The First Axioms of Set Theory

The structure of the axioms

The structure of the axioms

The undefined notions of set theory are "set" and "membership".

The structure of the axioms

The undefined notions of set theory are "set" and "membership". We write " $A \in B$ " to mean " A is a set that is a member of set B ".

The structure of the axioms

The undefined notions of set theory are "set" and "membership".
We write " $A \in B$ " to mean " A is a set that is a member of set B ".
Although "set" and "membership" are undefined, their meaning is limited by the axioms,

The structure of the axioms

The undefined notions of set theory are "set" and "membership".
We write " $A \in B$ " to mean " A is a set that is a member of set B ".
Although "set" and "membership" are undefined, their meaning is limited by the axioms, which are statements restricting the possible interpretations of "set" and "membership".

The structure of the axioms

The undefined notions of set theory are "set" and "membership".
We write " $A \in B$ " to mean " A is a set that is a member of set B ".
Although "set" and "membership" are undefined, their meaning is limited by the axioms, which are statements restricting the possible interpretations of "set" and "membership".

There are four families of axioms.

The structure of the axioms

The undefined notions of set theory are "set" and "membership".
We write " $A \in B$ " to mean " A is a set that is a member of set B ".
Although "set" and "membership" are undefined, their meaning is limited by the axioms, which are statements restricting the possible interpretations of "set" and "membership".

There are four families of axioms.
(1) One axiom (Extensionality) telling us when two sets are equal.

The structure of the axioms

The undefined notions of set theory are "set" and "membership".
We write " $A \in B$ " to mean " A is a set that is a member of set B ".
Although "set" and "membership" are undefined, their meaning is limited by the axioms, which are statements restricting the possible interpretations of "set" and "membership".

There are four families of axioms.
(1) One axiom (Extensionality) telling us when two sets are equal.

The structure of the axioms

The undefined notions of set theory are "set" and "membership".
We write " $A \in B$ " to mean " A is a set that is a member of set B ".
Although "set" and "membership" are undefined, their meaning is limited by the axioms, which are statements restricting the possible interpretations of "set" and "membership".

There are four families of axioms.
(1) One axiom (Extensionality) telling us when two sets are equal.
(2) Two axioms telling us that certain sets exist

The structure of the axioms

The undefined notions of set theory are "set" and "membership".
We write " $A \in B$ " to mean " A is a set that is a member of set B ".
Although "set" and "membership" are undefined, their meaning is limited by the axioms, which are statements restricting the possible interpretations of "set" and "membership".

There are four families of axioms.
(1) One axiom (Extensionality) telling us when two sets are equal.
(2) Two axioms telling us that certain sets exist

The structure of the axioms

The undefined notions of set theory are "set" and "membership".
We write " $A \in B$ " to mean " A is a set that is a member of set B ".
Although "set" and "membership" are undefined, their meaning is limited by the axioms, which are statements restricting the possible interpretations of "set" and "membership".

There are four families of axioms.
(1) One axiom (Extensionality) telling us when two sets are equal.
(2) Two axioms telling us that certain sets exist (\emptyset, \mathbb{N}).

The structure of the axioms

The undefined notions of set theory are "set" and "membership".
We write " $A \in B$ " to mean " A is a set that is a member of set B ".
Although "set" and "membership" are undefined, their meaning is limited by the axioms, which are statements restricting the possible interpretations of "set" and "membership".

There are four families of axioms.
(1) One axiom (Extensionality) telling us when two sets are equal.
(2) Two axioms telling us that certain sets exist (\emptyset, \mathbb{N}).
(3 Six axioms telling us how to create new sets from old.

The structure of the axioms

The undefined notions of set theory are "set" and "membership".
We write " $A \in B$ " to mean " A is a set that is a member of set B ".
Although "set" and "membership" are undefined, their meaning is limited by the axioms, which are statements restricting the possible interpretations of "set" and "membership".

There are four families of axioms.
(1) One axiom (Extensionality) telling us when two sets are equal.
(2) Two axioms telling us that certain sets exist (\emptyset, \mathbb{N}).
(3 Six axioms telling us how to create new sets from old.

The structure of the axioms

The undefined notions of set theory are "set" and "membership".
We write " $A \in B$ " to mean " A is a set that is a member of set B ".
Although "set" and "membership" are undefined, their meaning is limited by the axioms, which are statements restricting the possible interpretations of "set" and "membership".

There are four families of axioms.
(1) One axiom (Extensionality) telling us when two sets are equal.
(2) Two axioms telling us that certain sets exist (\emptyset, \mathbb{N}).
(3) Six axioms telling us how to create new sets from old.
(One axiom (Foundation) telling us that sets have special properties.

