The "Main Theorem of Cardinal Arithmetic"

Q: How do we evaluate κ^{λ} ?

Q: How do we evaluate κ^{λ} ?

Q: How do we evaluate κ^{λ} ?

Q: How do we evaluate κ^{λ} ?

Theorem

Q: How do we evaluate κ^{λ} ?

Theorem

(1) If
$$\kappa \leq \lambda$$
, then $\kappa^{\lambda} = 2^{\lambda}$.

Q: How do we evaluate κ^{λ} ?

Theorem

(1) If
$$\kappa \leq \lambda$$
, then $\kappa^{\lambda} = 2^{\lambda}$.

Q: How do we evaluate κ^{λ} ?

Theorem

Let κ and λ be cardinals with $2 \le \kappa$ and λ infinite.

(1) If $\kappa \leq \lambda$, then $\kappa^{\lambda} = 2^{\lambda}$.

Henceforth assume $\lambda < \kappa$.

Q: How do we evaluate κ^{λ} ?

Theorem

Let κ and λ be cardinals with $2 \le \kappa$ and λ infinite.

(1) If $\kappa \leq \lambda$, then $\kappa^{\lambda} = 2^{\lambda}$.

Henceforth assume $\lambda < \kappa$. In particular, κ is infinite.

Q: How do we evaluate κ^{λ} ?

Theorem

- (1) If $\kappa \leq \lambda$, then $\kappa^{\lambda} = 2^{\lambda}$.

 Henceforth assume $\lambda < \kappa$. In particular, κ is infinite.
- (2) If κ is λ -reachable^a from some $\mu < \kappa$, then $\kappa^{\lambda} = \mu^{\lambda}$.

Q: How do we evaluate κ^{λ} ?

Theorem

- (1) If $\kappa \leq \lambda$, then $\kappa^{\lambda} = 2^{\lambda}$.

 Henceforth assume $\lambda < \kappa$. In particular, κ is infinite.
- (2) If κ is λ -reachable^a from some $\mu < \kappa$, then $\kappa^{\lambda} = \mu^{\lambda}$.

Q: How do we evaluate κ^{λ} ?

Theorem

- (1) If $\kappa \leq \lambda$, then $\kappa^{\lambda} = 2^{\lambda}$.

 Henceforth assume $\lambda < \kappa$. In particular, κ is infinite.
- (2) If κ is λ -reachable^a from some $\mu < \kappa$, then $\kappa^{\lambda} = \mu^{\lambda}$. Henceforth assume that κ is λ -unreachable from below.

Q: How do we evaluate κ^{λ} ?

Theorem

- (1) If $\kappa \leq \lambda$, then $\kappa^{\lambda} = 2^{\lambda}$.

 Henceforth assume $\lambda < \kappa$. In particular, κ is infinite.
- (2) If κ is λ -reachable^a from some $\mu < \kappa$, then $\kappa^{\lambda} = \mu^{\lambda}$. Henceforth assume that κ is λ -unreachable from below.

^aThis means that there is some $\mu < \kappa$ such that $\kappa \le \mu^{\lambda}$.

Q: How do we evaluate κ^{λ} ?

Theorem

- (1) If $\kappa \leq \lambda$, then $\kappa^{\lambda} = 2^{\lambda}$.

 Henceforth assume $\lambda < \kappa$. In particular, κ is infinite.
- (2) If κ is λ -reachable^a from some $\mu < \kappa$, then $\kappa^{\lambda} = \mu^{\lambda}$.

 Henceforth assume that κ is λ -unreachable from below.
- (3) (a) if $\lambda < cf(\kappa)$, then $\kappa^{\lambda} = \kappa$.

^aThis means that there is some $\mu < \kappa$ such that $\kappa \le \mu^{\lambda}$.

Q: How do we evaluate κ^{λ} ?

Theorem

- (1) If $\kappa \leq \lambda$, then $\kappa^{\lambda} = 2^{\lambda}$.

 Henceforth assume $\lambda < \kappa$. In particular, κ is infinite.
- (2) If κ is λ -reachable^a from some $\mu < \kappa$, then $\kappa^{\lambda} = \mu^{\lambda}$.

 Henceforth assume that κ is λ -unreachable from below.
- (3) (a) if $\lambda < cf(\kappa)$, then $\kappa^{\lambda} = \kappa$. (b) if $cf(\kappa) \le \lambda$, then $\kappa^{\lambda} = \kappa^{cf(\kappa)}$.

^aThis means that there is some $\mu < \kappa$ such that $\kappa \le \mu^{\lambda}$.

Assumptions:

Assumptions: $2 \le \kappa \le \lambda^{\inf}$.

Assumptions: $2 \le \kappa \le \lambda^{\inf}$.

Conclusion:

Assumptions: $2 \le \kappa \le \lambda^{\inf}$.

Conclusion: $\kappa^{\lambda} = 2^{\lambda}$.

Assumptions: $2 \le \kappa \le \lambda^{\inf}$.

Conclusion: $\kappa^{\lambda} = 2^{\lambda}$.

By Cantor's Theorem and the Assumptions we know that $2 \le \kappa \le \lambda < 2^{\lambda}$.

Assumptions: $2 \le \kappa \le \lambda^{\inf}$.

Conclusion: $\kappa^{\lambda} = 2^{\lambda}$.

