The "Main Theorem of Cardinal Arithmetic" Q: How do we evaluate κ^{λ} ? #### Theorem Q: How do we evaluate κ^{λ} ? #### Theorem (1) If $$\kappa \leq \lambda$$, then $\kappa^{\lambda} = 2^{\lambda}$. Q: How do we evaluate κ^{λ} ? #### Theorem (1) If $$\kappa \leq \lambda$$, then $\kappa^{\lambda} = 2^{\lambda}$. Q: How do we evaluate κ^{λ} ? #### Theorem Let κ and λ be cardinals with $2 \le \kappa$ and λ infinite. (1) If $\kappa \leq \lambda$, then $\kappa^{\lambda} = 2^{\lambda}$. *Henceforth assume* $\lambda < \kappa$. Q: How do we evaluate κ^{λ} ? #### Theorem Let κ and λ be cardinals with $2 \le \kappa$ and λ infinite. (1) If $\kappa \leq \lambda$, then $\kappa^{\lambda} = 2^{\lambda}$. Henceforth assume $\lambda < \kappa$. In particular, κ is infinite. Q: How do we evaluate κ^{λ} ? #### Theorem - (1) If $\kappa \leq \lambda$, then $\kappa^{\lambda} = 2^{\lambda}$. Henceforth assume $\lambda < \kappa$. In particular, κ is infinite. - (2) If κ is λ -reachable^a from some $\mu < \kappa$, then $\kappa^{\lambda} = \mu^{\lambda}$. Q: How do we evaluate κ^{λ} ? #### Theorem - (1) If $\kappa \leq \lambda$, then $\kappa^{\lambda} = 2^{\lambda}$. Henceforth assume $\lambda < \kappa$. In particular, κ is infinite. - (2) If κ is λ -reachable^a from some $\mu < \kappa$, then $\kappa^{\lambda} = \mu^{\lambda}$. Q: How do we evaluate κ^{λ} ? #### Theorem - (1) If $\kappa \leq \lambda$, then $\kappa^{\lambda} = 2^{\lambda}$. Henceforth assume $\lambda < \kappa$. In particular, κ is infinite. - (2) If κ is λ -reachable^a from some $\mu < \kappa$, then $\kappa^{\lambda} = \mu^{\lambda}$. Henceforth assume that κ is λ -unreachable from below. Q: How do we evaluate κ^{λ} ? #### Theorem - (1) If $\kappa \leq \lambda$, then $\kappa^{\lambda} = 2^{\lambda}$. Henceforth assume $\lambda < \kappa$. In particular, κ is infinite. - (2) If κ is λ -reachable^a from some $\mu < \kappa$, then $\kappa^{\lambda} = \mu^{\lambda}$. Henceforth assume that κ is λ -unreachable from below. ^aThis means that there is some $\mu < \kappa$ such that $\kappa \le \mu^{\lambda}$. Q: How do we evaluate κ^{λ} ? #### Theorem - (1) If $\kappa \leq \lambda$, then $\kappa^{\lambda} = 2^{\lambda}$. Henceforth assume $\lambda < \kappa$. In particular, κ is infinite. - (2) If κ is λ -reachable^a from some $\mu < \kappa$, then $\kappa^{\lambda} = \mu^{\lambda}$. Henceforth assume that κ is λ -unreachable from below. - (3) (a) if $\lambda < cf(\kappa)$, then $\kappa^{\lambda} = \kappa$. ^aThis means that there is some $\mu < \kappa$ such that $\kappa \le \mu^{\lambda}$. Q: How do we evaluate κ^{λ} ? #### Theorem - (1) If $\kappa \leq \lambda$, then $\kappa^{\lambda} = 2^{\lambda}$. Henceforth assume $\lambda < \kappa$. In particular, κ is infinite. - (2) If κ is λ -reachable^a from some $\mu < \kappa$, then $\kappa^{\lambda} = \mu^{\lambda}$. Henceforth assume that κ is λ -unreachable from below. - (3) (a) if $\lambda < cf(\kappa)$, then $\kappa^{\lambda} = \kappa$. (b) if $cf(\kappa) \le \lambda$, then $\kappa^{\lambda} = \kappa^{cf(\kappa)}$. ^aThis means that there is some $\mu < \kappa$ such that $\kappa \le \mu^{\lambda}$. **Assumptions:** **Assumptions:** $2 \le \kappa \le \lambda^{\inf}$. **Assumptions:** $2 \le \kappa \le \lambda^{\inf}$. **Conclusion:** **Assumptions:** $2 \le \kappa \le \lambda^{\inf}$. Conclusion: $\kappa^{\lambda} = 2^{\lambda}$. **Assumptions:** $2 \le \kappa \le \lambda^{\inf}$. Conclusion: $\kappa^{\lambda} = 2^{\lambda}$. By Cantor's Theorem and the Assumptions we know that $2 \le \kappa \le \lambda < 2^{\lambda}$. **Assumptions:** $2 \le \kappa \le \lambda^{\inf}$. Conclusion: $\kappa^{\lambda} = 2^{\lambda}$. **Assumptions:** $2 \le \kappa \le \lambda^{\inf}$. Conclusion: $\kappa^{\lambda} = 2^{\lambda}$. **Assumptions:** $2 \le \kappa \le \lambda^{\inf}$. Conclusion: $\kappa^{\lambda} = 2^{\lambda}$. $$2^{\lambda}_{\uparrow} \le \kappa^{\lambda}_{\uparrow}$$ **Assumptions:** $2 \le \kappa \le \lambda^{\inf}$. Conclusion: $\kappa^{\lambda} = 2^{\lambda}$. $$2^{\lambda}_{\uparrow} \le \kappa^{\lambda}_{\uparrow} \le \lambda^{\lambda}$$ **Assumptions:** $2 \le \kappa \le \lambda^{\inf}$. Conclusion: $\kappa^{\lambda} = 2^{\lambda}$. $$2^{\lambda} \le \kappa^{\lambda} \le \lambda^{\lambda} \le (2^{\lambda})^{\lambda}$$ **Assumptions:** $2 \le \kappa \le \lambda^{\inf}$. Conclusion: $\kappa^{\lambda} = 2^{\lambda}$. $$2^{\lambda} \le \kappa^{\lambda} \le \lambda^{\lambda} \le (2^{\lambda})^{\lambda} = 2^{\lambda}.$$ **Assumptions:** $2 \le \kappa \le \lambda^{\inf}$. Conclusion: $\kappa^{\lambda} = 2^{\lambda}$. $$2^{\lambda} \le \kappa^{\lambda} \le \lambda^{\lambda} \le (2^{\lambda})^{\lambda} = 2^{\lambda}.$$ **Assumptions:** ### **Assumptions:** $\bullet \ \lambda^{\inf} < \kappa.$ ### **Assumptions:** $\bullet \ \lambda^{\inf} < \kappa.$ ### **Assumptions:** - $\bullet \ \lambda^{\inf} < \kappa.$ - There exists $\mu < \kappa$ such that $\mu < \kappa \le \mu^{\lambda}$. ### **Assumptions:** - $\bullet \ \lambda^{\inf} < \kappa.$ - There exists $\mu < \kappa$ such that $\mu < \kappa \le \mu^{\lambda}$. #### **Assumptions:** - $\lambda^{\inf} < \kappa$. - There exists $\mu < \kappa$ such that $\mu < \kappa \le \mu^{\lambda}$. #### **Conclusion:** ### **Assumptions:** - $\bullet \ \lambda^{\inf} < \kappa.$ - There exists $\mu < \kappa$ such that $\mu < \kappa \le \mu^{\lambda}$. Conclusion: $\kappa^{\lambda} = \mu^{\lambda}$. ### **Assumptions:** - $\lambda^{\inf} < \kappa$. - There exists $\mu < \kappa$ such that $\mu < \kappa \le \mu^{\lambda}$. Conclusion: $\kappa^{\lambda} = \mu^{\lambda}$. ### **Assumptions:** - $\lambda^{\inf} < \kappa$. - There exists $\mu < \kappa$ such that $\mu < \kappa \le \mu^{\lambda}$. Conclusion: $\kappa^{\lambda} = \mu^{\lambda}$. $$\mu^{\lambda}$$ ### **Assumptions:** - $\lambda^{\inf} < \kappa$. - There exists $\mu < \kappa$ such that $\mu < \kappa \le \mu^{\lambda}$. Conclusion: $\kappa^{\lambda} = \mu^{\lambda}$. $$\mu^{\lambda}_{\uparrow} \leq \kappa^{\lambda}_{\uparrow}$$ ### **Assumptions:** - $\bullet \ \lambda^{\inf} < \kappa.$ - There exists $\mu < \kappa$ such that $\mu < \kappa \le \mu^{\lambda}$. Conclusion: $\kappa^{\lambda} = \mu^{\lambda}$. $$\mu_{\uparrow}^{\lambda} \le \kappa_{\uparrow}^{\lambda} \le (\mu^{\lambda})^{\lambda}$$ ### **Assumptions:** - $\lambda^{\inf} < \kappa$. - There exists $\mu < \kappa$ such that $\mu < \kappa \le \mu^{\lambda}$. Conclusion: $\kappa^{\lambda} = \mu^{\lambda}$. $$\mu^{\lambda}_{\uparrow} \le \kappa^{\lambda}_{\uparrow} \le (\mu^{\lambda})^{\lambda} = \mu^{\lambda}_{\uparrow}.$$ ### **Assumptions:** - $\lambda^{\inf} < \kappa$. - There exists $\mu < \kappa$ such that $\mu < \kappa \le \mu^{\lambda}$. Conclusion: $\kappa^{\lambda} = \mu^{\lambda}$. $$\mu_{\uparrow}^{\lambda} \le \kappa_{\uparrow}^{\lambda} \le (\mu^{\lambda})^{\lambda} = \mu_{\uparrow}^{\lambda}. \qquad \Box$$ ### **Assumptions:** $\bullet \ \lambda^{\inf} < \operatorname{cf}(\kappa)$ ### **Assumptions:** $\bullet \ \lambda^{\inf} < \operatorname{cf}(\kappa)$ $$\bullet \ \lambda^{\inf} < \mathrm{cf}(\kappa) \ (\leq \kappa).