. We postpone that proof. Here we explain why Fraenkel's first model fails WO.

Proof by contradiction: Assume that Fraenkel's model, \mathfrak{M} , satisfies WO. For the set A of atoms to be well-orderable $\underline{in\ \mathfrak{M}}$, there must exist an ordinal $\alpha\ \underline{in\ \mathfrak{M}}$ and a bijection $f^{\text{bij}} \colon \alpha \to A$ that is $\underline{in\ \mathfrak{M}}$. That is, any well-ordering f of A must be a set $\underline{in\ \mathfrak{M}}$.

The Main Theorem states that Fraenkel's model is a model of ZFA. We postpone that proof. Here we explain why Fraenkel's first model fails WO.

Proof by contradiction: Assume that Fraenkel's model, \mathfrak{M} , satisfies WO. For the set A of atoms to be well-orderable $\underline{in\ \mathfrak{M}}$, there must exist an ordinal $\alpha\ \underline{in\ \mathfrak{M}}$ and a bijection $f^{\text{bij}} \colon \alpha \to A$ that is $\underline{in\ \mathfrak{M}}$. That is, any well-ordering f of A must be a set $\underline{in\ \mathfrak{M}}$. Hence

The Main Theorem states that Fraenkel's model is a model of ZFA. We postpone that proof. Here we explain why Fraenkel's first model fails WO.

Proof by contradiction: Assume that Fraenkel's model, \mathfrak{M} , satisfies WO. For the set A of atoms to be well-orderable $\underline{in\ \mathfrak{M}}$, there must exist an ordinal $\alpha\ \underline{in\ \mathfrak{M}}$ and a bijection $f^{\text{bij}}: \alpha \to A$ that is $\underline{in\ \mathfrak{M}}$. That is, any well-ordering f of A must be a set $\underline{in\ \mathfrak{M}}$. Hence

$$f = \{(0, f(0)), (1, f(1)), \ldots\} \in \mathfrak{M}.$$

The Main Theorem states that Fraenkel's model is a model of ZFA. We postpone that proof. Here we explain why Fraenkel's first model fails WO.

Proof by contradiction: Assume that Fraenkel's model, \mathfrak{M} , satisfies WO. For the set A of atoms to be well-orderable $\underline{in\ \mathfrak{M}}$, there must exist an ordinal $\alpha\ \underline{in\ \mathfrak{M}}$ and a bijection $f^{\text{bij}}: \alpha \to A$ that is $\underline{in\ \mathfrak{M}}$. That is, any well-ordering f of A must be a set $\underline{in\ \mathfrak{M}}$. Hence

$$f = \{(0, f(0)), (1, f(1)), \ldots\} \in \mathfrak{M}.$$

For this set in V(A) to belong to the model \mathfrak{M} , it must be hereditarily symmetric.

The Main Theorem states that Fraenkel's model is a model of ZFA. We postpone that proof. Here we explain why Fraenkel's first model fails WO.

Proof by contradiction: Assume that Fraenkel's model, \mathfrak{M} , satisfies WO. For the set A of atoms to be well-orderable $\underline{in\ \mathfrak{M}}$, there must exist an ordinal $\alpha\ \underline{in\ \mathfrak{M}}$ and a bijection $f^{\text{bij}}: \alpha \to A$ that is $\underline{in\ \mathfrak{M}}$. That is, any well-ordering f of A must be a set $\underline{in\ \mathfrak{M}}$. Hence

$$f = \{(0, f(0)), (1, f(1)), \ldots\} \in \mathfrak{M}.$$

For this set in V(A) to belong to the model \mathfrak{M} , it must be hereditarily symmetric. Since the ordinal α is a pure set,

The Main Theorem states that Fraenkel's model is a model of ZFA. We postpone that proof. Here we explain why Fraenkel's first model fails WO.

Proof by contradiction: Assume that Fraenkel's model, \mathfrak{M} , satisfies WO. For the set A of atoms to be well-orderable $\underline{in\ \mathfrak{M}}$, there must exist an ordinal $\alpha\ \underline{in\ \mathfrak{M}}$ and a bijection $f^{\text{bij}}: \alpha \to A$ that is $\underline{in\ \mathfrak{M}}$. That is, any well-ordering f of A must be a set $\underline{in\ \mathfrak{M}}$. Hence

$$f = \{(0, f(0)), (1, f(1)), \ldots\} \in \mathfrak{M}.$$

The Main Theorem states that Fraenkel's model is a model of ZFA. We postpone that proof. Here we explain why Fraenkel's first model fails WO.

Proof by contradiction: Assume that Fraenkel's model, \mathfrak{M} , satisfies WO. For the set A of atoms to be well-orderable $\underline{in\ \mathfrak{M}}$, there must exist an ordinal $\alpha\ \underline{in\ \mathfrak{M}}$ and a bijection $f^{\text{bij}}: \alpha \to A$ that is $\underline{in\ \mathfrak{M}}$. That is, any well-ordering f of A must be a set $\underline{in\ \mathfrak{M}}$. Hence

$$f = \{(0, f(0)), (1, f(1)), \ldots\} \in \mathfrak{M}.$$

The Main Theorem states that Fraenkel's model is a model of ZFA. We postpone that proof. Here we explain why Fraenkel's first model fails WO.

Proof by contradiction: Assume that Fraenkel's model, \mathfrak{M} , satisfies WO. For the set A of atoms to be well-orderable $\underline{in\ \mathfrak{M}}$, there must exist an ordinal $\alpha\ \underline{in\ \mathfrak{M}}$ and a bijection $f^{\text{bij}}: \alpha \to A$ that is $\underline{in\ \mathfrak{M}}$. That is, any well-ordering f of A must be a set $\underline{in\ \mathfrak{M}}$. Hence

$$f = \{(0, f(0)), (1, f(1)), \ldots\} \in \mathfrak{M}.$$

The Main Theorem states that Fraenkel's model is a model of ZFA. We postpone that proof. Here we explain why Fraenkel's first model fails WO.

Proof by contradiction: Assume that Fraenkel's model, \mathfrak{M} , satisfies WO. For the set A of atoms to be well-orderable $\underline{in\ \mathfrak{M}}$, there must exist an ordinal $\alpha\ \underline{in\ \mathfrak{M}}$ and a bijection $f^{\text{bij}}: \alpha \to A$ that is $\underline{in\ \mathfrak{M}}$. That is, any well-ordering f of A must be a set $\underline{in\ \mathfrak{M}}$. Hence

$$f = \{(0, f(0)), (1, f(1)), \ldots\} \in \mathfrak{M}.$$

$$\operatorname{Stab}(f)$$

The Main Theorem states that Fraenkel's model is a model of ZFA. We postpone that proof. Here we explain why Fraenkel's first model fails WO.

