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not satisfy AC.

Let V be a model of ZFC. Choose a set A € V. Begin constructing the von
Neumann Hierarchy within V/, starting at A:

o Vo(A) = A.
o Var1(A) = Va(A) UP(Va(A)).
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V' (A) is the class of all z for which there exists « € ON with z € V,(A).
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Q@ A € V(A)is the set of atoms.
@ z € V(A)isapuresetif ({z} Utrcl(z)) N A= 0.

@ In V(A), an ordinal is a transitive set of transitive sets that is disjoint
from A. Equivalently, an ordinal is a transitive set of transitive sets that is
a pure set.

© The class of pure sets in V(A) is called the kernel of V' (A).

There are first-order formulas @aiom (), Ppure set(Z), Pordinal () in the language
whose nonlogical symbols are €, A, 0 that define each of these types of sets.
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Choose G = Sym(A) to be the group of all permutations of A. Let F consist

of those subgroups of G that contain a pointwise stabilizer of a finite subset
{ai,...,an} C A: for H <G

HeF & (ai,...am € A)(H 2 Gy, ap)

Let’s check that F is a normal filter.
Q H DOy, a4, and H < K < G togetherimply K O Gy, 4, v

Q@ H D CGGy,,..a,and K D Gy, ., together imply
HNK 2 Gal,...,am,bl,...,bn- v

_____ an and g € G together imply gHg™* 2 G,
Q Foreacha € A, G, O Gy. v

Fraenkel’s First model is the permutation model 9t associated to this choice
for A, G, F.

v

(al)v"'vg(am)'
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The Main Theorem states that Fraenkel’s model is a model of ZFA. We postpone that
proof. Here we explain why Fraenkel’s first model fails WO.

Proof by contradiction: Assume that Fraenkel’s model, 901, satisfies WO. For the set
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bijection fP: o — A that is in 9. That is, any well-ordering f of A must be a set in
1. Hence
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The Main Theorem states that Fraenkel’s model is a model of ZFA. We postpone that
proof. Here we explain why Fraenkel’s first model fails WO.

Proof by contradiction: Assume that Fraenkel’s model, 901, satisfies WO. For the set
A of atoms to be well-orderable in 9, there must exist an ordinal « in 9t and a
bijection fP: o — A that is in 9. That is, any well-ordering f of A must be a set in
1. Hence

f=H(0,£(0)),(1, f(1)),...} € M.
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pointwise stabilize the image of f, which is A. But if
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is amorphous. Recall that “A is amorphous” means that A is infinite and every subset
of A is finite or cofinite. Equivalently, A is infinite and there does not exist a partition
IT = {B, C} of A into two infinite cells. (That is, B and C' are infinite,
BUC=ABNC=10)

Proof by contradiction: Assume that IT = {B, C'} is a partition of A into two infinite
cells. For II to belong to 901, it must be hereditarily symmetric. In particular, the
stabilizer of IT must contain some G, ... q,,: Stab(II) D G, ... q,, - Write

By =Bn{ai,...,an}and Cy = CN{ay,...,an}. By is a finite subset of B and
C) is a finite subset of C'. Since B and C' were assumed to be infinite, there exist

be B— Bpandce C — Cy. Since {ay, . . ., an, } is disjoint from {b, c}, the
transposition 7 = (b ¢) € G pointwise stabilizes By U Cy = {a1,...,am};
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BUC=ABNC=10)

Proof by contradiction: Assume that IT = {B, C'} is a partition of A into two infinite
cells. For II to belong to 901, it must be hereditarily symmetric. In particular, the
stabilizer of IT must contain some G, ... q,,: Stab(II) D G, ... q,, - Write

By =Bn{ai,...,an}and Cy = CN{ay,...,an}. By is a finite subset of B and
C) is a finite subset of C'. Since B and C' were assumed to be infinite, there exist

be B— Bpandce C — Cy. Since {ay, . . ., an, } is disjoint from {b, c}, the
transposition 7 = (b ¢) € G pointwise stabilizes By U Cy = {ay, ..., an }; hence
TE€Gay,..an-
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Our goal is to prove that if A is the set of atoms in Fraenkel’s first model 91, and
D = {{a,b} | a,b € A} is the set of subsets of A of size 1 or 2, then D € 91, but D
has no choice function in 1.

Proof by contradiction: First we argue that D € 9
Stab(D) = G € F. Stab({a,b}) D Gqp, so Stab({a, b}) € F. Stab(a) D G, so
Stab(a) € F. This shows that D is hereditarily symmetric.
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Choose distinct p, g € A — {ay,...,an}. Label them so that y({p, q}) = p.
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