Assumptions: $2 \le \kappa \le \lambda^{\inf}$.

Conclusion: $\kappa^{\lambda} = 2^{\lambda}$.

Assumptions: $2 \le \kappa \le \lambda^{\inf}$.

Conclusion: $\kappa^{\lambda} = 2^{\lambda}$.

$$2^{\lambda}_{\uparrow} \le \kappa^{\lambda}_{\uparrow}$$

Assumptions: $2 \le \kappa \le \lambda^{\inf}$.

Conclusion: $\kappa^{\lambda} = 2^{\lambda}$.

$$2^{\lambda}_{\uparrow} \le \kappa^{\lambda}_{\uparrow} \le \lambda^{\lambda}$$

Assumptions: $2 \le \kappa \le \lambda^{\inf}$.

Conclusion: $\kappa^{\lambda} = 2^{\lambda}$.

$$2^{\lambda} \le \kappa^{\lambda} \le \lambda^{\lambda} \le (2^{\lambda})^{\lambda}$$

Assumptions: $2 \le \kappa \le \lambda^{\inf}$.

Conclusion: $\kappa^{\lambda} = 2^{\lambda}$.

$$2^{\lambda} \le \kappa^{\lambda} \le \lambda^{\lambda} \le (2^{\lambda})^{\lambda} = 2^{\lambda}.$$

Assumptions: $2 \le \kappa \le \lambda^{\inf}$.

Conclusion: $\kappa^{\lambda} = 2^{\lambda}$.

$$2^{\lambda} \le \kappa^{\lambda} \le \lambda^{\lambda} \le (2^{\lambda})^{\lambda} = 2^{\lambda}.$$

Assumptions:

Assumptions:

 $\bullet \ \lambda^{\inf} < \kappa.$

Assumptions:

 $\bullet \ \lambda^{\inf} < \kappa.$

Assumptions:

- $\bullet \ \lambda^{\inf} < \kappa.$
- There exists $\mu < \kappa$ such that $\mu < \kappa \le \mu^{\lambda}$.

Assumptions:

- $\bullet \ \lambda^{\inf} < \kappa.$
- There exists $\mu < \kappa$ such that $\mu < \kappa \le \mu^{\lambda}$.

Assumptions:

- $\lambda^{\inf} < \kappa$.
- There exists $\mu < \kappa$ such that $\mu < \kappa \le \mu^{\lambda}$.

Conclusion:

Assumptions:

- $\bullet \ \lambda^{\inf} < \kappa.$
- There exists $\mu < \kappa$ such that $\mu < \kappa \le \mu^{\lambda}$.

Conclusion: $\kappa^{\lambda} = \mu^{\lambda}$.

Assumptions:

- $\lambda^{\inf} < \kappa$.
- There exists $\mu < \kappa$ such that $\mu < \kappa \le \mu^{\lambda}$.

Conclusion: $\kappa^{\lambda} = \mu^{\lambda}$.

Assumptions:

- $\lambda^{\inf} < \kappa$.
- There exists $\mu < \kappa$ such that $\mu < \kappa \le \mu^{\lambda}$.

Conclusion: $\kappa^{\lambda} = \mu^{\lambda}$.

$$\mu^{\lambda}$$

Assumptions:

- $\lambda^{\inf} < \kappa$.
- There exists $\mu < \kappa$ such that $\mu < \kappa \le \mu^{\lambda}$.

Conclusion: $\kappa^{\lambda} = \mu^{\lambda}$.

$$\mu^{\lambda}_{\uparrow} \leq \kappa^{\lambda}_{\uparrow}$$

Assumptions:

- $\bullet \ \lambda^{\inf} < \kappa.$
- There exists $\mu < \kappa$ such that $\mu < \kappa \le \mu^{\lambda}$.

Conclusion: $\kappa^{\lambda} = \mu^{\lambda}$.

$$\mu_{\uparrow}^{\lambda} \le \kappa_{\uparrow}^{\lambda} \le (\mu^{\lambda})^{\lambda}$$

Assumptions:

- $\lambda^{\inf} < \kappa$.
- There exists $\mu < \kappa$ such that $\mu < \kappa \le \mu^{\lambda}$.

Conclusion: $\kappa^{\lambda} = \mu^{\lambda}$.

$$\mu^{\lambda}_{\uparrow} \le \kappa^{\lambda}_{\uparrow} \le (\mu^{\lambda})^{\lambda} = \mu^{\lambda}_{\uparrow}.$$

Assumptions:

- $\lambda^{\inf} < \kappa$.
- There exists $\mu < \kappa$ such that $\mu < \kappa \le \mu^{\lambda}$.

Conclusion: $\kappa^{\lambda} = \mu^{\lambda}$.

$$\mu_{\uparrow}^{\lambda} \le \kappa_{\uparrow}^{\lambda} \le (\mu^{\lambda})^{\lambda} = \mu_{\uparrow}^{\lambda}. \qquad \Box$$

Assumptions:

 $\bullet \ \lambda^{\inf} < \operatorname{cf}(\kappa)$

Assumptions:

 $\bullet \ \lambda^{\inf} < \operatorname{cf}(\kappa)$

$$\bullet \ \lambda^{\inf} < \mathrm{cf}(\kappa) \ (\leq \kappa).$$

- $\lambda^{\inf} < \operatorname{cf}(\kappa) \ (\leq \kappa)$.
- κ is λ -unreachable from below.