Proof by contradiction: Assume that Fraenkel's model, \mathfrak{M} , satisfies WO. For the set A of atoms to be well-orderable $\underline{in\ \mathfrak{M}}$, there must exist an ordinal $\alpha\ \underline{in\ \mathfrak{M}}$ and a bijection $f^{\text{bij}}: \alpha \to A$ that is $\underline{in\ \mathfrak{M}}$. That is, any well-ordering f of A must be a set $\underline{in\ \mathfrak{M}}$. Hence

$$f = \{(0, f(0)), (1, f(1)), \ldots\} \in \mathfrak{M}.$$

$$\operatorname{Stab}(f)=\operatorname{Stab}(A)$$

The Main Theorem states that Fraenkel's model is a model of ZFA. We postpone that proof. Here we explain why Fraenkel's first model fails WO.

Proof by contradiction: Assume that Fraenkel's model, \mathfrak{M} , satisfies WO. For the set A of atoms to be well-orderable $\underline{in\ \mathfrak{M}}$, there must exist an ordinal $\alpha\ \underline{in\ \mathfrak{M}}$ and a bijection $f^{\text{bij}}: \alpha \to A$ that is $\underline{in\ \mathfrak{M}}$. That is, any well-ordering f of A must be a set $\underline{in\ \mathfrak{M}}$. Hence

$$f = \{(0, f(0)), (1, f(1)), \ldots\} \in \mathfrak{M}.$$

$$\operatorname{Stab}(f)=\operatorname{Stab}(A)=\{1\}$$

The Main Theorem states that Fraenkel's model is a model of ZFA. We postpone that proof. Here we explain why Fraenkel's first model fails WO.

Proof by contradiction: Assume that Fraenkel's model, \mathfrak{M} , satisfies WO. For the set A of atoms to be well-orderable $\underline{in\ \mathfrak{M}}$, there must exist an ordinal $\alpha\ \underline{in\ \mathfrak{M}}$ and a bijection $f^{\text{bij}}: \alpha \to A$ that is $\underline{in\ \mathfrak{M}}$. That is, any well-ordering f of A must be a set $\underline{in\ \mathfrak{M}}$. Hence

$$f = \{(0, f(0)), (1, f(1)), \ldots\} \in \mathfrak{M}.$$

$$\operatorname{Stab}(f) = \operatorname{Stab}(A) = \{1\} \supseteq G_{a_1,\dots,a_m}$$

The Main Theorem states that Fraenkel's model is a model of ZFA. We postpone that proof. Here we explain why Fraenkel's first model fails WO.

Proof by contradiction: Assume that Fraenkel's model, \mathfrak{M} , satisfies WO. For the set A of atoms to be well-orderable $\underline{in\ \mathfrak{M}}$, there must exist an ordinal $\alpha\ \underline{in\ \mathfrak{M}}$ and a bijection $f^{\text{bij}}: \alpha \to A$ that is $\underline{in\ \mathfrak{M}}$. That is, any well-ordering f of A must be a set $\underline{in\ \mathfrak{M}}$. Hence

$$f = \{(0, f(0)), (1, f(1)), \ldots\} \in \mathfrak{M}.$$

For this set in V(A) to belong to the model \mathfrak{M} , it must be hereditarily symmetric. Since the ordinal α is a pure set, any permutation that <u>setwise</u> stabilizes f must pointwise stabilize the image of f, which is A. But if

$$\operatorname{Stab}(f) = \operatorname{Stab}(A) = \{1\} \supseteq G_{a_1,\dots,a_m}$$

for some a_1, \ldots, a_m ,

The Main Theorem states that Fraenkel's model is a model of ZFA. We postpone that proof. Here we explain why Fraenkel's first model fails WO.

Proof by contradiction: Assume that Fraenkel's model, \mathfrak{M} , satisfies WO. For the set A of atoms to be well-orderable $\underline{in\ \mathfrak{M}}$, there must exist an ordinal $\alpha\ \underline{in\ \mathfrak{M}}$ and a bijection $f^{\text{bij}}: \alpha \to A$ that is $\underline{in\ \mathfrak{M}}$. That is, any well-ordering f of A must be a set $\underline{in\ \mathfrak{M}}$. Hence

$$f = \{(0, f(0)), (1, f(1)), \ldots\} \in \mathfrak{M}.$$

For this set in V(A) to belong to the model \mathfrak{M} , it must be hereditarily symmetric. Since the ordinal α is a pure set, any permutation that <u>setwise</u> stabilizes f must pointwise stabilize the image of f, which is A. But if

$$\operatorname{Stab}(f)=\operatorname{Stab}(A)=\{1\}\supseteq G_{a_1,...,a_m}$$

for some $a_1, ..., a_m$, then $|A - \{a_1, ..., a_m\}| \le 1$,

The Main Theorem states that Fraenkel's model is a model of ZFA. We postpone that proof. Here we explain why Fraenkel's first model fails WO.

Proof by contradiction: Assume that Fraenkel's model, \mathfrak{M} , satisfies WO. For the set A of atoms to be well-orderable $\underline{in\ \mathfrak{M}}$, there must exist an ordinal $\alpha\ \underline{in\ \mathfrak{M}}$ and a bijection $f^{\text{bij}}: \alpha \to A$ that is $\underline{in\ \mathfrak{M}}$. That is, any well-ordering f of A must be a set $\underline{in\ \mathfrak{M}}$. Hence

$$f = \{(0, f(0)), (1, f(1)), \ldots\} \in \mathfrak{M}.$$

For this set in V(A) to belong to the model \mathfrak{M} , it must be hereditarily symmetric. Since the ordinal α is a pure set, any permutation that <u>setwise</u> stabilizes f must pointwise stabilize the image of f, which is A. But if

$$\operatorname{Stab}(f)=\operatorname{Stab}(A)=\{1\}\supseteq G_{a_1,...,a_m}$$

for some a_1, \ldots, a_m , then $|A - \{a_1, \ldots, a_m\}| \le 1$, forcing $|A| \le m + 1$.

The Main Theorem states that Fraenkel's model is a model of ZFA. We postpone that proof. Here we explain why Fraenkel's first model fails WO.