The structure of the axioms

The undefined notions of set theory are "set" and "membership".
We write " $A \in B$ " to mean " A is a set that is a member of set B ".
Although "set" and "membership" are undefined, their meaning is limited by the axioms, which are statements restricting the possible interpretations of "set" and "membership".

There are four families of axioms.
(1) One axiom (Extensionality) telling us when two sets are equal.
(2) Two axioms telling us that certain sets exist (\emptyset, \mathbb{N}).
(3) Six axioms telling us how to create new sets from old.
(One axiom (Foundation) telling us that sets have special properties.

The structure of the axioms

The undefined notions of set theory are "set" and "membership".
We write " $A \in B$ " to mean " A is a set that is a member of set B ".
Although "set" and "membership" are undefined, their meaning is limited by the axioms, which are statements restricting the possible interpretations of "set" and "membership".

There are four families of axioms.
(1) One axiom (Extensionality) telling us when two sets are equal.
(2) Two axioms telling us that certain sets exist (\emptyset, \mathbb{N}).
(3) Six axioms telling us how to create new sets from old.
(One axiom (Foundation) telling us that sets have special properties.

Axiom 1: The Axiom of Extensionality

Axiom 1: The Axiom of Extensionality

Two sets are equal if and only if they have the same elements.

Axiom 1: The Axiom of Extensionality

Two sets are equal if and only if they have the same elements.
With this axiom, we see that $\{A, B\}=\{B, A\}$, while $\} \neq\{\{ \}\}$.

Axiom 1: The Axiom of Extensionality

Two sets are equal if and only if they have the same elements.
With this axiom, we see that $\{A, B\}=\{B, A\}$, while $\} \neq\{\{ \}\}$.
We also see that there is at most one empty set.

Axiom 1: The Axiom of Extensionality

Two sets are equal if and only if they have the same elements.
With this axiom, we see that $\{A, B\}=\{B, A\}$, while $\} \neq\{\{ \}\}$.
We also see that there is at most one empty set.
In formal symbols, we write this axiom as

$$
(\forall x)(\forall y)[(x=y) \leftrightarrow(\forall z)((z \in x) \leftrightarrow(z \in y))],
$$

Axiom 1: The Axiom of Extensionality

Two sets are equal if and only if they have the same elements.
With this axiom, we see that $\{A, B\}=\{B, A\}$, while $\} \neq\{\{ \}\}$.
We also see that there is at most one empty set.
In formal symbols, we write this axiom as

$$
(\forall x)(\forall y)[(x=y) \leftrightarrow(\forall z)((z \in x) \leftrightarrow(z \in y))],
$$

which is read

Axiom 1: The Axiom of Extensionality

Two sets are equal if and only if they have the same elements.
With this axiom, we see that $\{A, B\}=\{B, A\}$, while $\} \neq\{\{ \}\}$.
We also see that there is at most one empty set.
In formal symbols, we write this axiom as

$$
(\forall x)(\forall y)[(x=y) \leftrightarrow(\forall z)((z \in x) \leftrightarrow(z \in y))],
$$

which is read
For all x and forall y, x is equal to y if and only if, for all z, $\underbrace{z \text { belongs to } x \text { iff } z \text { belongs to } y}$.
x and y have the same elements z

Axiom 2: The Axiom of the Empty Set

Axiom 2: The Axiom of the Empty Set

There is a set with no elements.

Axiom 2: The Axiom of the Empty Set

There is a set with no elements.
We write

Axiom 2: The Axiom of the Empty Set

There is a set with no elements.
We write

$$
(\exists x)(\forall y)(y \notin x),
$$

Axiom 2: The Axiom of the Empty Set

There is a set with no elements.
We write

$$
(\exists x)(\forall y)(y \notin x),
$$

which is read

Axiom 2: The Axiom of the Empty Set

There is a set with no elements.
We write

$$
(\exists x)(\forall y)(y \notin x),
$$

which is read
There exists a set x such that, for all y, y is not an element of x.

Axiom 2: The Axiom of the Empty Set

There is a set with no elements.
We write

$$
(\exists x)(\forall y)(y \notin x),
$$

which is read
There exists a set x such that, for all y, y is not an element of x. (So x has no elements.)

Axiom 2: The Axiom of the Empty Set

There is a set with no elements.
We write

$$
(\exists x)(\forall y)(y \notin x),
$$

which is read
There exists a set x such that, for all y, y is not an element of x. (So x has no elements.) We introduce a symbol \emptyset to denote the set referred to in this axiom.

Axiom 4: The Axiom of Pairing

Axiom 4: The Axiom of Pairing

Given sets x and y, there is a set z whose only elements are x and y.

