Category Theory Homework Assignment IX

For Alessandra, Daniel, Storey, Noah: Present the problems below on December 11.

PROBLEMS

1. Let \pm Grp be the category of groups with \pm morphisms. By a +morphism I mean an ordinary group homomorphism $f(xy) = f(x)f(y), f(x^{-1}) = f(x)^{-1}, f(e) = e$, while by a --morphism I mean an antihomomorphism $f(xy) = f(y)f(x), f(x^{-1}) = f(x)^{-1}, f(e) = e$.

(a) Does \pm Grp have products? Equalizers?

(b) Does the forgetful functor $U: \pm \mathbf{Grp} \to \mathbf{Set}$ have a left adjoint?

2. Let G be a group considered as a 1-object category, \mathcal{G} . Describe the possible monads on \mathcal{G} .

3. Exercise V.9.5 of Mac Lane.

4. It is a theorem of group theory that a Grp-morphism $\alpha : \mathbb{H} \to \mathbb{K}$ is an isomorphism if and only if the underlying Set-morphism $\alpha : H \to K$ is an isomorphism. (That is, a group homomorphism is an isomorphism if and only if it is bijective.) Show that if T is any monad on a category \mathcal{D} , then a morphism $\alpha : \mathbb{H} \to \mathbb{K}$ of T-algebras in \mathcal{D} is an isomorphism if and only if the underlying \mathcal{D} -morphism, $\alpha : H \to K$, is an isomorphism.