$$ - $\lambda^{\inf} < \operatorname{cf}(\kappa) \ (\leq \kappa)$. - κ is λ -unreachable from below. - $\lambda^{\inf} < \operatorname{cf}(\kappa) \ (\leq \kappa)$. - κ is λ -unreachable from below. #### **Assumptions:** - $\lambda^{\inf} < \operatorname{cf}(\kappa) \ (\leq \kappa)$. - κ is λ -unreachable from below. #### **Conclusion:** #### **Assumptions:** - $\lambda^{\inf} < \operatorname{cf}(\kappa) \ (\leq \kappa)$. - κ is λ -unreachable from below. Conclusion: $\kappa^{\lambda} = \kappa$. ### **Assumptions:** - $\lambda^{\inf} < \operatorname{cf}(\kappa) \ (\leq \kappa)$. - κ is λ -unreachable from below. Conclusion: $\kappa^{\lambda} = \kappa$. Choose a sequence $\alpha_0 < \alpha_1 < \alpha_2 < \dots < \kappa$ of length $\mathrm{cf}(\kappa)$ such that $\bigcup_{i < \mathrm{cf}(\kappa)} \alpha_i = \kappa$. ### **Assumptions:** - $\lambda^{\inf} < \operatorname{cf}(\kappa) \ (\leq \kappa)$. - κ is λ -unreachable from below. **Conclusion:** $\kappa^{\lambda} = \kappa$. Choose a sequence $\alpha_0 < \alpha_1 < \alpha_2 < \dots < \kappa$ of length $\mathrm{cf}(\kappa)$ such that $\bigcup_{i < \mathrm{cf}(\kappa)} \alpha_i = \kappa$. Any function $f \in \kappa^\lambda$ has image of size $|f[\lambda]| \le \lambda < \mathrm{cf}(\kappa)$, ### **Assumptions:** - $\lambda^{\inf} < \operatorname{cf}(\kappa) \ (\leq \kappa)$. - κ is λ -unreachable from below. **Conclusion:** $\kappa^{\lambda} = \kappa$. Choose a sequence $\alpha_0 < \alpha_1 < \alpha_2 < \cdots < \kappa$ of length $\mathrm{cf}(\kappa)$ such that $\bigcup_{i < \mathrm{cf}(\kappa)} \alpha_i = \kappa$. Any function $f \in \kappa^{\lambda}$ has image of size $|f[\lambda]| \le \lambda < \mathrm{cf}(\kappa)$, contained in κ , ### **Assumptions:** - $\lambda^{\inf} < \operatorname{cf}(\kappa) \ (\leq \kappa)$. - κ is λ -unreachable from below. Conclusion: $\kappa^{\lambda} = \kappa$. Choose a sequence $\alpha_0 < \alpha_1 < \alpha_2 < \cdots < \kappa$ of length $\mathrm{cf}(\kappa)$ such that $\bigcup_{i < \mathrm{cf}(\kappa)} \alpha_i = \kappa$. Any function $f \in \kappa^{\lambda}$ has image of size $|f[\lambda]| \le \lambda < \mathrm{cf}(\kappa)$, contained in κ , hence $f[\lambda]$ is not cofinal in κ . ### **Assumptions:** - $\lambda^{\inf} < \operatorname{cf}(\kappa) \ (\leq \kappa)$. - κ is λ -unreachable from below. Conclusion: $\kappa^{\lambda} = \kappa$. Choose a sequence $\alpha_0 < \alpha_1 < \alpha_2 < \cdots < \kappa$ of length $\mathrm{cf}(\kappa)$ such that $\bigcup_{i < \mathrm{cf}(\kappa)} \alpha_i = \kappa$. Any function $f \in \kappa^\lambda$ has image of size $|f[\lambda]| \le \lambda < \mathrm{cf}(\kappa)$, contained in κ , hence $f[\lambda]$ is not cofinal in κ . It follows that $f[\lambda]$ is bounded above by some α_i . ### **Assumptions:** - $\lambda^{\inf} < \operatorname{cf}(\kappa) \ (\leq \kappa)$. - κ is λ -unreachable from below. Conclusion: $\kappa^{\lambda} = \kappa$. Choose a sequence $\alpha_0 < \alpha_1 < \alpha_2 < \cdots < \kappa$ of length $\mathrm{cf}(\kappa)$ such that $\bigcup_{i < \mathrm{cf}(\kappa)} \alpha_i = \kappa$. Any function $f \in \kappa^\lambda$ has image of size $|f[\lambda]| \le \lambda < \mathrm{cf}(\kappa)$, contained in κ , hence $f[\lambda]$ is not cofinal in κ . It follows that $f[\lambda]$ is bounded above by some α_i . This implies that ### **Assumptions:** - $\lambda^{\inf} < \operatorname{cf}(\kappa) \ (\leq \kappa)$. - κ is λ -unreachable from below. Conclusion: $\kappa^{\lambda} = \kappa$. Choose a sequence $\alpha_0 < \alpha_1 < \alpha_2 < \dots < \kappa$ of length $\mathrm{cf}(\kappa)$ such that $\bigcup_{i < \mathrm{cf}(\kappa)} \alpha_i = \kappa$. Any function $f \in \kappa^\lambda$ has image of size $|f[\lambda]| \le \lambda < \mathrm{cf}(\kappa)$, contained in κ , hence $f[\lambda]$ is not cofinal in κ . It follows that $f[\lambda]$ is bounded above by some α_i . This implies that $$f \in \kappa^{\lambda} \implies f \in \alpha_i^{\lambda}$$ ### **Assumptions:** - $\lambda^{\inf} < \operatorname{cf}(\kappa) \ (\leq \kappa)$. - κ is λ -unreachable from below. Conclusion: $\kappa^{\lambda} = \kappa$. Choose a sequence $\alpha_0<\alpha_1<\alpha_2<\cdots<\kappa$ of length $\mathrm{cf}(\kappa)$ such that $\bigcup_{i<\mathrm{cf}(\kappa)}\alpha_i=\kappa.