Proof by contradiction: Assume that Fraenkel's model, \mathfrak{M} , satisfies WO. For the set A of atoms to be well-orderable $\underline{in\ \mathfrak{M}}$, there must exist an ordinal $\alpha\ \underline{in\ \mathfrak{M}}$ and a bijection $f^{\text{bij}}: \alpha \to A$ that is $\underline{in\ \mathfrak{M}}$. That is, any well-ordering f of A must be a set $\underline{in\ \mathfrak{M}}$. Hence

$$f = \{(0, f(0)), (1, f(1)), \ldots\} \in \mathfrak{M}.$$

For this set in V(A) to belong to the model \mathfrak{M} , it must be hereditarily symmetric. Since the ordinal α is a pure set, any permutation that <u>setwise</u> stabilizes f must <u>pointwise</u> stabilize the image of f, which is A. But if

$$\operatorname{Stab}(f)=\operatorname{Stab}(A)=\{1\}\supseteq G_{a_1,...,a_m}$$

for some a_1, \ldots, a_m , then $|A - \{a_1, \ldots, a_m\}| \le 1$, forcing $|A| \le m + 1$. This contradicts the fact that A was chosen to be infinite.

The Main Theorem states that Fraenkel's model is a model of ZFA. We postpone that proof. Here we explain why Fraenkel's first model fails WO.

Proof by contradiction: Assume that Fraenkel's model, \mathfrak{M} , satisfies WO. For the set A of atoms to be well-orderable $\underline{in\ \mathfrak{M}}$, there must exist an ordinal $\alpha\ \underline{in\ \mathfrak{M}}$ and a bijection $f^{\text{bij}}: \alpha \to A$ that is $\underline{in\ \mathfrak{M}}$. That is, any well-ordering f of A must be a set $\underline{in\ \mathfrak{M}}$. Hence

$$f = \{(0, f(0)), (1, f(1)), \ldots\} \in \mathfrak{M}.$$

For this set in V(A) to belong to the model \mathfrak{M} , it must be hereditarily symmetric. Since the ordinal α is a pure set, any permutation that <u>setwise</u> stabilizes f must pointwise stabilize the image of f, which is A. But if

$$\operatorname{Stab}(f)=\operatorname{Stab}(A)=\{1\}\supseteq G_{a_1,...,a_m}$$

for some a_1, \ldots, a_m , then $|A - \{a_1, \ldots, a_m\}| \le 1$, forcing $|A| \le m + 1$. This contradicts the fact that A was chosen to be infinite. \Box

Our goal is to prove that if A is the set of atoms in Fraenkel's first model \mathfrak{M} , then A is amorphous.

Our goal is to prove that if A is the set of atoms in Fraenkel's first model \mathfrak{M} , then A is amorphous. Recall that "A is amorphous" means that A is infinite and every subset of A is finite or cofinite.

Our goal is to prove that if A is the set of atoms in Fraenkel's first model \mathfrak{M} , then A is amorphous. Recall that "A is amorphous" means that A is infinite and every subset of A is finite or cofinite. Equivalently,

Our goal is to prove that if A is the set of atoms in Fraenkel's first model \mathfrak{M} , then A is amorphous. Recall that "A is amorphous" means that A is infinite and every subset of A is finite or cofinite. Equivalently, A is infinite and there does not exist a partition $\Pi = \{B, C\}$ of A into two infinite cells.

Our goal is to prove that if A is the set of atoms in Fraenkel's first model \mathfrak{M} , then A is amorphous. Recall that "A is amorphous" means that A is infinite and every subset of A is finite or cofinite. Equivalently, A is infinite and there does not exist a partition $\Pi = \{B, C\}$ of A into two infinite cells. (That is, B and C are infinite,

Our goal is to prove that if A is the set of atoms in Fraenkel's first model \mathfrak{M} , then A is amorphous. Recall that "A is amorphous" means that A is infinite and every subset of A is finite or cofinite. Equivalently, A is infinite and there does not exist a partition $\Pi = \{B, C\}$ of A into two infinite cells. (That is, B and C are infinite, $B \cup C = A$,

Our goal is to prove that if A is the set of atoms in Fraenkel's first model \mathfrak{M} , then A is amorphous. Recall that "A is amorphous" means that A is infinite and every subset of A is finite or cofinite. Equivalently, A is infinite and there does not exist a partition $\Pi = \{B, C\}$ of A into two infinite cells. (That is, B and C are infinite, $B \cup C = A$, $B \cap C = \emptyset$.)

Our goal is to prove that if A is the set of atoms in Fraenkel's first model \mathfrak{M} , then A is amorphous. Recall that "A is amorphous" means that A is infinite and every subset of A is finite or cofinite. Equivalently, A is infinite and there does not exist a partition $\Pi = \{B, C\}$ of A into two infinite cells. (That is, B and C are infinite, $B \cup C = A$, $B \cap C = \emptyset$.)

Proof by contradiction:

Our goal is to prove that if A is the set of atoms in Fraenkel's first model \mathfrak{M} , then A is amorphous. Recall that "A is amorphous" means that A is infinite and every subset of A is finite or cofinite. Equivalently, A is infinite and there does not exist a partition $\Pi = \{B, C\}$ of A into two infinite cells. (That is, B and C are infinite, $B \cup C = A$, $B \cap C = \emptyset$.)

Proof by contradiction: Assume that $\Pi = \{B, C\}$ is a partition of A into two infinite cells.

Our goal is to prove that if A is the set of atoms in Fraenkel's first model \mathfrak{M} , then A is amorphous. Recall that "A is amorphous" means that A is infinite and every subset of A is finite or cofinite. Equivalently, A is infinite and there does not exist a partition $\Pi = \{B, C\}$ of A into two infinite cells. (That is, B and C are infinite, $B \cup C = A$, $B \cap C = \emptyset$.)

Proof by contradiction: Assume that $\Pi = \{B, C\}$ is a partition of A into two infinite cells. For Π to belong to \mathfrak{M} , it must be hereditarily symmetric.

Our goal is to prove that if A is the set of atoms in Fraenkel's first model \mathfrak{M} , then A is amorphous. Recall that "A is amorphous" means that A is infinite and every subset of A is finite or cofinite. Equivalently, A is infinite and there does not exist a partition $\Pi = \{B, C\}$ of A into two infinite cells. (That is, B and C are infinite, $B \cup C = A$, $B \cap C = \emptyset$.)

Proof by contradiction: Assume that $\Pi = \{B, C\}$ is a partition of A into two infinite cells. For Π to belong to \mathfrak{M} , it must be hereditarily symmetric. In particular, the stabilizer of Π must contain some $G_{a_1,...,a_m}$:

Our goal is to prove that if A is the set of atoms in Fraenkel's first model \mathfrak{M} , then A is amorphous. Recall that "A is amorphous" means that A is infinite and every subset of A is finite or cofinite. Equivalently, A is infinite and there does not exist a partition $\Pi = \{B, C\}$ of A into two infinite cells. (That is, B and C are infinite, $B \cup C = A$, $B \cap C = \emptyset$.)

