Stirling numbers of the second kind!

Definition 1. The number of partitions of an n-element set into k cells is denoted

$$\left\{\begin{array}{c}n\\k\end{array}\right\} \quad \text{or} \quad \mathbf{S}(n,k),$$

and is called a Stirling number of the second kind.

Theorem 2. (Formula for Stirling numbers.) $S(n,k) = \frac{1}{k!} \left(\sum_{i=0}^{k} (-1)^{i} {k \choose i} (k-i)^{n} \right).$

Theorem 3. (Recursion for Stirling numbers.)

- (1) S(n,k) = 0 if n < k.
- (2) S(0,0) = 1 and S(n,0) = 0 if n > 0.
- (3) $S(n,k) = S(n-1,k-1) + k \cdot S(n-1,k)$

Theorem 4. (Binomial-type Theorem for Stirling Numbers.)

$$x^{n} = \sum_{k=0}^{n} \left\{ \begin{array}{c} n \\ k \end{array} \right\} x^{\underline{k}}, \text{ where } x^{\underline{k}} = (x)_{k} = x(x-1)\cdots(x-(k-1)).$$

Definition 5. The total number of partitions of an *n*-element set is denoted B_n , and is called the *n*th *Bell number*.

Theorem 6. $B_n = \sum_{k=0}^n S(n,k).$

Problems.

- (1) Determine how the numbers 2^{n-1} , B_n , n!, n^n , 2^{n^2} are related to each other as n grows. (Which is larger than which?)
- (2) Show that the Bell numbers are equal to the sequence defined recursively by

$$B_0 = 1$$

$$B_{n+1} = \binom{n}{n} B_n + \binom{n}{n-1} B_{n-1} + \dots + \binom{n}{0} B_0.$$

- (3) Show that S(n, n 1) = C(n, 2). Find a formula involving binomial coefficients for S(n, n 2).
- (4) Show that if p is prime, then p divides S(p, k) whenever 1 < k < p. (Hint: imagine cyclically permuting the numbers $1, 2, \ldots, p$. Show that partitions into k-cells get permuted in p-cycles.)
- (5) Suppose that |A| = n and |B| = m. How many pairs (X, Y) are there where $X = \operatorname{coim}(f)$ and $Y = \operatorname{im}(f)$ for some function $f \colon A \to B$?

$n \setminus k$	0	1	2	3	4	5	6	7	8	•••
0	1	0	0	0	0	0	0	0	0	• • •
1	0	1	0	0	0	0	0	0	0	• • •
2	0	1	1	0	0	0	0	0	0	• • •
3	0	1	3	1	0	0	0	0	0	• • •
4	0	1	7	6	1	0	0	0	0	• • •
5	0	1	15	25	10	1	0	0	0	•••
6	0	1	31	90	65	15	1	0	0	
7	0	1	63	301	350	140	21	1	0	• • •
8	0	1	127	966	1701	1050	266	28	1	
:	:	:	÷	:	÷	÷	:	÷	:	·