- $\lambda^{\inf} < \operatorname{cf}(\kappa) \ (\leq \kappa)$.
- κ is λ -unreachable from below.

Assumptions:

- $\lambda^{\inf} < \operatorname{cf}(\kappa) \ (\leq \kappa)$.
- κ is λ -unreachable from below.

Conclusion:

Assumptions:

- $\lambda^{\inf} < \operatorname{cf}(\kappa) \ (\leq \kappa)$.
- κ is λ -unreachable from below.

Conclusion: $\kappa^{\lambda} = \kappa$.

Assumptions:

- $\lambda^{\inf} < \operatorname{cf}(\kappa) \ (\leq \kappa)$.
- κ is λ -unreachable from below.

Conclusion: $\kappa^{\lambda} = \kappa$.

Choose a sequence $\alpha_0 < \alpha_1 < \alpha_2 < \dots < \kappa$ of length $\mathrm{cf}(\kappa)$ such that $\bigcup_{i < \mathrm{cf}(\kappa)} \alpha_i = \kappa$.

Assumptions:

- $\lambda^{\inf} < \operatorname{cf}(\kappa) \ (\leq \kappa)$.
- κ is λ -unreachable from below.

Conclusion: $\kappa^{\lambda} = \kappa$.

Choose a sequence $\alpha_0 < \alpha_1 < \alpha_2 < \dots < \kappa$ of length $\mathrm{cf}(\kappa)$ such that $\bigcup_{i < \mathrm{cf}(\kappa)} \alpha_i = \kappa$. Any function $f \in \kappa^\lambda$ has image of size $|f[\lambda]| \le \lambda < \mathrm{cf}(\kappa)$,

Assumptions:

- $\lambda^{\inf} < \operatorname{cf}(\kappa) \ (\leq \kappa)$.
- κ is λ -unreachable from below.

Conclusion: $\kappa^{\lambda} = \kappa$.

Choose a sequence $\alpha_0 < \alpha_1 < \alpha_2 < \cdots < \kappa$ of length $\mathrm{cf}(\kappa)$ such that $\bigcup_{i < \mathrm{cf}(\kappa)} \alpha_i = \kappa$. Any function $f \in \kappa^{\lambda}$ has image of size $|f[\lambda]| \le \lambda < \mathrm{cf}(\kappa)$, contained in κ ,

Assumptions:

- $\lambda^{\inf} < \operatorname{cf}(\kappa) \ (\leq \kappa)$.
- κ is λ -unreachable from below.

Conclusion: $\kappa^{\lambda} = \kappa$.

Choose a sequence $\alpha_0 < \alpha_1 < \alpha_2 < \cdots < \kappa$ of length $\mathrm{cf}(\kappa)$ such that $\bigcup_{i < \mathrm{cf}(\kappa)} \alpha_i = \kappa$. Any function $f \in \kappa^{\lambda}$ has image of size $|f[\lambda]| \le \lambda < \mathrm{cf}(\kappa)$, contained in κ , hence $f[\lambda]$ is not cofinal in κ .

Assumptions:

- $\lambda^{\inf} < \operatorname{cf}(\kappa) \ (\leq \kappa)$.
- κ is λ -unreachable from below.

Conclusion: $\kappa^{\lambda} = \kappa$.

Choose a sequence $\alpha_0 < \alpha_1 < \alpha_2 < \cdots < \kappa$ of length $\mathrm{cf}(\kappa)$ such that $\bigcup_{i < \mathrm{cf}(\kappa)} \alpha_i = \kappa$. Any function $f \in \kappa^\lambda$ has image of size $|f[\lambda]| \le \lambda < \mathrm{cf}(\kappa)$, contained in κ , hence $f[\lambda]$ is not cofinal in κ . It follows that $f[\lambda]$ is bounded above by some α_i .

Assumptions:

- $\lambda^{\inf} < \operatorname{cf}(\kappa) \ (\leq \kappa)$.
- κ is λ -unreachable from below.

Conclusion: $\kappa^{\lambda} = \kappa$.

Choose a sequence $\alpha_0 < \alpha_1 < \alpha_2 < \cdots < \kappa$ of length $\mathrm{cf}(\kappa)$ such that $\bigcup_{i < \mathrm{cf}(\kappa)} \alpha_i = \kappa$. Any function $f \in \kappa^\lambda$ has image of size $|f[\lambda]| \le \lambda < \mathrm{cf}(\kappa)$, contained in κ , hence $f[\lambda]$ is not cofinal in κ . It follows that $f[\lambda]$ is bounded above by some α_i . This implies that

Assumptions:

- $\lambda^{\inf} < \operatorname{cf}(\kappa) \ (\leq \kappa)$.
- κ is λ -unreachable from below.

Conclusion: $\kappa^{\lambda} = \kappa$.

Choose a sequence $\alpha_0 < \alpha_1 < \alpha_2 < \dots < \kappa$ of length $\mathrm{cf}(\kappa)$ such that $\bigcup_{i < \mathrm{cf}(\kappa)} \alpha_i = \kappa$. Any function $f \in \kappa^\lambda$ has image of size $|f[\lambda]| \le \lambda < \mathrm{cf}(\kappa)$, contained in κ , hence $f[\lambda]$ is not cofinal in κ . It follows that $f[\lambda]$ is bounded above by some α_i . This implies that

$$f \in \kappa^{\lambda} \implies f \in \alpha_i^{\lambda}$$

Assumptions:

- $\lambda^{\inf} < \operatorname{cf}(\kappa) \ (\leq \kappa)$.
- κ is λ -unreachable from below.