Proof by contradiction: Assume that $\Pi = \{B, C\}$ is a partition of A into two infinite cells. For Π to belong to \mathfrak{M} , it must be hereditarily symmetric. In particular, the stabilizer of Π must contain some $G_{a_1,...,a_m}$: $\operatorname{Stab}(\Pi) \supseteq G_{a_1,...,a_m}$.

Our goal is to prove that if A is the set of atoms in Fraenkel's first model \mathfrak{M} , then A is amorphous. Recall that "A is amorphous" means that A is infinite and every subset of A is finite or cofinite. Equivalently, A is infinite and there does not exist a partition $\Pi = \{B, C\}$ of A into two infinite cells. (That is, B and C are infinite, $B \cup C = A$, $B \cap C = \emptyset$.)

Proof by contradiction: Assume that $\Pi = \{B,C\}$ is a partition of A into two infinite cells. For Π to belong to \mathfrak{M} , it must be hereditarily symmetric. In particular, the stabilizer of Π must contain some G_{a_1,\ldots,a_m} : $\operatorname{Stab}(\Pi) \supseteq G_{a_1,\ldots,a_m}$. Write $B_0 = B \cap \{a_1,\ldots,a_m\}$ and $C_0 = C \cap \{a_1,\ldots,a_m\}$.

Our goal is to prove that if A is the set of atoms in Fraenkel's first model \mathfrak{M} , then A is amorphous. Recall that "A is amorphous" means that A is infinite and every subset of A is finite or cofinite. Equivalently, A is infinite and there does not exist a partition $\Pi = \{B, C\}$ of A into two infinite cells. (That is, B and C are infinite, $B \cup C = A$, $B \cap C = \emptyset$.)

Proof by contradiction: Assume that $\Pi=\{B,C\}$ is a partition of A into two infinite cells. For Π to belong to \mathfrak{M} , it must be hereditarily symmetric. In particular, the stabilizer of Π must contain some $G_{a_1,\dots,a_m}\colon \operatorname{Stab}(\Pi)\supseteq G_{a_1,\dots,a_m}$. Write $B_0=B\cap\{a_1,\dots,a_m\}$ and $C_0=C\cap\{a_1,\dots,a_m\}$. B_0 is a finite subset of B and C_0 is a finite subset of C.

Our goal is to prove that if A is the set of atoms in Fraenkel's first model \mathfrak{M} , then A is amorphous. Recall that "A is amorphous" means that A is infinite and every subset of A is finite or cofinite. Equivalently, A is infinite and there does not exist a partition $\Pi = \{B, C\}$ of A into two infinite cells. (That is, B and C are infinite, $B \cup C = A$, $B \cap C = \emptyset$.)

Proof by contradiction: Assume that $\Pi=\{B,C\}$ is a partition of A into two infinite cells. For Π to belong to \mathfrak{M} , it must be hereditarily symmetric. In particular, the stabilizer of Π must contain some $G_{a_1,\ldots,a_m}\colon \operatorname{Stab}(\Pi)\supseteq G_{a_1,\ldots,a_m}$. Write $B_0=B\cap\{a_1,\ldots,a_m\}$ and $C_0=C\cap\{a_1,\ldots,a_m\}$. B_0 is a finite subset of B and C_0 is a finite subset of C. Since B and C were assumed to be infinite, there exist $b\in B-B_0$ and $c\in C-C_0$.

Our goal is to prove that if A is the set of atoms in Fraenkel's first model \mathfrak{M} , then A is amorphous. Recall that "A is amorphous" means that A is infinite and every subset of A is finite or cofinite. Equivalently, A is infinite and there does not exist a partition $\Pi = \{B, C\}$ of A into two infinite cells. (That is, B and C are infinite, $B \cup C = A$, $B \cap C = \emptyset$.)

Proof by contradiction: Assume that $\Pi=\{B,C\}$ is a partition of A into two infinite cells. For Π to belong to \mathfrak{M} , it must be hereditarily symmetric. In particular, the stabilizer of Π must contain some $G_{a_1,\ldots,a_m}\colon \operatorname{Stab}(\Pi)\supseteq G_{a_1,\ldots,a_m}$. Write $B_0=B\cap\{a_1,\ldots,a_m\}$ and $C_0=C\cap\{a_1,\ldots,a_m\}$. B_0 is a finite subset of B and C_0 is a finite subset of C. Since B and C were assumed to be infinite, there exist $b\in B-B_0$ and $c\in C-C_0$. Since $\{a_1,\ldots,a_m\}$ is disjoint from $\{b,c\}$, the transposition $\tau=(b\ c)\in G$ pointwise stabilizes $B_0\cup C_0=\{a_1,\ldots,a_m\}$;

Our goal is to prove that if A is the set of atoms in Fraenkel's first model \mathfrak{M} , then A is amorphous. Recall that "A is amorphous" means that A is infinite and every subset of A is finite or cofinite. Equivalently, A is infinite and there does not exist a partition $\Pi = \{B, C\}$ of A into two infinite cells. (That is, B and C are infinite, $B \cup C = A$, $B \cap C = \emptyset$.)

Proof by contradiction: Assume that $\Pi=\{B,C\}$ is a partition of A into two infinite cells. For Π to belong to \mathfrak{M} , it must be hereditarily symmetric. In particular, the stabilizer of Π must contain some $G_{a_1,\ldots,a_m}\colon \operatorname{Stab}(\Pi)\supseteq G_{a_1,\ldots,a_m}$. Write $B_0=B\cap\{a_1,\ldots,a_m\}$ and $C_0=C\cap\{a_1,\ldots,a_m\}$. B_0 is a finite subset of B and C_0 is a finite subset of C. Since B and C were assumed to be infinite, there exist $b\in B-B_0$ and $c\in C-C_0$. Since $\{a_1,\ldots,a_m\}$ is disjoint from $\{b,c\}$, the transposition $\tau=(b\ c)\in G$ pointwise stabilizes $B_0\cup C_0=\{a_1,\ldots,a_m\}$; hence $\tau\in G_{a_1,\ldots,a_m}$.

Our goal is to prove that if A is the set of atoms in Fraenkel's first model \mathfrak{M} , then A is amorphous. Recall that "A is amorphous" means that A is infinite and every subset of A is finite or cofinite. Equivalently, A is infinite and there does not exist a partition $\Pi = \{B, C\}$ of A into two infinite cells. (That is, B and C are infinite, $B \cup C = A$, $B \cap C = \emptyset$.)