$ Any function $f\in\kappa^\lambda$ has image of size $|f[\lambda]|\leq\lambda<\mathrm{cf}(\kappa)$, contained in κ , hence $f[\lambda]$ is not cofinal in κ . It follows that $f[\lambda]$ is bounded above by some α_i . This implies that $$f \in \kappa^{\lambda} \implies f \in \alpha_i^{\lambda}$$ for some $i < cf(\kappa)$. ### **Assumptions:** - $\lambda^{\inf} < \operatorname{cf}(\kappa) \ (\leq \kappa)$. - κ is λ -unreachable from below. Conclusion: $\kappa^{\lambda} = \kappa$. Choose a sequence $\alpha_0 < \alpha_1 < \alpha_2 < \cdots < \kappa$ of length $\mathrm{cf}(\kappa)$ such that $\bigcup_{i < \mathrm{cf}(\kappa)} \alpha_i = \kappa$. Any function $f \in \kappa^\lambda$ has image of size $|f[\lambda]| \le \lambda < \mathrm{cf}(\kappa)$, contained in κ , hence $f[\lambda]$ is not cofinal in κ . It follows that $f[\lambda]$ is bounded above by some α_i . This implies that $$f \in \kappa^{\lambda} \implies f \in \alpha_i^{\lambda}$$ ### **Assumptions:** - $\lambda^{\inf} < \operatorname{cf}(\kappa) \ (\leq \kappa)$. - κ is λ -unreachable from below. Conclusion: $\kappa^{\lambda} = \kappa$. Choose a sequence $\alpha_0 < \alpha_1 < \alpha_2 < \cdots < \kappa$ of length $\mathrm{cf}(\kappa)$ such that $\bigcup_{i < \mathrm{cf}(\kappa)} \alpha_i = \kappa$. Any function $f \in \kappa^\lambda$ has image of size $|f[\lambda]| \le \lambda < \mathrm{cf}(\kappa)$, contained in κ , hence $f[\lambda]$ is not cofinal in κ . It follows that $f[\lambda]$ is bounded above by some α_i . This implies that $$f \in \kappa^{\lambda} \implies f \in \alpha_i^{\lambda}$$ ### **Assumptions:** - $\lambda^{\inf} < \operatorname{cf}(\kappa) \ (\leq \kappa)$. - κ is λ -unreachable from below. Conclusion: $\kappa^{\lambda} = \kappa$. Choose a sequence $\alpha_0 < \alpha_1 < \alpha_2 < \cdots < \kappa$ of length $\mathrm{cf}(\kappa)$ such that $\bigcup_{i < \mathrm{cf}(\kappa)} \alpha_i = \kappa$. Any function $f \in \kappa^\lambda$ has image of size $|f[\lambda]| \le \lambda < \mathrm{cf}(\kappa)$, contained in κ , hence $f[\lambda]$ is not cofinal in κ . It follows that $f[\lambda]$ is bounded above by some α_i . This implies that $$f \in \kappa^{\lambda} \implies f \in \alpha_i^{\lambda}$$ ### **Assumptions:** - $\lambda^{\inf} < \operatorname{cf}(\kappa) \ (\leq \kappa)$. - κ is λ -unreachable from below. Conclusion: $\kappa^{\lambda} = \kappa$. Choose a sequence $\alpha_0 < \alpha_1 < \alpha_2 < \cdots < \kappa$ of length $\mathrm{cf}(\kappa)$ such that $\bigcup_{i < \mathrm{cf}(\kappa)} \alpha_i = \kappa$. Any function $f \in \kappa^\lambda$ has image of size $|f[\lambda]| \le \lambda < \mathrm{cf}(\kappa)$, contained in κ , hence $f[\lambda]$ is not cofinal in κ . It follows that $f[\lambda]$ is bounded above by some α_i . This implies that $$f \in \kappa^{\lambda} \implies f \in \alpha_i^{\lambda}$$ $$\kappa \leq \kappa^{\lambda}$$ ### **Assumptions:** - $\lambda^{\inf} < \operatorname{cf}(\kappa) \ (\leq \kappa)$. - κ is λ -unreachable from below. Conclusion: $\kappa^{\lambda} = \kappa$. Choose a sequence $\alpha_0 < \alpha_1 < \alpha_2 < \cdots < \kappa$ of length $\mathrm{cf}(\kappa)$ such that $\bigcup_{i < \mathrm{cf}(\kappa)} \alpha_i = \kappa$. Any function $f \in \kappa^\lambda$ has image of size $|f[\lambda]| \le \lambda < \mathrm{cf}(\kappa)$, contained in κ , hence $f[\lambda]$ is not cofinal in κ . It follows that $f[\lambda]$ is bounded above by