Conclusion: $\kappa^{\lambda} = \kappa$.

Choose a sequence $\alpha_0<\alpha_1<\alpha_2<\cdots<\kappa$ of length $\mathrm{cf}(\kappa)$ such that $\bigcup_{i<\mathrm{cf}(\kappa)}\alpha_i=\kappa.$ Any function $f\in\kappa^\lambda$ has image of size $|f[\lambda]|\leq\lambda<\mathrm{cf}(\kappa)$, contained in κ , hence $f[\lambda]$ is not cofinal in κ . It follows that $f[\lambda]$ is bounded above by some α_i . This implies that

$$f \in \kappa^{\lambda} \implies f \in \alpha_i^{\lambda}$$

for some $i < cf(\kappa)$.

Assumptions:

- $\lambda^{\inf} < \operatorname{cf}(\kappa) \ (\leq \kappa)$.
- κ is λ -unreachable from below.

Conclusion: $\kappa^{\lambda} = \kappa$.

Choose a sequence $\alpha_0 < \alpha_1 < \alpha_2 < \cdots < \kappa$ of length $\mathrm{cf}(\kappa)$ such that $\bigcup_{i < \mathrm{cf}(\kappa)} \alpha_i = \kappa$. Any function $f \in \kappa^\lambda$ has image of size $|f[\lambda]| \le \lambda < \mathrm{cf}(\kappa)$, contained in κ , hence $f[\lambda]$ is not cofinal in κ . It follows that $f[\lambda]$ is bounded above by some α_i . This implies that

$$f \in \kappa^{\lambda} \implies f \in \alpha_i^{\lambda}$$

Assumptions:

- $\lambda^{\inf} < \operatorname{cf}(\kappa) \ (\leq \kappa)$.
- κ is λ -unreachable from below.

Conclusion: $\kappa^{\lambda} = \kappa$.

Choose a sequence $\alpha_0 < \alpha_1 < \alpha_2 < \cdots < \kappa$ of length $\mathrm{cf}(\kappa)$ such that $\bigcup_{i < \mathrm{cf}(\kappa)} \alpha_i = \kappa$. Any function $f \in \kappa^\lambda$ has image of size $|f[\lambda]| \le \lambda < \mathrm{cf}(\kappa)$, contained in κ , hence $f[\lambda]$ is not cofinal in κ . It follows that $f[\lambda]$ is bounded above by some α_i . This implies that

$$f \in \kappa^{\lambda} \implies f \in \alpha_i^{\lambda}$$

Assumptions:

- $\lambda^{\inf} < \operatorname{cf}(\kappa) \ (\leq \kappa)$.
- κ is λ -unreachable from below.

Conclusion: $\kappa^{\lambda} = \kappa$.

Choose a sequence $\alpha_0 < \alpha_1 < \alpha_2 < \cdots < \kappa$ of length $\mathrm{cf}(\kappa)$ such that $\bigcup_{i < \mathrm{cf}(\kappa)} \alpha_i = \kappa$. Any function $f \in \kappa^\lambda$ has image of size $|f[\lambda]| \le \lambda < \mathrm{cf}(\kappa)$, contained in κ , hence $f[\lambda]$ is not cofinal in κ . It follows that $f[\lambda]$ is bounded above by some α_i . This implies that

$$f \in \kappa^{\lambda} \implies f \in \alpha_i^{\lambda}$$

Assumptions:

- $\lambda^{\inf} < \operatorname{cf}(\kappa) \ (\leq \kappa)$.
- κ is λ -unreachable from below.

Conclusion: $\kappa^{\lambda} = \kappa$.

Choose a sequence $\alpha_0 < \alpha_1 < \alpha_2 < \cdots < \kappa$ of length $\mathrm{cf}(\kappa)$ such that $\bigcup_{i < \mathrm{cf}(\kappa)} \alpha_i = \kappa$. Any function $f \in \kappa^\lambda$ has image of size $|f[\lambda]| \le \lambda < \mathrm{cf}(\kappa)$, contained in κ , hence $f[\lambda]$ is not cofinal in κ . It follows that $f[\lambda]$ is bounded above by some α_i . This implies that

$$f \in \kappa^{\lambda} \implies f \in \alpha_i^{\lambda}$$

$$\kappa \leq \kappa^{\lambda}$$

Assumptions:

- $\lambda^{\inf} < \operatorname{cf}(\kappa) \ (\leq \kappa)$.
- κ is λ -unreachable from below.

Conclusion: $\kappa^{\lambda} = \kappa$.

Choose a sequence $\alpha_0 < \alpha_1 < \alpha_2 < \cdots < \kappa$ of length $\mathrm{cf}(\kappa)$ such that $\bigcup_{i < \mathrm{cf}(\kappa)} \alpha_i = \kappa$. Any function $f \in \kappa^\lambda$ has image of size $|f[\lambda]| \le \lambda < \mathrm{cf}(\kappa)$, contained in κ , hence $f[\lambda]$ is not cofinal in κ . It follows that $f[\lambda]$ is bounded above by some α_i . This implies that

$$f \in \kappa^{\lambda} \implies f \in \alpha_i^{\lambda}$$

$$_{\uparrow}^{\kappa} \leq \underset{\uparrow}{\kappa^{\lambda}} \ \, = |\bigcup_{i < \operatorname{cf}(\kappa)} \alpha_{i}^{\lambda}|$$

Assumptions:

- $\lambda^{\inf} < \operatorname{cf}(\kappa) \ (\leq \kappa)$.
- κ is λ -unreachable from below.