Proof by contradiction: Assume that $\Pi=\{B,C\}$ is a partition of A into two infinite cells. For Π to belong to \mathfrak{M} , it must be hereditarily symmetric. In particular, the stabilizer of Π must contain some G_{a_1,\dots,a_m} : $\operatorname{Stab}(\Pi)\supseteq G_{a_1,\dots,a_m}$. Write $B_0=B\cap\{a_1,\dots,a_m\}$ and $C_0=C\cap\{a_1,\dots,a_m\}$. B_0 is a finite subset of B and C_0 is a finite subset of C. Since B and C were assumed to be infinite, there exist $b\in B-B_0$ and $c\in C-C_0$. Since $\{a_1,\dots,a_m\}$ is disjoint from $\{b,c\}$, the transposition $\tau=(b\ c)\in G$ pointwise stabilizes $B_0\cup C_0=\{a_1,\dots,a_m\}$; hence $\tau\in G_{a_1,\dots,a_m}$. The permutation τ does not stabilize Π ,

Our goal is to prove that if A is the set of atoms in Fraenkel's first model \mathfrak{M} , then A is amorphous. Recall that "A is amorphous" means that A is infinite and every subset of A is finite or cofinite. Equivalently, A is infinite and there does not exist a partition $\Pi = \{B, C\}$ of A into two infinite cells. (That is, B and C are infinite, $B \cup C = A$, $B \cap C = \emptyset$.)

Proof by contradiction: Assume that $\Pi = \{B,C\}$ is a partition of A into two infinite cells. For Π to belong to \mathfrak{M} , it must be hereditarily symmetric. In particular, the stabilizer of Π must contain some $G_{a_1,\ldots,a_m}\colon \operatorname{Stab}(\Pi)\supseteq G_{a_1,\ldots,a_m}$. Write $B_0=B\cap\{a_1,\ldots,a_m\}$ and $C_0=C\cap\{a_1,\ldots,a_m\}$. B_0 is a finite subset of B and C_0 is a finite subset of C. Since B and C were assumed to be infinite, there exist $b\in B-B_0$ and $c\in C-C_0$. Since $\{a_1,\ldots,a_m\}$ is disjoint from $\{b,c\}$, the transposition $\tau=(b\ c)\in G$ pointwise stabilizes $B_0\cup C_0=\{a_1,\ldots,a_m\}$; hence $\tau\in G_{a_1,\ldots,a_m}$. The permutation τ does not stabilize Π , since $\tau(\Pi)=\{B',C'\}$ where $B'=(B-\{b\})\cup\{c\}\ (\neq B,C)$ and $C'=(C-\{c\})\cup\{b\}\ (\neq B,C)$.

Our goal is to prove that if A is the set of atoms in Fraenkel's first model \mathfrak{M} , then A is amorphous. Recall that "A is amorphous" means that A is infinite and every subset of A is finite or cofinite. Equivalently, A is infinite and there does not exist a partition $\Pi = \{B, C\}$ of A into two infinite cells. (That is, B and C are infinite, $B \cup C = A$, $B \cap C = \emptyset$.)

Proof by contradiction: Assume that $\Pi=\{B,C\}$ is a partition of A into two infinite cells. For Π to belong to \mathfrak{M} , it must be hereditarily symmetric. In particular, the stabilizer of Π must contain some $G_{a_1,\ldots,a_m}\colon \operatorname{Stab}(\Pi)\supseteq G_{a_1,\ldots,a_m}$. Write $B_0=B\cap\{a_1,\ldots,a_m\}$ and $C_0=C\cap\{a_1,\ldots,a_m\}$. B_0 is a finite subset of B and C_0 is a finite subset of C. Since B and C were assumed to be infinite, there exist $b\in B-B_0$ and $c\in C-C_0$. Since $\{a_1,\ldots,a_m\}$ is disjoint from $\{b,c\}$, the transposition $\tau=(b\ c)\in G$ pointwise stabilizes $B_0\cup C_0=\{a_1,\ldots,a_m\}$; hence $\tau\in G_{a_1,\ldots,a_m}$. The permutation τ does not stabilize Π , since $\tau(\Pi)=\{B',C'\}$ where $B'=(B-\{b\})\cup\{c\}\ (\neq B,C)$ and $C'=(C-\{c\})\cup\{b\}\ (\neq B,C)$. This shows that $\tau\in G_{a_1,\ldots,a_m}-\operatorname{Stab}(\Pi)$.

Our goal is to prove that if A is the set of atoms in Fraenkel's first model \mathfrak{M} , then A is amorphous. Recall that "A is amorphous" means that A is infinite and every subset of A is finite or cofinite. Equivalently, A is infinite and there does not exist a partition $\Pi = \{B, C\}$ of A into two infinite cells. (That is, B and C are infinite, $B \cup C = A$, $B \cap C = \emptyset$.)

Proof by contradiction: Assume that $\Pi = \{B, C\}$ is a partition of A into two infinite cells. For Π to belong to \mathfrak{M} , it must be hereditarily symmetric. In particular, the stabilizer of Π must contain some G_{a_1,\ldots,a_m} : $\operatorname{Stab}(\Pi)\supseteq G_{a_1,\ldots,a_m}$. Write $B_0 = B \cap \{a_1, \dots, a_m\}$ and $C_0 = C \cap \{a_1, \dots, a_m\}$. B_0 is a finite subset of B and C_0 is a finite subset of C. Since B and C were assumed to be infinite, there exist $b \in B - B_0$ and $c \in C - C_0$. Since $\{a_1, \ldots, a_m\}$ is disjoint from $\{b, c\}$, the transposition $\tau = (b \ c) \in G$ pointwise stabilizes $B_0 \cup C_0 = \{a_1, \dots, a_m\}$; hence $\tau \in G_{a_1,\ldots,a_m}$. The permutation τ does not stabilize Π , since $\tau(\Pi) = \{B',C'\}$ where $B' = (B - \{b\}) \cup \{c\} \ (\neq B, C)$ and $C' = (C - \{c\}) \cup \{b\} \ (\neq B, C)$. This shows that $\tau \in G_{a_1,...,a_m}$ – Stab (Π) . This conclusion contradicts the earlier conclusion that $Stab(\Pi) \supseteq G_{a_1,...,a_m}$.

Our goal is to prove that if A is the set of atoms in Fraenkel's first model \mathfrak{M} , then A is amorphous. Recall that "A is amorphous" means that A is infinite and every subset of A is finite or cofinite. Equivalently, A is infinite and there does not exist a partition $\Pi = \{B, C\}$ of A into two infinite cells. (That is, B and C are infinite, $B \cup C = A$, $B \cap C = \emptyset$.)

