Stirling numbers of the second kind!

Definition 1. The number of partitions of an n-element set into k cells is denoted

$$
\left\{\begin{array}{l}
n \\
k
\end{array}\right\} \quad \text { or } \quad \mathrm{S}(n, k)
$$

and is called a Stirling number of the second kind.
Theorem 2. (Formula for Stirling numbers.)

$$
S(n, k)=\frac{1}{k!}\left(\sum_{i=0}^{k}(-1)^{i}\binom{k}{i}(k-i)^{n}\right) .
$$

Theorem 3. (Recursion for Stirling numbers.)
(1) $\mathrm{S}(n, k)=0$ if $n<k$.
(2) $\mathrm{S}(0,0)=1$ and $\mathrm{S}(n, 0)=0$ if $n>0$.
(3) $\mathrm{S}(n, k)=\mathrm{S}(n-1, k-1)+k \cdot \mathrm{~S}(n-1, k)$

Theorem 4. (Binomial-type Theorem for Stirling Numbers.)

$$
x^{n}=\sum_{k=0}^{n}\left\{\begin{array}{c}
n \\
k
\end{array}\right\} x^{\underline{k}}, \text { where } x^{\underline{k}}=(x)_{k}=x(x-1) \cdots(x-(k-1)) .
$$

Definition 5. The total number of partitions of an n-element set is denoted B_{n}, and is called the nth Bell number.
Theorem 6. $B_{n}=\sum_{k=0}^{n} S(n, k)$.

Problems.

(1) Determine how the numbers $2^{n-1}, B_{n}, n!, n^{n}, 2^{n^{2}}$ are related to each other as n grows. (Which is larger than which?)
(2) Show that the Bell numbers are equal to the sequence defined recursively by

$$
\begin{aligned}
B_{0} & =1 \\
B_{n+1} & =\binom{n}{n} B_{n}+\binom{n}{n-1} B_{n-1}+\cdots+\binom{n}{0} B_{0} .
\end{aligned}
$$

(3) Show that $S(n, n-1)=C(n, 2)$. Find a formula involving binomial coefficients for $S(n, n-2)$.
(4) Show that if p is prime, then p divides $S(p, k)$ whenever $1<k<p$. (Hint: imagine cyclically permuting the numbers $1,2, \ldots, p$. Show that partitions into k-cells get permuted in p-cycles.)
(5) Suppose that $|A|=n$ and $|B|=m$. How many pairs (X, Y) are there where $X=\operatorname{coim}(f)$ and $Y=\operatorname{im}(f)$ for some function $f: A \rightarrow B$?

$n \backslash k$	0	1	2	3	4	5	6	7	8	\cdots
0	1	0	0	0	0	0	0	0	0	\cdots
1	0	1	0	0	0	0	0	0	0	\cdots
2	0	1	1	0	0	0	0	0	0	\cdots
3	0	1	3	1	0	0	0	0	0	\cdots
4	0	1	7	6	1	0	0	0	0	\cdots
5	0	1	15	25	10	1	0	0	0	\cdots
6	0	1	31	90	65	15	1	0	0	\cdots
7	0	1	63	301	350	140	21	1	0	\cdots
8	0	1	127	966	1701	1050	266	28	1	\cdots
\vdots	\ddots									