Conclusion: $\kappa^{\lambda} = \kappa$.

Choose a sequence $\alpha_0 < \alpha_1 < \alpha_2 < \cdots < \kappa$ of length $\mathrm{cf}(\kappa)$ such that $\bigcup_{i < \mathrm{cf}(\kappa)} \alpha_i = \kappa$. Any function $f \in \kappa^\lambda$ has image of size $|f[\lambda]| \le \lambda < \mathrm{cf}(\kappa)$, contained in κ , hence $f[\lambda]$ is not cofinal in κ . It follows that $f[\lambda]$ is bounded above by some α_i . This implies that

$$f \in \kappa^{\lambda} \implies f \in \alpha_i^{\lambda}$$

$$\substack{\kappa \leq \kappa^{\lambda} \\ \uparrow} = |\bigcup_{i < \operatorname{cf}(\kappa)} \alpha^{\lambda}_{i}| \leq |\bigsqcup_{i < \operatorname{cf}(\kappa)} \alpha^{\lambda}_{i}|$$

Assumptions:

- $\lambda^{\inf} < \operatorname{cf}(\kappa) \ (\leq \kappa)$.
- κ is λ -unreachable from below.

Conclusion: $\kappa^{\lambda} = \kappa$.

Choose a sequence $\alpha_0 < \alpha_1 < \alpha_2 < \cdots < \kappa$ of length $\mathrm{cf}(\kappa)$ such that $\bigcup_{i < \mathrm{cf}(\kappa)} \alpha_i = \kappa$. Any function $f \in \kappa^\lambda$ has image of size $|f[\lambda]| \le \lambda < \mathrm{cf}(\kappa)$, contained in κ , hence $f[\lambda]$ is not cofinal in κ . It follows that $f[\lambda]$ is bounded above by some α_i . This implies that

$$f \in \kappa^{\lambda} \implies f \in \alpha_i^{\lambda}$$

$$\begin{array}{ll} \kappa \leq \kappa^{\lambda} &= |\bigcup_{i < \operatorname{cf}(\kappa)} \alpha_i^{\lambda}| \leq |\bigsqcup_{i < \operatorname{cf}(\kappa)} \alpha_i^{\lambda}| \\ &= \sum_{i < \operatorname{cf}(\kappa)} |\alpha_i|^{\lambda} \end{array}$$

Assumptions:

- $\lambda^{\inf} < \operatorname{cf}(\kappa) \ (\leq \kappa)$.
- κ is λ -unreachable from below.

Conclusion: $\kappa^{\lambda} = \kappa$.

Choose a sequence $\alpha_0 < \alpha_1 < \alpha_2 < \cdots < \kappa$ of length $\mathrm{cf}(\kappa)$ such that $\bigcup_{i < \mathrm{cf}(\kappa)} \alpha_i = \kappa$. Any function $f \in \kappa^\lambda$ has image of size $|f[\lambda]| \le \lambda < \mathrm{cf}(\kappa)$, contained in κ , hence $f[\lambda]$ is not cofinal in κ . It follows that $f[\lambda]$ is bounded above by some α_i . This implies that

$$f \in \kappa^{\lambda} \implies f \in \alpha_i^{\lambda}$$

$$\kappa \leq \kappa^{\lambda} = |\bigcup_{i < cf(\kappa)} \alpha_i^{\lambda}| \leq |\bigsqcup_{i < cf(\kappa)} \alpha_i^{\lambda}|
= \sum_{i < cf(\kappa)} |\alpha_i|^{\lambda} \leq \sum_{i < cf(\kappa)} \kappa$$

Assumptions:

- $\lambda^{\inf} < \operatorname{cf}(\kappa) \ (\leq \kappa)$.
- κ is λ -unreachable from below.

Conclusion: $\kappa^{\lambda} = \kappa$.

Choose a sequence $\alpha_0 < \alpha_1 < \alpha_2 < \cdots < \kappa$ of length $\mathrm{cf}(\kappa)$ such that $\bigcup_{i < \mathrm{cf}(\kappa)} \alpha_i = \kappa$. Any function $f \in \kappa^\lambda$ has image of size $|f[\lambda]| \le \lambda < \mathrm{cf}(\kappa)$, contained in κ , hence $f[\lambda]$ is not cofinal in κ . It follows that $f[\lambda]$ is bounded above by some α_i . This implies that

$$f \in \kappa^{\lambda} \implies f \in \alpha_i^{\lambda}$$

$$\kappa \leq \kappa^{\lambda} = |\bigcup_{i < \mathrm{cf}(\kappa)} \alpha_i^{\lambda}| \leq |\bigsqcup_{i < \mathrm{cf}(\kappa)} \alpha_i^{\lambda}|
= \sum_{i < \mathrm{cf}(\kappa)} |\alpha_i|^{\lambda} \leq \sum_{i < \mathrm{cf}(\kappa)} \kappa \leq \mathrm{cf}(\kappa) \cdot \kappa$$

Assumptions:

- $\lambda^{\inf} < \operatorname{cf}(\kappa) \ (\leq \kappa)$.
- κ is λ -unreachable from below.