Proof by contradiction: Assume that $\Pi = \{B, C\}$ is a partition of A into two infinite cells. For Π to belong to \mathfrak{M} , it must be hereditarily symmetric. In particular, the stabilizer of Π must contain some G_{a_1,\ldots,a_m} : $\operatorname{Stab}(\Pi)\supseteq G_{a_1,\ldots,a_m}$. Write $B_0 = B \cap \{a_1, \dots, a_m\}$ and $C_0 = C \cap \{a_1, \dots, a_m\}$. B_0 is a finite subset of B and C_0 is a finite subset of C. Since B and C were assumed to be infinite, there exist $b \in B - B_0$ and $c \in C - C_0$. Since $\{a_1, \ldots, a_m\}$ is disjoint from $\{b, c\}$, the transposition $\tau = (b \ c) \in G$ pointwise stabilizes $B_0 \cup C_0 = \{a_1, \dots, a_m\}$; hence $\tau \in G_{a_1,\ldots,a_m}$. The permutation τ does not stabilize Π , since $\tau(\Pi) = \{B',C'\}$ where $B' = (B - \{b\}) \cup \{c\} \ (\neq B, C)$ and $C' = (C - \{c\}) \cup \{b\} \ (\neq B, C)$. This shows that $\tau \in G_{a_1,\ldots,a_m}$ – Stab(Π). This conclusion contradicts the earlier conclusion that $Stab(\Pi) \supseteq G_{a_1,\ldots,a_m}$.

Our goal is to prove that if A is the set of atoms in Fraenkel's first model \mathfrak{M} ,

Our goal is to prove that if A is the set of atoms in Fraenkel's first model \mathfrak{M} , and $D = \{\{a,b\} \mid a,b \in A\}$ is the set of subsets of A of size 1 or 2,

Our goal is to prove that if A is the set of atoms in Fraenkel's first model \mathfrak{M} , and $D = \{\{a,b\} \mid a,b \in A\}$ is the set of subsets of A of size 1 or 2, then $D \in \mathfrak{M}$, but D has no choice function in \mathfrak{M} .

Our goal is to prove that if A is the set of atoms in Fraenkel's first model \mathfrak{M} , and $D = \{\{a,b\} \mid a,b \in A\}$ is the set of subsets of A of size 1 or 2, then $D \in \mathfrak{M}$, but D has no choice function in \mathfrak{M} .

Proof by contradiction:

Our goal is to prove that if A is the set of atoms in Fraenkel's first model \mathfrak{M} , and $D = \{\{a,b\} \mid a,b \in A\}$ is the set of subsets of A of size 1 or 2, then $D \in \mathfrak{M}$, but D has no choice function in \mathfrak{M} .

Proof by contradiction: First we argue that $D \in \mathfrak{M}$:

Our goal is to prove that if A is the set of atoms in Fraenkel's first model \mathfrak{M} , and $D = \{\{a,b\} \mid a,b \in A\}$ is the set of subsets of A of size 1 or 2, then $D \in \mathfrak{M}$, but D has no choice function in \mathfrak{M} .

Proof by contradiction: First we argue that $D \in \mathfrak{M}$: $\operatorname{Stab}(D) = G \in \mathcal{F}$.

Our goal is to prove that if A is the set of atoms in Fraenkel's first model \mathfrak{M} , and $D = \{\{a,b\} \mid a,b \in A\}$ is the set of subsets of A of size 1 or 2, then $D \in \mathfrak{M}$, but D has no choice function in \mathfrak{M} .

Proof by contradiction: First we argue that $D \in \mathfrak{M}$: Stab $(D) = G \in \mathcal{F}$. Stab $(\{a, b\}) \supseteq G_{a,b}$, so Stab $(\{a, b\}) \in \mathcal{F}$.

Our goal is to prove that if A is the set of atoms in Fraenkel's first model \mathfrak{M} , and $D = \{\{a,b\} \mid a,b \in A\}$ is the set of subsets of A of size 1 or 2, then $D \in \mathfrak{M}$, but D has no choice function in \mathfrak{M} .

Proof by contradiction: First we argue that $D \in \mathfrak{M}$:

$$\operatorname{Stab}(D) = G \in \mathcal{F}$$
. $\operatorname{Stab}(\{a,b\}) \supseteq G_{a,b}$, so $\operatorname{Stab}(\{a,b\}) \in \mathcal{F}$. $\operatorname{Stab}(a) \supseteq G_a$, so $\operatorname{Stab}(a) \in \mathcal{F}$. This shows that D is hereditarily symmetric.

Our goal is to prove that if A is the set of atoms in Fraenkel's first model \mathfrak{M} , and $D = \{\{a,b\} \mid a,b \in A\}$ is the set of subsets of A of size 1 or 2, then $D \in \mathfrak{M}$, but D has no choice function in \mathfrak{M} .

Proof by contradiction: First we argue that $D \in \mathfrak{M}$:

 $\operatorname{Stab}(D) = G \in \mathcal{F}$. $\operatorname{Stab}(\{a,b\}) \supseteq G_{a,b}$, so $\operatorname{Stab}(\{a,b\}) \in \mathcal{F}$. $\operatorname{Stab}(a) \supseteq G_a$, so $\operatorname{Stab}(a) \in \mathcal{F}$. This shows that D is hereditarily symmetric.

Now, assume that $\gamma \colon D \to \bigcup D \ (=A)$ is a choice function for D in the model \mathfrak{M} .

Our goal is to prove that if A is the set of atoms in Fraenkel's first model \mathfrak{M} , and $D = \{\{a,b\} \mid a,b \in A\}$ is the set of subsets of A of size 1 or 2, then $D \in \mathfrak{M}$, but D has no choice function in \mathfrak{M} .

Proof by contradiction: First we argue that $D \in \mathfrak{M}$:

 $\operatorname{Stab}(D) = G \in \mathcal{F}$. $\operatorname{Stab}(\{a,b\}) \supseteq G_{a,b}$, so $\operatorname{Stab}(\{a,b\}) \in \mathcal{F}$. $\operatorname{Stab}(a) \supseteq G_a$, so $\operatorname{Stab}(a) \in \mathcal{F}$. This shows that D is hereditarily symmetric.

Now, assume that $\gamma \colon D \to \bigcup D \ (=A)$ is a choice function for D in the model \mathfrak{M} . Since $\gamma \in \mathfrak{M}$,

Our goal is to prove that if A is the set of atoms in Fraenkel's first model \mathfrak{M} , and $D = \{\{a,b\} \mid a,b \in A\}$ is the set of subsets of A of size 1 or 2, then $D \in \mathfrak{M}$, but D has no choice function in \mathfrak{M} .