some α_i . This implies that $$f \in \kappa^{\lambda} \implies f \in \alpha_i^{\lambda}$$ $$_{\uparrow}^{\kappa} \leq \underset{\uparrow}{\kappa^{\lambda}} \ \, = |\bigcup_{i < \operatorname{cf}(\kappa)} \alpha_{i}^{\lambda}|$$ ### **Assumptions:** - $\lambda^{\inf} < \operatorname{cf}(\kappa) \ (\leq \kappa)$. - κ is λ -unreachable from below. Conclusion: $\kappa^{\lambda} = \kappa$. Choose a sequence $\alpha_0 < \alpha_1 < \alpha_2 < \cdots < \kappa$ of length $\mathrm{cf}(\kappa)$ such that $\bigcup_{i < \mathrm{cf}(\kappa)} \alpha_i = \kappa$. Any function $f \in \kappa^\lambda$ has image of size $|f[\lambda]| \le \lambda < \mathrm{cf}(\kappa)$, contained in κ , hence $f[\lambda]$ is not cofinal in κ . It follows that $f[\lambda]$ is bounded above by some α_i . This implies that $$f \in \kappa^{\lambda} \implies f \in \alpha_i^{\lambda}$$ $$\substack{\kappa \leq \kappa^{\lambda} \\ \uparrow} = |\bigcup_{i < \operatorname{cf}(\kappa)} \alpha^{\lambda}_{i}| \leq |\bigsqcup_{i < \operatorname{cf}(\kappa)} \alpha^{\lambda}_{i}|$$ ### **Assumptions:** - $\lambda^{\inf} < \operatorname{cf}(\kappa) \ (\leq \kappa)$. - κ is λ -unreachable from below. Conclusion: $\kappa^{\lambda} = \kappa$. Choose a sequence $\alpha_0 < \alpha_1 < \alpha_2 < \cdots < \kappa$ of length $\mathrm{cf}(\kappa)$ such that $\bigcup_{i < \mathrm{cf}(\kappa)} \alpha_i = \kappa$. Any function $f \in \kappa^\lambda$ has image of size $|f[\lambda]| \le \lambda < \mathrm{cf}(\kappa)$, contained in κ , hence $f[\lambda]$ is not cofinal in κ . It follows that $f[\lambda]$ is bounded above by some α_i . This implies that $$f \in \kappa^{\lambda} \implies f \in \alpha_i^{\lambda}$$ $$\begin{array}{ll} \kappa \leq \kappa^{\lambda} &= |\bigcup_{i < \operatorname{cf}(\kappa)} \alpha_i^{\lambda}| \leq |\bigsqcup_{i < \operatorname{cf}(\kappa)} \alpha_i^{\lambda}| \\ &= \sum_{i < \operatorname{cf}(\kappa)} |\alpha_i|^{\lambda} \end{array}$$ ### **Assumptions:** - $\lambda^{\inf} < \operatorname{cf}(\kappa) \ (\leq \kappa)$. - κ is λ -unreachable from below. Conclusion: $\kappa^{\lambda} = \kappa$. Choose a sequence $\alpha_0 < \alpha_1 < \alpha_2 < \cdots < \kappa$ of length $\mathrm{cf}(\kappa)$ such that $\bigcup_{i < \mathrm{cf}(\kappa)} \alpha_i = \kappa$. Any function $f \in \kappa^\lambda$ has image of size $|f[\lambda]| \le \lambda < \mathrm{cf}(\kappa)$, contained in κ , hence $f[\lambda]$ is not cofinal in κ . It follows that $f[\lambda]$ is bounded above by some α_i . This implies that $$f \in \kappa^{\lambda} \implies f \in \alpha_i^{\lambda}$$ $$\kappa \leq \kappa^{\lambda} = |\bigcup_{i < cf(\kappa)} \alpha_i^{\lambda}| \leq |\bigsqcup_{i < cf(\kappa)} \alpha_i^{\lambda}| = \sum_{i < cf(\kappa)} |\alpha_i|^{\lambda} \leq \sum_{i < cf(\kappa)} \kappa$$ ### **Assumptions:** - $\lambda^{\inf} < \operatorname{cf}(\kappa) \ (\leq \kappa)$. - κ is λ -unreachable from below. Conclusion: $\kappa^{\lambda} = \kappa$. Choose a sequence $\alpha_0 < \alpha_1 < \alpha_2 < \cdots < \kappa$ of length $\mathrm{cf}(\kappa)$ such that $\bigcup_{i < \mathrm{cf}(\kappa)} \alpha_i = \kappa$. Any function $f \in \kappa^\lambda$ has image of size $|f[\lambda]| \le \lambda < \mathrm{cf}(\kappa)$, contained in κ , hence $f[\lambda]$ is not cofinal in κ . It follows that $f[\lambda]$ is bounded above by some α_i . This implies that $$f \in \kappa^{\lambda} \implies f \in \alpha_i^{\lambda}$$ $$\kappa \leq \kappa^{\lambda} = |\bigcup_{i < \mathrm{cf}(\kappa)} \alpha_i^{\lambda}| \leq |\bigsqcup_{i < \mathrm{cf}(\kappa)} \alpha_i^{\lambda}| = \sum_{i < \mathrm{cf}(\kappa)} |\alpha_i|^{\lambda} \leq \sum_{i < \mathrm{cf}(\kappa)} \kappa \leq \mathrm{cf}(\kappa) \cdot \kappa$$ ### **Assumptions:** - $\lambda^{\inf} < \operatorname{cf}(\kappa) \ (\leq \kappa)$. - κ is λ -unreachable from below. Conclusion: $\kappa^{\lambda} = \kappa$. Choose a sequence $\alpha_0 < \alpha_1 < \alpha_2 < \cdots < \kappa$ of length $\mathrm{cf}(\kappa)$ such that $\bigcup_{i < \mathrm{cf}(\kappa)} \alpha_i = \kappa$. Any function $f \in \kappa^\lambda$ has image of size $|f[\lambda]| \le \lambda < \mathrm{cf}(\kappa)$, contained in κ , hence $f[\lambda]$ is not cofinal in κ . It follows that $f[\lambda]$ is bounded above by some α_i . This implies that $$f \in \kappa^{\lambda} \implies f \in \alpha_i^{\lambda}$$ $$\begin{array}{ll} \kappa \leq \kappa^{\lambda} &= |\bigcup_{i < \operatorname{cf}(\kappa)} \alpha_i^{\lambda}| \leq |\bigsqcup_{i < \operatorname{cf}(\kappa)} \alpha_i^{\lambda}| \\ &= \sum_{i < \operatorname{cf}(\kappa)} |\alpha_i|^{\lambda} \leq \sum_{i < \operatorname{cf}(\kappa)} \kappa \leq \operatorname{cf}(\kappa) \cdot \kappa = \kappa. \end{array}$$ ### **Assumptions:** - $\lambda^{\inf} < \operatorname{cf}(\kappa) \ (\leq \kappa)$. - κ is λ -unreachable from below. Conclusion: $\kappa^{\lambda} = \kappa$. Choose a sequence $\alpha_0 < \alpha_1 < \alpha_2 < \cdots < \kappa$ of length $\mathrm{cf}(\kappa)$ such that $\bigcup_{i < \mathrm{cf}(\kappa)} \alpha_i = \kappa$. Any function $f \in \kappa^\lambda$ has image of size $|f[\lambda]| \le \lambda < \mathrm{cf}(\kappa)$, contained in κ , hence $f[\lambda]$ is not cofinal in κ . It follows that $f[\lambda]$ is bounded above by some α_i . This implies that $$f \in \kappa^{\lambda} \implies f \in \alpha_i^{\lambda}$$ $$\kappa \leq \kappa^{\lambda} = |\bigcup_{i < cf(\kappa)} \alpha_i^{\lambda}| \leq |\bigcup_{i < cf(\kappa)} \alpha_i^{\lambda}| = \sum_{i < cf(\kappa)} |\alpha_i|^{\lambda} \leq \sum_{i < cf(\kappa)} \kappa \leq cf(\kappa) \cdot \kappa = \kappa.$$ $$f^{\alpha}(x) = \begin{cases} f(x) & \text{if } f(x) < \alpha \\ 0 & \text{else.} \end{cases}$$ $$f^{\alpha}(x) = \begin{cases} f(x) & \text{if } f(x) < \alpha \\ 0 & \text{else.} \end{cases}$$ The α -truncation of f "reveals" the part of the graph of f bounded above by the line $y=\alpha$. $$f^{\alpha}(x) = \begin{cases} f(x) & \text{if } f(x) < \alpha \\ 0 & \text{else.} \end{cases}$$ The α -truncation of f "reveals" the part of the graph of f bounded above by the line $y=\alpha$. Note: $$f^{\alpha}(x) = \begin{cases} f(x) & \text{if } f(x) < \alpha \\ 0 & \text{else.} \end{cases}$$ The α -truncation of f "reveals" the part of the graph of f bounded above by the line $y=\alpha$. Note: $$f \in \kappa^{\lambda} \implies f^{\alpha} \in \alpha^{\lambda}.$$ **Assumptions:** ### **Assumptions:** • $\operatorname{cf}(\kappa) \leq \lambda < \kappa$. ### **Assumptions:** • $\operatorname{cf}(\kappa) \leq \lambda < \kappa$. ### **Assumptions:** - $\operatorname{cf}(\kappa) \leq \lambda < \kappa$. - κ is λ -unreachable from below. ### **Assumptions:** - $\operatorname{cf}(\kappa) \leq \lambda < \kappa$. - κ is λ -unreachable from below. #### **Assumptions:** - $\operatorname{cf}(\kappa) \leq \lambda < \kappa$. - κ is λ -unreachable from below. #### **Conclusion:** #### **Assumptions:** - $\operatorname{cf}(\kappa) \leq \lambda < \kappa$. - κ is λ -unreachable from below. **Conclusion:** $\kappa^{\lambda} = \kappa^{\operatorname{cf}(\kappa)}$. ### **Assumptions:** - $\operatorname{cf}(\kappa) \leq \lambda < \kappa$. - κ is λ -unreachable from below. **Conclusion:** $\kappa^{\lambda} = \kappa^{\operatorname{cf}(\kappa)}$. Choose a sequence $\alpha_0 < \alpha_1 < \alpha_2 < \cdots < \kappa$ of length $cf(\kappa)$ such that $\bigcup_{i < cf(\kappa)} \alpha_i = \kappa$. ### **Assumptions:** - $\operatorname{cf}(\kappa) \leq \lambda < \kappa$. - κ is λ -unreachable from below. **Conclusion:** $\kappa^{\lambda} = \kappa^{\operatorname{cf}(\kappa)}$. Choose a sequence $\alpha_0 < \alpha_1 < \alpha_2 < \cdots < \kappa$ of length $cf(\kappa)$ such that $\bigcup_{i < cf(\kappa)} \alpha_i = \kappa$. Encode each $f \in \kappa^{\lambda}$ as its sequence $(f^{\alpha_i})_{i < cf(\kappa)}$ of α_i -truncations. ### **Assumptions:** - $\operatorname{cf}(\kappa) \leq \lambda < \kappa$. - κ is λ -unreachable from below. **Conclusion:** $\kappa^{\lambda} = \kappa^{\operatorname{cf}(\kappa)}$. Choose a sequence $\alpha_0 < \alpha_1 < \alpha_2 < \cdots < \kappa$ of length $cf(\kappa)$ such that $\bigcup_{i < cf(\kappa)} \alpha_i = \kappa$. Encode each $f \in \kappa^{\lambda}$ as its sequence $(f^{\alpha_i})_{i < cf(\kappa)}$ of α_i -truncations. The number of codes is bounded above by $\prod_{i < cf(\kappa)} |\alpha_i|^{\lambda}$. ### **Assumptions:** - $\operatorname{cf}(\kappa) \leq \lambda < \kappa$. - κ is λ -unreachable from below. **Conclusion:** $\kappa^{\lambda} = \kappa^{\operatorname{cf}(\kappa)}$. Choose a sequence $\alpha_0 < \alpha_1 < \alpha_2 < \cdots < \kappa$ of length $cf(\kappa)$ such that $\bigcup_{i < cf(\kappa)} \alpha_i = \kappa$. Encode each $f \in \kappa^{\lambda}$ as its sequence $(f^{\alpha_i})_{i < cf(\kappa)}$ of α_i -truncations. The number of codes is bounded above by $\prod_{i < \mathrm{cf}(\kappa)} |\alpha_i|^{\lambda}$. Since κ is λ -unreachable from below, ### **Assumptions:** - $\operatorname{cf}(\kappa) \leq \lambda < \kappa$. - κ is λ -unreachable from below. **Conclusion:** $\kappa^{\lambda} = \kappa^{\operatorname{cf}(\kappa)}$. Choose a sequence $\alpha_0 < \alpha_1 < \alpha_2 < \cdots < \kappa$ of length $cf(\kappa)$ such that $\bigcup_{i < cf(\kappa)} \alpha_i = \kappa$. Encode each $f \in \kappa^{\lambda}$ as its sequence $(f^{\alpha_i})_{i < cf(\kappa)}$ of α_i -truncations. The number of codes is bounded above by $\prod_{i < \mathrm{cf}(\kappa)} |\alpha_i|^{\lambda}$. Since κ is λ -unreachable from below, and $|\alpha_i| \leq \alpha_i < \kappa$, ### **Assumptions:** - $\operatorname{cf}(\kappa) \leq \lambda < \kappa$. - κ is λ -unreachable from below. **Conclusion:** $\kappa^{\lambda} = \kappa^{\operatorname{cf}(\kappa)}$. Choose a sequence $\alpha_0 < \alpha_1 < \alpha_2 < \cdots < \kappa$ of length $cf(\kappa)$ such that $\bigcup_{i < cf(\kappa)} \alpha_i = \kappa$. Encode each $f \in \kappa^{\lambda}$ as its sequence $(f^{\alpha_i})_{i < cf(\kappa)}$ of α_i -truncations. The number of codes is bounded above by $\prod_{i < cf(\kappa)} |\alpha_i|^{\lambda}$. Since κ is λ -unreachable from below, and $|\alpha_i| \leq \alpha_i < \kappa$, we have $|\alpha_i|^{\lambda} < \kappa$. ### **Assumptions:** - $\operatorname{cf}(\kappa) \leq \lambda < \kappa$. - κ is λ -unreachable from below. **Conclusion:** $\kappa^{\lambda} = \kappa^{\operatorname{cf}(\kappa)}$. Choose a sequence $\alpha_0 < \alpha_1 < \alpha_2 < \cdots < \kappa$ of length $cf(\kappa)$ such that $\bigcup_{i < cf(\kappa)} \alpha_i = \kappa$. Encode each $f \in \kappa^{\lambda}$ as its sequence $(f^{\alpha_i})_{i < \mathrm{cf}(\kappa)}$ of α_i -truncations. The number of codes is bounded above by $\prod_{i < cf(\kappa)} |\alpha_i|^{\lambda}$. Since κ is ### **Assumptions:** - $\operatorname{cf}(\kappa) \leq \lambda < \kappa$. - κ is λ -unreachable from below. **Conclusion:** $\kappa^{\lambda} = \kappa^{\operatorname{cf}(\kappa)}$. Choose a sequence $\alpha_0 < \alpha_1 < \alpha_2 < \cdots < \kappa$ of length $cf(\kappa)$ such that $\bigcup_{i < cf(\kappa)} \alpha_i = \kappa$. Encode each $f \in \kappa^{\lambda}$ as its sequence $(f^{\alpha_i})_{i < cf(\kappa)}$ of α_i -truncations. The number of codes is bounded above by $\prod_{i < \mathrm{cf}(\kappa)} |\alpha_i|^{\lambda}$. Since κ is $$\kappa^{\prime}$$ ### **Assumptions:** - $\operatorname{cf}(\kappa) \leq \lambda < \kappa$. - κ is λ -unreachable from below. **Conclusion:** $\kappa^{\lambda} = \kappa^{\operatorname{cf}(\kappa)}$. Choose a sequence $\alpha_0 < \alpha_1 < \alpha_2 < \cdots < \kappa$ of length $cf(\kappa)$ such that $\bigcup_{i < cf(\kappa)} \alpha_i = \kappa$. Encode each $f \in \kappa^{\lambda}$ as its sequence $(f^{\alpha_i})_{i < cf(\kappa)}$ of α_i -truncations. The number of codes is bounded above by $\prod_{i < \mathrm{cf}(\kappa)} |\alpha_i|^{\lambda}$. Since κ is $$\overset{\kappa^{\lambda}}{\uparrow} \leq \prod_{i < \mathrm{cf}(\kappa)} |\alpha_i|^{\lambda}$$ ### **Assumptions:** - $\operatorname{cf}(\kappa) \leq \lambda < \kappa$. - κ is λ -unreachable from below. **Conclusion:** $\kappa^{\lambda} = \kappa^{\operatorname{cf}(\kappa)}$. Choose a sequence $\alpha_0 < \alpha_1 < \alpha_2 < \cdots < \kappa$ of length $cf(\kappa)$ such that $\bigcup_{i < cf(\kappa)} \alpha_i = \kappa$. Encode each $f \in \kappa^{\lambda}$ as its sequence $(f^{\alpha_i})_{i < cf(\kappa)}$ of α_i -truncations. The number of codes is bounded above by $\prod_{i < \mathrm{cf}(\kappa)} |\alpha_i|^{\lambda}$. Since κ is $$\underset{\uparrow}{\kappa^{\lambda}} \leq \prod_{i < \operatorname{cf}(\kappa)} |\alpha_i|^{\lambda} \leq \prod_{i < \operatorname{cf}(\kappa)} \kappa$$ ### **Assumptions:** - $\operatorname{cf}(\kappa) \leq \lambda < \kappa$. - κ is λ -unreachable from below. **Conclusion:** $\kappa^{\lambda} = \kappa^{\operatorname{cf}(\kappa)}$. Choose a sequence $\alpha_0 < \alpha_1 < \alpha_2 < \cdots < \kappa$ of length $cf(\kappa)$ such that $\bigcup_{i < cf(\kappa)} \alpha_i = \kappa$. Encode each $f \in \kappa^{\lambda}$ as its sequence $(f^{\alpha_i})_{i < cf(\kappa)}$ of α_i -truncations. The number of codes is bounded above by $\prod_{i < \mathrm{cf}(\kappa)} |\alpha_i|^{\lambda}$. Since κ is $$\underset{\uparrow}{\kappa^{\lambda}} \leq \prod_{i < \mathrm{cf}(\kappa)} |\alpha_i|^{\lambda} \leq \prod_{i < \mathrm{cf}(\kappa)} \kappa = \underset{\uparrow}{\kappa^{\mathrm{cf}(\kappa)}}$$ ### **Assumptions:** - $\operatorname{cf}(\kappa) \leq \lambda < \kappa$. - κ is λ -unreachable from below. **Conclusion:** $\kappa^{\lambda} = \kappa^{\operatorname{cf}(\kappa)}$. Choose a sequence $\alpha_0 < \alpha_1 < \alpha_2 < \cdots < \kappa$ of length $cf(\kappa)$ such that $\bigcup_{i < cf(\kappa)} \alpha_i = \kappa$. Encode each $f \in \kappa^{\lambda}$ as its sequence $(f^{\alpha_i})_{i < cf(\kappa)}$ of α_i -truncations. The number of codes is bounded above by $\prod_{i < \mathrm{cf}(\kappa)} |\alpha_i|^{\lambda}$. Since κ is $$\kappa^{\lambda} \leq \prod_{i < \mathrm{cf}(\kappa)} |\alpha_i|^{\lambda} \leq \prod_{i < \mathrm{cf}(\kappa)} \kappa = \kappa^{\mathrm{cf}(\kappa)} \leq \kappa^{\lambda}.$$ ### **Assumptions:** - $\operatorname{cf}(\kappa) \leq \lambda < \kappa$. - κ is λ -unreachable from below. **Conclusion:** $\kappa^{\lambda} = \kappa^{\operatorname{cf}(\kappa)}$. Choose a sequence $\alpha_0 < \alpha_1 < \alpha_2 < \cdots < \kappa$ of length $cf(\kappa)$ such that $\bigcup_{i < cf(\kappa)} \alpha_i = \kappa$. Encode each $f \in \kappa^{\lambda}$ as its sequence $(f^{\alpha_i})_{i < cf(\kappa)}$ of α_i -truncations. The number of codes is bounded above by $\prod_{i < \mathrm{cf}(\kappa)} |\alpha_i|^{\lambda}$. Since κ is $$\kappa^{\lambda} \leq \prod_{i < cf(\kappa)} |\alpha_i|^{\lambda} \leq \prod_{i < cf(\kappa)} \kappa = \kappa^{cf(\kappa)} \leq \kappa^{\lambda}. \qquad \Box$$