Conclusion: $\kappa^{\lambda} = \kappa$.

Choose a sequence $\alpha_0 < \alpha_1 < \alpha_2 < \cdots < \kappa$ of length $\mathrm{cf}(\kappa)$ such that $\bigcup_{i < \mathrm{cf}(\kappa)} \alpha_i = \kappa$. Any function $f \in \kappa^\lambda$ has image of size $|f[\lambda]| \le \lambda < \mathrm{cf}(\kappa)$, contained in κ , hence $f[\lambda]$ is not cofinal in κ . It follows that $f[\lambda]$ is bounded above by some α_i . This implies that

$$f \in \kappa^{\lambda} \implies f \in \alpha_i^{\lambda}$$

$$\begin{array}{ll} \kappa \leq \kappa^{\lambda} &= |\bigcup_{i < \operatorname{cf}(\kappa)} \alpha_i^{\lambda}| \leq |\bigsqcup_{i < \operatorname{cf}(\kappa)} \alpha_i^{\lambda}| \\ &= \sum_{i < \operatorname{cf}(\kappa)} |\alpha_i|^{\lambda} \leq \sum_{i < \operatorname{cf}(\kappa)} \kappa \leq \operatorname{cf}(\kappa) \cdot \kappa = \kappa. \end{array}$$

Assumptions:

- $\lambda^{\inf} < \operatorname{cf}(\kappa) \ (\leq \kappa)$.
- κ is λ -unreachable from below.

Conclusion: $\kappa^{\lambda} = \kappa$.

Choose a sequence $\alpha_0 < \alpha_1 < \alpha_2 < \cdots < \kappa$ of length $\mathrm{cf}(\kappa)$ such that $\bigcup_{i < \mathrm{cf}(\kappa)} \alpha_i = \kappa$. Any function $f \in \kappa^\lambda$ has image of size $|f[\lambda]| \le \lambda < \mathrm{cf}(\kappa)$, contained in κ , hence $f[\lambda]$ is not cofinal in κ . It follows that $f[\lambda]$ is bounded above by some α_i . This implies that

$$f \in \kappa^{\lambda} \implies f \in \alpha_i^{\lambda}$$

$$\kappa \leq \kappa^{\lambda} = |\bigcup_{i < cf(\kappa)} \alpha_i^{\lambda}| \leq |\bigcup_{i < cf(\kappa)} \alpha_i^{\lambda}|
= \sum_{i < cf(\kappa)} |\alpha_i|^{\lambda} \leq \sum_{i < cf(\kappa)} \kappa \leq cf(\kappa) \cdot \kappa = \kappa.$$

$$f^{\alpha}(x) = \begin{cases} f(x) & \text{if } f(x) < \alpha \\ 0 & \text{else.} \end{cases}$$

$$f^{\alpha}(x) = \begin{cases} f(x) & \text{if } f(x) < \alpha \\ 0 & \text{else.} \end{cases}$$

The α -truncation of f "reveals" the part of the graph of f bounded above by the line $y=\alpha$.

$$f^{\alpha}(x) = \begin{cases} f(x) & \text{if } f(x) < \alpha \\ 0 & \text{else.} \end{cases}$$

The α -truncation of f "reveals" the part of the graph of f bounded above by the line $y=\alpha$. Note:

$$f^{\alpha}(x) = \begin{cases} f(x) & \text{if } f(x) < \alpha \\ 0 & \text{else.} \end{cases}$$

The α -truncation of f "reveals" the part of the graph of f bounded above by the line $y=\alpha$. Note:

$$f \in \kappa^{\lambda} \implies f^{\alpha} \in \alpha^{\lambda}.$$

Assumptions:

Assumptions:

• $\operatorname{cf}(\kappa) \leq \lambda < \kappa$.

Assumptions:

• $\operatorname{cf}(\kappa) \leq \lambda < \kappa$.

Assumptions:

- $\operatorname{cf}(\kappa) \leq \lambda < \kappa$.
- κ is λ -unreachable from below.

Assumptions:

- $\operatorname{cf}(\kappa) \leq \lambda < \kappa$.
- κ is λ -unreachable from below.

Assumptions:

- $\operatorname{cf}(\kappa) \leq \lambda < \kappa$.
- κ is λ -unreachable from below.

Conclusion:

Assumptions:

- $\operatorname{cf}(\kappa) \leq \lambda < \kappa$.
- κ is λ -unreachable from below.

Conclusion: $\kappa^{\lambda} = \kappa^{\operatorname{cf}(\kappa)}$.

Assumptions:

- $\operatorname{cf}(\kappa) \leq \lambda < \kappa$.
- κ is λ -unreachable from below.

Conclusion: $\kappa^{\lambda} = \kappa^{\operatorname{cf}(\kappa)}$.

Choose a sequence $\alpha_0 < \alpha_1 < \alpha_2 < \cdots < \kappa$ of length $cf(\kappa)$ such that $\bigcup_{i < cf(\kappa)} \alpha_i = \kappa$.

Assumptions:

- $\operatorname{cf}(\kappa) \leq \lambda < \kappa$.
- κ is λ -unreachable from below.