Proof by contradiction: First we argue that $D \in \mathfrak{M}$:

 $\operatorname{Stab}(D) = G \in \mathcal{F}$. $\operatorname{Stab}(\{a,b\}) \supseteq G_{a,b}$, so $\operatorname{Stab}(\{a,b\}) \in \mathcal{F}$. $\operatorname{Stab}(a) \supseteq G_a$, so $\operatorname{Stab}(a) \in \mathcal{F}$. This shows that D is hereditarily symmetric.

Now, assume that $\gamma \colon D \to \bigcup D \ (=A)$ is a choice function for D in the model \mathfrak{M} . Since $\gamma \in \mathfrak{M}$, there is a finite set $\{a_1, \ldots, a_m\}$ such that

Our goal is to prove that if A is the set of atoms in Fraenkel's first model \mathfrak{M} , and $D = \{\{a,b\} \mid a,b \in A\}$ is the set of subsets of A of size 1 or 2, then $D \in \mathfrak{M}$, but D has no choice function in \mathfrak{M} .

Proof by contradiction: First we argue that $D \in \mathfrak{M}$:

$$\operatorname{Stab}(D) = G \in \mathcal{F}$$
. $\operatorname{Stab}(\{a,b\}) \supseteq G_{a,b}$, so $\operatorname{Stab}(\{a,b\}) \in \mathcal{F}$. $\operatorname{Stab}(a) \supseteq G_a$, so $\operatorname{Stab}(a) \in \mathcal{F}$. This shows that D is hereditarily symmetric.

Now, assume that $\gamma \colon D \to \bigcup D \ (=A)$ is a choice function for D in the model \mathfrak{M} . Since $\gamma \in \mathfrak{M}$, there is a finite set $\{a_1, \ldots, a_m\}$ such that

$$\operatorname{Stab}(\gamma) \supseteq G_{a_1,\ldots,a_m}.$$

Our goal is to prove that if A is the set of atoms in Fraenkel's first model \mathfrak{M} , and $D = \{\{a,b\} \mid a,b \in A\}$ is the set of subsets of A of size 1 or 2, then $D \in \mathfrak{M}$, but D has no choice function in \mathfrak{M} .

Proof by contradiction: First we argue that $D \in \mathfrak{M}$:

$$\operatorname{Stab}(D) = G \in \mathcal{F}$$
. $\operatorname{Stab}(\{a,b\}) \supseteq G_{a,b}$, so $\operatorname{Stab}(\{a,b\}) \in \mathcal{F}$. $\operatorname{Stab}(a) \supseteq G_a$, so $\operatorname{Stab}(a) \in \mathcal{F}$. This shows that D is hereditarily symmetric.

Now, assume that $\gamma \colon D \to \bigcup D \ (=A)$ is a choice function for D in the model \mathfrak{M} . Since $\gamma \in \mathfrak{M}$, there is a finite set $\{a_1, \ldots, a_m\}$ such that

$$\operatorname{Stab}(\gamma) \supseteq G_{a_1,\ldots,a_m}.$$

Choose distinct $p, q \in A - \{a_1, \dots, a_m\}$. Label them so that $\gamma(\{p, q\}) = p$.

Our goal is to prove that if A is the set of atoms in Fraenkel's first model \mathfrak{M} , and $D = \{\{a,b\} \mid a,b \in A\}$ is the set of subsets of A of size 1 or 2, then $D \in \mathfrak{M}$, but D has no choice function in \mathfrak{M} .

Proof by contradiction: First we argue that $D \in \mathfrak{M}$:

$$\operatorname{Stab}(D) = G \in \mathcal{F}$$
. $\operatorname{Stab}(\{a,b\}) \supseteq G_{a,b}$, so $\operatorname{Stab}(\{a,b\}) \in \mathcal{F}$. $\operatorname{Stab}(a) \supseteq G_a$, so $\operatorname{Stab}(a) \in \mathcal{F}$. This shows that D is hereditarily symmetric.

Now, assume that $\gamma \colon D \to \bigcup D \ (=A)$ is a choice function for D in the model \mathfrak{M} . Since $\gamma \in \mathfrak{M}$, there is a finite set $\{a_1, \ldots, a_m\}$ such that

$$\operatorname{Stab}(\gamma) \supseteq G_{a_1,\ldots,a_m}.$$

Choose distinct
$$p, q \in A - \{a_1, \dots, a_m\}$$
. Label them so that $\gamma(\{p, q\}) = p$. Since $\{a_1, \dots, a_m\} \cap \{p, q\} = \emptyset$, the transposition $\sigma = (p, q) \in G$ stabilizes $\{a_1, \dots, a_m\}$,

Our goal is to prove that if A is the set of atoms in Fraenkel's first model \mathfrak{M} , and $D = \{\{a,b\} \mid a,b \in A\}$ is the set of subsets of A of size 1 or 2, then $D \in \mathfrak{M}$, but D has no choice function in \mathfrak{M} .

Proof by contradiction: First we argue that $D \in \mathfrak{M}$:

$$\operatorname{Stab}(D) = G \in \mathcal{F}$$
. $\operatorname{Stab}(\{a,b\}) \supseteq G_{a,b}$, so $\operatorname{Stab}(\{a,b\}) \in \mathcal{F}$. $\operatorname{Stab}(a) \supseteq G_a$, so $\operatorname{Stab}(a) \in \mathcal{F}$. This shows that D is hereditarily symmetric.

Now, assume that $\gamma \colon D \to \bigcup D \ (=A)$ is a choice function for D in the model \mathfrak{M} . Since $\gamma \in \mathfrak{M}$, there is a finite set $\{a_1, \ldots, a_m\}$ such that

$$\operatorname{Stab}(\gamma) \supseteq G_{a_1,\ldots,a_m}.$$

Choose distinct $p, q \in A - \{a_1, \ldots, a_m\}$. Label them so that $\gamma(\{p, q\}) = p$. Since $\{a_1, \ldots, a_m\} \cap \{p, q\} = \emptyset$, the transposition $\sigma = (p \ q) \in G$ stabilizes $\{a_1, \ldots, a_m\}$, so $\sigma \in G_{a_1, \ldots, a_m}$.

Our goal is to prove that if A is the set of atoms in Fraenkel's first model \mathfrak{M} , and $D = \{\{a,b\} \mid a,b \in A\}$ is the set of subsets of A of size 1 or 2, then $D \in \mathfrak{M}$, but D has no choice function in \mathfrak{M} .

Proof by contradiction: First we argue that $D \in \mathfrak{M}$:

$$\operatorname{Stab}(D) = G \in \mathcal{F}$$
. $\operatorname{Stab}(\{a,b\}) \supseteq G_{a,b}$, so $\operatorname{Stab}(\{a,b\}) \in \mathcal{F}$. $\operatorname{Stab}(a) \supseteq G_a$, so $\operatorname{Stab}(a) \in \mathcal{F}$. This shows that D is hereditarily symmetric.

