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Preliminaries

Our goal is to explain why, if ZF has a model, then ZFA has a model that does
not satisfy AC.

Let V be a model of ZFC. Choose a set A ∈ V . Begin constructing the von
Neumann Hierarchy within V , starting at A:

V0(A) = A.

Vα+1(A) = Vα(A) ∪ P(Vα(A)).

Vλ(A) =
⋃

β<λ Vβ(A), λ limit.

V (A) is the class of all x for which there exists α ∈ ON with x ∈ Vα(A).
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Terminology

1 A ∈ V (A) is the set of atoms.
2 x ∈ V (A) is a pure set if ({x} ∪ tr.cl(x)) ∩ A = ∅.
3 In V (A), an ordinal is a transitive set of transitive sets that is disjoint

from A. Equivalently, an ordinal is a transitive set of transitive sets that is
a pure set.

4 The class of pure sets in V (A) is called the kernel of V (A).

There are first-order formulas φatom(x), φpure set(x), φordinal(x) in the language
whose nonlogical symbols are ∈, A, 0 that define each of these types of sets.
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Permutation models

Let G ≤ Sym(A) be some group of permutations of the set of atoms.

Definition. A normal filter in the subgroup lattice of G is a lattice filter
F ⊆ Sub(G) that is closed under conjugation and contains all 1-point
stabilizers. This means that

1 H ∈ F and H ≤ K ≤ G together imply K ∈ F
2 H, K ∈ F implies H ∩ K ∈ F
3 H ∈ F and g ∈ G together imply gHg−1 ∈ F .
4 For each a ∈ A, Ga (= Stab(a)) ∈ F .

An element x ∈ V (A) is called symmetric if Gx ∈ F . The element x is
hereditarily symmetric if {x} ∪ tr.cl(x) consists of symmetric elements.

Examples. Pure sets are hereditarily symmetric. The set A of atoms is
hereditarily symmetric.
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Main Theorem

Theorem. For any choice of a subgroup G ≤ Sym(A) and any choice of a
normal filter F ⊆ Sub(G) the class of hereditarily symmetric elements of
V (A) is a model of ZFA that contains the kernel and the set A.

PROOF GOES HERE. 2
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Fraenkel’s first model

Choose V to be a model of ZFC. Choose A ∈ V to be an infinite set in V .
Choose G = Sym(A) to be the group of all permutations of A. Let F consist
of those subgroups of G that contain a pointwise stabilizer of a finite subset
{a1, . . . , am} ⊆ A: for H ≤ G

H ∈ F ⇔ (∃a1, . . . am ∈ A)(H ⊇ Ga1,...,am).

Let’s check that F is a normal filter.

1 H ⊇ Ga1,...,am and H ≤ K ≤ G together imply K ⊇ Ga1,...,am . ✓
2 H ⊇ Ga1,...,am and K ⊇ Gb1,...,bn together imply

H ∩ K ⊇ Ga1,...,am,b1,...,bn . ✓
3 H ⊇ Ga1,...,am and g ∈ G together imply gHg−1 ⊇ Gg(a1),...,g(am). ✓
4 For each a ∈ A, Ga ⊇ Ga. ✓

Fraenkel’s First model is the permutation model M associated to this choice
for A, G, F .
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Fraenkel’s first model satisfies ZFA - WO

The Main Theorem states that Fraenkel’s model is a model of ZFA. We postpone that
proof. Here we explain why Fraenkel’s first model fails WO.

Proof by contradiction: Assume that Fraenkel’s model, M, satisfies WO. For the set
A of atoms to be well-orderable in M, there must exist an ordinal α in M and a
bijection f bij : α → A that is in M. That is, any well-ordering f of A must be a set in
M. Hence

f = {(0, f(0)), (1, f(1)), . . .} ∈ M.