Conclusion: $\kappa^{\lambda} = \kappa^{\operatorname{cf}(\kappa)}$.

Choose a sequence $\alpha_0 < \alpha_1 < \alpha_2 < \cdots < \kappa$ of length $cf(\kappa)$ such that $\bigcup_{i < cf(\kappa)} \alpha_i = \kappa$.

Encode each $f \in \kappa^{\lambda}$ as its sequence $(f^{\alpha_i})_{i < cf(\kappa)}$ of α_i -truncations.

Assumptions:

- $\operatorname{cf}(\kappa) \leq \lambda < \kappa$.
- κ is λ -unreachable from below.

Conclusion: $\kappa^{\lambda} = \kappa^{\operatorname{cf}(\kappa)}$.

Choose a sequence $\alpha_0 < \alpha_1 < \alpha_2 < \cdots < \kappa$ of length $cf(\kappa)$ such that $\bigcup_{i < cf(\kappa)} \alpha_i = \kappa$.

Encode each $f \in \kappa^{\lambda}$ as its sequence $(f^{\alpha_i})_{i < cf(\kappa)}$ of α_i -truncations.

The number of codes is bounded above by $\prod_{i < cf(\kappa)} |\alpha_i|^{\lambda}$.

Assumptions:

- $\operatorname{cf}(\kappa) \leq \lambda < \kappa$.
- κ is λ -unreachable from below.

Conclusion: $\kappa^{\lambda} = \kappa^{\operatorname{cf}(\kappa)}$.

Choose a sequence $\alpha_0 < \alpha_1 < \alpha_2 < \cdots < \kappa$ of length $cf(\kappa)$ such that $\bigcup_{i < cf(\kappa)} \alpha_i = \kappa$.

Encode each $f \in \kappa^{\lambda}$ as its sequence $(f^{\alpha_i})_{i < cf(\kappa)}$ of α_i -truncations.

The number of codes is bounded above by $\prod_{i < \mathrm{cf}(\kappa)} |\alpha_i|^{\lambda}$. Since κ is

 λ -unreachable from below,

Assumptions:

- $\operatorname{cf}(\kappa) \leq \lambda < \kappa$.
- κ is λ -unreachable from below.

Conclusion: $\kappa^{\lambda} = \kappa^{\operatorname{cf}(\kappa)}$.

Choose a sequence $\alpha_0 < \alpha_1 < \alpha_2 < \cdots < \kappa$ of length $cf(\kappa)$ such that $\bigcup_{i < cf(\kappa)} \alpha_i = \kappa$.

Encode each $f \in \kappa^{\lambda}$ as its sequence $(f^{\alpha_i})_{i < cf(\kappa)}$ of α_i -truncations.

The number of codes is bounded above by $\prod_{i < \mathrm{cf}(\kappa)} |\alpha_i|^{\lambda}$. Since κ is

 λ -unreachable from below, and $|\alpha_i| \leq \alpha_i < \kappa$,

Assumptions:

- $\operatorname{cf}(\kappa) \leq \lambda < \kappa$.
- κ is λ -unreachable from below.

Conclusion: $\kappa^{\lambda} = \kappa^{\operatorname{cf}(\kappa)}$.

Choose a sequence $\alpha_0 < \alpha_1 < \alpha_2 < \cdots < \kappa$ of length $cf(\kappa)$ such that $\bigcup_{i < cf(\kappa)} \alpha_i = \kappa$.

Encode each $f \in \kappa^{\lambda}$ as its sequence $(f^{\alpha_i})_{i < cf(\kappa)}$ of α_i -truncations.

The number of codes is bounded above by $\prod_{i < cf(\kappa)} |\alpha_i|^{\lambda}$. Since κ is

 λ -unreachable from below, and $|\alpha_i| \leq \alpha_i < \kappa$, we have $|\alpha_i|^{\lambda} < \kappa$.

Assumptions:

- $\operatorname{cf}(\kappa) \leq \lambda < \kappa$.
- κ is λ -unreachable from below.

Conclusion: $\kappa^{\lambda} = \kappa^{\operatorname{cf}(\kappa)}$.

Choose a sequence $\alpha_0 < \alpha_1 < \alpha_2 < \cdots < \kappa$ of length $cf(\kappa)$ such that $\bigcup_{i < cf(\kappa)} \alpha_i = \kappa$.

Encode each $f \in \kappa^{\lambda}$ as its sequence $(f^{\alpha_i})_{i < \mathrm{cf}(\kappa)}$ of α_i -truncations.

The number of codes is bounded above by $\prod_{i < cf(\kappa)} |\alpha_i|^{\lambda}$. Since κ is

Assumptions:

- $\operatorname{cf}(\kappa) \leq \lambda < \kappa$.
- κ is λ -unreachable from below.

Conclusion: $\kappa^{\lambda} = \kappa^{\operatorname{cf}(\kappa)}$.

Choose a sequence $\alpha_0 < \alpha_1 < \alpha_2 < \cdots < \kappa$ of length $cf(\kappa)$ such that $\bigcup_{i < cf(\kappa)} \alpha_i = \kappa$.

Encode each $f \in \kappa^{\lambda}$ as its sequence $(f^{\alpha_i})_{i < cf(\kappa)}$ of α_i -truncations.