Now, assume that $\gamma \colon D \to \bigcup D \ (=A)$ is a choice function for D in the model \mathfrak{M} . Since $\gamma \in \mathfrak{M}$, there is a finite set $\{a_1, \ldots, a_m\}$ such that

$$\operatorname{Stab}(\gamma) \supseteq G_{a_1,\ldots,a_m}.$$

Choose distinct $p,q\in A-\{a_1,\ldots,a_m\}$. Label them so that $\gamma(\{p,q\})=p$. Since $\{a_1,\ldots,a_m\}\cap\{p,q\}=\emptyset$, the transposition $\sigma=(p\ q)\in G$ stabilizes $\{a_1,\ldots,a_m\}$, so $\sigma\in G_{a_1,\ldots,a_m}$. But σ does not stabilize γ ,

Our goal is to prove that if A is the set of atoms in Fraenkel's first model \mathfrak{M} , and $D = \{\{a,b\} \mid a,b \in A\}$ is the set of subsets of A of size 1 or 2, then $D \in \mathfrak{M}$, but D has no choice function in \mathfrak{M} .

Proof by contradiction: First we argue that $D \in \mathfrak{M}$:

$$\operatorname{Stab}(D) = G \in \mathcal{F}$$
. $\operatorname{Stab}(\{a,b\}) \supseteq G_{a,b}$, so $\operatorname{Stab}(\{a,b\}) \in \mathcal{F}$. $\operatorname{Stab}(a) \supseteq G_a$, so $\operatorname{Stab}(a) \in \mathcal{F}$. This shows that D is hereditarily symmetric.

Now, assume that $\gamma \colon D \to \bigcup D \ (=A)$ is a choice function for D in the model \mathfrak{M} . Since $\gamma \in \mathfrak{M}$, there is a finite set $\{a_1, \ldots, a_m\}$ such that

$$\operatorname{Stab}(\gamma) \supseteq G_{a_1,\ldots,a_m}.$$

Choose distinct $p,q\in A-\{a_1,\ldots,a_m\}$. Label them so that $\gamma(\{p,q\})=p$. Since $\{a_1,\ldots,a_m\}\cap\{p,q\}=\emptyset$, the transposition $\sigma=(p\ q)\in G$ stabilizes $\{a_1,\ldots,a_m\}$, so $\sigma\in G_{a_1,\ldots,a_m}$. But σ does not stabilize γ , since $(\{p,q\},p)\in\gamma$, while $\sigma\left((\{p,q\},p)\right)=(\{p,q\},q)\notin\gamma$. Thus, $\sigma\notin\operatorname{Stab}(\gamma)$.

Our goal is to prove that if A is the set of atoms in Fraenkel's first model \mathfrak{M} , and $D = \{\{a,b\} \mid a,b \in A\}$ is the set of subsets of A of size 1 or 2, then $D \in \mathfrak{M}$, but D has no choice function in \mathfrak{M} .

Proof by contradiction: First we argue that $D \in \mathfrak{M}$:

$$\operatorname{Stab}(D) = G \in \mathcal{F}$$
. $\operatorname{Stab}(\{a,b\}) \supseteq G_{a,b}$, so $\operatorname{Stab}(\{a,b\}) \in \mathcal{F}$. $\operatorname{Stab}(a) \supseteq G_a$, so $\operatorname{Stab}(a) \in \mathcal{F}$. This shows that D is hereditarily symmetric.

Now, assume that $\gamma \colon D \to \bigcup D \ (=A)$ is a choice function for D in the model \mathfrak{M} . Since $\gamma \in \mathfrak{M}$, there is a finite set $\{a_1, \ldots, a_m\}$ such that

$$\operatorname{Stab}(\gamma) \supseteq G_{a_1,\ldots,a_m}.$$

Choose distinct $p,q\in A-\{a_1,\ldots,a_m\}$. Label them so that $\gamma(\{p,q\})=p$. Since $\{a_1,\ldots,a_m\}\cap\{p,q\}=\emptyset$, the transposition $\sigma=(p\ q)\in G$ stabilizes $\{a_1,\ldots,a_m\}$, so $\sigma\in G_{a_1,\ldots,a_m}$. But σ does not stabilize γ , since $(\{p,q\},p)\in\gamma$, while $\sigma\left((\{p,q\},p)\right)=(\{p,q\},q)\notin\gamma$. Thus, $\sigma\notin\operatorname{Stab}(\gamma)$. This contradicts the fact that $\operatorname{Stab}(\gamma)\supseteq G_{a_1,\ldots,a_m}$.

Our goal is to prove that if A is the set of atoms in Fraenkel's first model \mathfrak{M} , and $D = \{\{a,b\} \mid a,b \in A\}$ is the set of subsets of A of size 1 or 2, then $D \in \mathfrak{M}$, but D has no choice function in \mathfrak{M} .

Proof by contradiction: First we argue that $D \in \mathfrak{M}$:

$$\operatorname{Stab}(D) = G \in \mathcal{F}$$
. $\operatorname{Stab}(\{a,b\}) \supseteq G_{a,b}$, so $\operatorname{Stab}(\{a,b\}) \in \mathcal{F}$. $\operatorname{Stab}(a) \supseteq G_a$, so $\operatorname{Stab}(a) \in \mathcal{F}$. This shows that D is hereditarily symmetric.

Now, assume that $\gamma \colon D \to \bigcup D \ (=A)$ is a choice function for D in the model \mathfrak{M} . Since $\gamma \in \mathfrak{M}$, there is a finite set $\{a_1, \ldots, a_m\}$ such that

$$\operatorname{Stab}(\gamma) \supseteq G_{a_1,\ldots,a_m}.$$

Choose distinct $p,q\in A-\{a_1,\ldots,a_m\}$. Label them so that $\gamma(\{p,q\})=p$. Since $\{a_1,\ldots,a_m\}\cap\{p,q\}=\emptyset$, the transposition $\sigma=(p\ q)\in G$ stabilizes $\{a_1,\ldots,a_m\}$, so $\sigma\in G_{a_1,\ldots,a_m}$. But σ does not stabilize γ , since $(\{p,q\},p)\in\gamma$, while $\sigma\left((\{p,q\},p)\right)=(\{p,q\},q)\notin\gamma$. Thus, $\sigma\notin\operatorname{Stab}(\gamma)$. This contradicts the fact that $\operatorname{Stab}(\gamma)\supseteq G_{a_1,\ldots,a_m}$. \square