For this set in V (A) to belong to the model M, it must be hereditarily symmetric.
Since the ordinal α is a pure set, any permutation that setwise stabilizes f must
pointwise stabilize the image of f , which is A. But if
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The set of atoms is amorphous in Fraenkel’s first model

Our goal is to prove that if A is the set of atoms in Fraenkel’s first model M, then A
is amorphous. Recall that “A is amorphous” means that A is infinite and every subset
of A is finite or cofinite. Equivalently, A is infinite and there does not exist a partition
Π = {B, C} of A into two infinite cells. (That is, B and C are infinite,
B ∪ C = A, B ∩ C = ∅.)

Proof by contradiction: Assume that Π = {B, C} is a partition of A into two infinite
cells. For Π to belong to M, it must be hereditarily symmetric. In particular, the
stabilizer of Π must contain some Ga1,...,am : Stab(Π) ⊇ Ga1,...,am . Write
B0 = B ∩ {a1, . . . , am} and C0 = C ∩ {a1, . . . , am}. B0 is a finite subset of B and
C0 is a finite subset of C. Since B and C were assumed to be infinite, there exist
b ∈ B − B0 and c ∈ C − C0. Since {a1, . . . , am} is disjoint from {b, c}, the
transposition τ = (b c) ∈ G pointwise stabilizes B0 ∪ C0 = {a1, . . . , am}; hence
τ ∈ Ga1,...,am . The permutation τ does not stabilize Π, since τ(Π) = {B′, C ′}
where B′ = (B − {b}) ∪ {c} ( ̸= B, C) and C ′ = (C − {c}) ∪ {b} (̸= B, C). This
shows that τ ∈ Ga1,...,am

− Stab(Π). This conclusion contradicts the earlier
conclusion that Stab(Π) ⊇ Ga1,...,am
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M fails AC for some infinite sets of 2-element sets

Our goal is to prove that if A is the set of atoms in Fraenkel’s first model M, and
D = {{a, b} | a, b ∈ A} is the set of subsets of A of size 1 or 2, then D ∈ M, but D
has no choice function in M.

Proof by contradiction: First we argue that D ∈ M:
Stab(D) = G ∈ F . Stab({a, b}) ⊇ Ga,b, so Stab({a, b}) ∈ F . Stab(a) ⊇ Ga, so
Stab(a) ∈ F . This shows that D is hereditarily symmetric.

Now, assume that γ : D →
⋃

D (= A) is a choice function for D in the model M.
Since γ ∈ M, there is a finite set {a1, . . . , am} such that

Stab(γ) ⊇ Ga1,...,am .

Choose distinct p, q ∈ A − {a1, . . . , am}. Label them so that γ({p, q}) = p. Since
{a1, . . . , am} ∩ {p, q} = ∅, the transposition σ = (p q) ∈ G stabilizes {a1, . . . , am},
so σ ∈ Ga1,...,am . But σ does not stabilize γ, since ({p, q}, p) ∈ γ, while
σ (({p, q}, p)) = ({p, q}, q) /∈ γ. Thus, σ /∈ Stab(γ). This contradicts the fact that
Stab(γ) ⊇ Ga1,...,am
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Stab(D) = G ∈ F . Stab({a, b}) ⊇ Ga,b, so Stab({a, b}) ∈ F . Stab(a) ⊇ Ga, so
Stab(a) ∈ F . This shows that D is hereditarily symmetric.

Now, assume that γ : D →
⋃

D (= A) is a choice function for D in the model M.
Since γ ∈ M,

there is a finite set {a1, . . . , am} such that

Stab(γ) ⊇ Ga1,...,am .

Choose distinct p, q ∈ A − {a1, . . . , am}. Label them so that γ({p, q}) = p. Since
{a1, . . . , am} ∩ {p, q} = ∅, the transposition σ = (p q) ∈ G stabilizes {a1, . . . , am},
so σ ∈ Ga1,...,am . But σ does not stabilize γ, since ({p, q}, p) ∈ γ, while
σ (({p, q}, p)) = ({p, q}, q) /∈ γ. Thus, σ /∈ Stab(γ). This contradicts the fact that
Stab(γ) ⊇ Ga1,...,am
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