The number of codes is bounded above by $\prod_{i < \mathrm{cf}(\kappa)} |\alpha_i|^{\lambda}$. Since κ is

$$\kappa^{\prime}$$

Assumptions:

- $\operatorname{cf}(\kappa) \leq \lambda < \kappa$.
- κ is λ -unreachable from below.

Conclusion: $\kappa^{\lambda} = \kappa^{\operatorname{cf}(\kappa)}$.

Choose a sequence $\alpha_0 < \alpha_1 < \alpha_2 < \cdots < \kappa$ of length $cf(\kappa)$ such that $\bigcup_{i < cf(\kappa)} \alpha_i = \kappa$.

Encode each $f \in \kappa^{\lambda}$ as its sequence $(f^{\alpha_i})_{i < cf(\kappa)}$ of α_i -truncations.

The number of codes is bounded above by $\prod_{i < \mathrm{cf}(\kappa)} |\alpha_i|^{\lambda}$. Since κ is

$$\overset{\kappa^{\lambda}}{\uparrow} \leq \prod_{i < \mathrm{cf}(\kappa)} |\alpha_i|^{\lambda}$$

Assumptions:

- $\operatorname{cf}(\kappa) \leq \lambda < \kappa$.
- κ is λ -unreachable from below.

Conclusion: $\kappa^{\lambda} = \kappa^{\operatorname{cf}(\kappa)}$.

Choose a sequence $\alpha_0 < \alpha_1 < \alpha_2 < \cdots < \kappa$ of length $cf(\kappa)$ such that $\bigcup_{i < cf(\kappa)} \alpha_i = \kappa$.

Encode each $f \in \kappa^{\lambda}$ as its sequence $(f^{\alpha_i})_{i < cf(\kappa)}$ of α_i -truncations.

The number of codes is bounded above by $\prod_{i < \mathrm{cf}(\kappa)} |\alpha_i|^{\lambda}$. Since κ is

$$\underset{\uparrow}{\kappa^{\lambda}} \leq \prod_{i < \operatorname{cf}(\kappa)} |\alpha_i|^{\lambda} \leq \prod_{i < \operatorname{cf}(\kappa)} \kappa$$

Assumptions:

- $\operatorname{cf}(\kappa) \leq \lambda < \kappa$.
- κ is λ -unreachable from below.

Conclusion: $\kappa^{\lambda} = \kappa^{\operatorname{cf}(\kappa)}$.

Choose a sequence $\alpha_0 < \alpha_1 < \alpha_2 < \cdots < \kappa$ of length $cf(\kappa)$ such that $\bigcup_{i < cf(\kappa)} \alpha_i = \kappa$.

Encode each $f \in \kappa^{\lambda}$ as its sequence $(f^{\alpha_i})_{i < cf(\kappa)}$ of α_i -truncations.

The number of codes is bounded above by $\prod_{i < \mathrm{cf}(\kappa)} |\alpha_i|^{\lambda}$. Since κ is

$$\underset{\uparrow}{\kappa^{\lambda}} \leq \prod_{i < \mathrm{cf}(\kappa)} |\alpha_i|^{\lambda} \leq \prod_{i < \mathrm{cf}(\kappa)} \kappa = \underset{\uparrow}{\kappa^{\mathrm{cf}(\kappa)}}$$

Assumptions:

- $\operatorname{cf}(\kappa) \leq \lambda < \kappa$.
- κ is λ -unreachable from below.

Conclusion: $\kappa^{\lambda} = \kappa^{\operatorname{cf}(\kappa)}$.

Choose a sequence $\alpha_0 < \alpha_1 < \alpha_2 < \cdots < \kappa$ of length $cf(\kappa)$ such that $\bigcup_{i < cf(\kappa)} \alpha_i = \kappa$.

Encode each $f \in \kappa^{\lambda}$ as its sequence $(f^{\alpha_i})_{i < cf(\kappa)}$ of α_i -truncations.

The number of codes is bounded above by $\prod_{i < \mathrm{cf}(\kappa)} |\alpha_i|^{\lambda}$. Since κ is

$$\kappa^{\lambda} \leq \prod_{i < \mathrm{cf}(\kappa)} |\alpha_i|^{\lambda} \leq \prod_{i < \mathrm{cf}(\kappa)} \kappa = \kappa^{\mathrm{cf}(\kappa)} \leq \kappa^{\lambda}.$$

Assumptions:

- $\operatorname{cf}(\kappa) \leq \lambda < \kappa$.
- κ is λ -unreachable from below.

Conclusion: $\kappa^{\lambda} = \kappa^{\operatorname{cf}(\kappa)}$.

Choose a sequence $\alpha_0 < \alpha_1 < \alpha_2 < \cdots < \kappa$ of length $cf(\kappa)$ such that $\bigcup_{i < cf(\kappa)} \alpha_i = \kappa$.

Encode each $f \in \kappa^{\lambda}$ as its sequence $(f^{\alpha_i})_{i < cf(\kappa)}$ of α_i -truncations.

The number of codes is bounded above by $\prod_{i < \mathrm{cf}(\kappa)} |\alpha_i|^{\lambda}$. Since κ is

$$\kappa^{\lambda} \leq \prod_{i < cf(\kappa)} |\alpha_i|^{\lambda} \leq \prod_{i < cf(\kappa)} \kappa = \kappa^{cf(\kappa)} \leq \kappa^{\lambda}. \qquad \Box$$