Axiom 4: The Axiom of Pairing

Given sets x and y, there is a set z whose only elements are x and y. This allows us to create the unordered pair $z=\{x, y\}$.

Axiom 4: The Axiom of Pairing

Given sets x and y, there is a set z whose only elements are x and y.
This allows us to create the unordered pair $z=\{x, y\}$. We allow $x=y$,

Axiom 4: The Axiom of Pairing

Given sets x and y, there is a set z whose only elements are x and y.
This allows us to create the unordered pair $z=\{x, y\}$. We allow $x=y$, in which case $z=\{x, y\}=\{x, x\}=\{x\}$.

Axiom 4: The Axiom of Pairing

Given sets x and y, there is a set z whose only elements are x and y.
This allows us to create the unordered pair $z=\{x, y\}$. We allow $x=y$, in which case $z=\{x, y\}=\{x, x\}=\{x\}$. Therefore, the Axiom of Pairing guarantees that if x is a set, so is $\{x\}$.

Axiom 4: The Axiom of Pairing

Given sets x and y, there is a set z whose only elements are x and y.
This allows us to create the unordered pair $z=\{x, y\}$. We allow $x=y$, in which case $z=\{x, y\}=\{x, x\}=\{x\}$. Therefore, the Axiom of Pairing guarantees that if x is a set, so is $\{x\}$.

We write the Axiom of Pairing formally as

Axiom 4: The Axiom of Pairing

Given sets x and y, there is a set z whose only elements are x and y.
This allows us to create the unordered pair $z=\{x, y\}$. We allow $x=y$, in which case $z=\{x, y\}=\{x, x\}=\{x\}$. Therefore, the Axiom of Pairing guarantees that if x is a set, so is $\{x\}$.

We write the Axiom of Pairing formally as

$$
(\forall x)(\forall y)(\exists z)(\forall w)((w \in z) \leftrightarrow(w=x) \vee(w=y)) .
$$

Axiom 4: The Axiom of Pairing

Given sets x and y, there is a set z whose only elements are x and y.
This allows us to create the unordered pair $z=\{x, y\}$. We allow $x=y$, in which case $z=\{x, y\}=\{x, x\}=\{x\}$. Therefore, the Axiom of Pairing guarantees that if x is a set, so is $\{x\}$.

We write the Axiom of Pairing formally as

$$
(\forall x)(\forall y)(\exists z)(\forall w)((w \in z) \leftrightarrow(w=x) \vee(w=y)) . \quad(\vee=\text { or })
$$

Axiom 5: The Axiom of Union

Axiom 5: The Axiom of Union

Given a set x, there is a set y whose elements are the elements of elements of x.

Axiom 5: The Axiom of Union

Given a set x, there is a set y whose elements are the elements of elements of x.

The y in this axiom is called the union of x.

Axiom 5: The Axiom of Union

Given a set x, there is a set y whose elements are the elements of elements of x.

The y in this axiom is called the union of x. We write $y=\bigcup x$.

Axiom 5: The Axiom of Union

Given a set x, there is a set y whose elements are the elements of elements of x.

The y in this axiom is called the union of x. We write $y=\bigcup x$.
Formally, the Axiom of Union is expressed

Axiom 5: The Axiom of Union

Given a set x, there is a set y whose elements are the elements of elements of x.

The y in this axiom is called the union of x. We write $y=\bigcup x$.
Formally, the Axiom of Union is expressed

$$
(\forall x)(\exists y)(\forall z)((z \in y) \leftrightarrow(\exists w)(z \in w) \wedge(w \in x)) .
$$

Axiom 5: The Axiom of Union

Given a set x, there is a set y whose elements are the elements of elements of x.

The y in this axiom is called the union of x. We write $y=\bigcup x$.
Formally, the Axiom of Union is expressed

$$
(\forall x)(\exists y)(\forall z)((z \in y) \leftrightarrow(\exists w)(z \in w) \wedge(w \in x)) . \quad(\wedge=\text { and })
$$

Axiom 5: The Axiom of Union

Given a set x, there is a set y whose elements are the elements of elements of x.

The y in this axiom is called the union of x. We write $y=\bigcup x$.
Formally, the Axiom of Union is expressed

$$
(\forall x)(\exists y)(\forall z)((z \in y) \leftrightarrow(\exists w)(z \in w) \wedge(w \in x)) . \quad(\wedge=\text { and })
$$

Example.

Axiom 5: The Axiom of Union

Given a set x, there is a set y whose elements are the elements of elements of x.

The y in this axiom is called the union of x. We write $y=\bigcup x$.
Formally, the Axiom of Union is expressed

$$
(\forall x)(\exists y)(\forall z)((z \in y) \leftrightarrow(\exists w)(z \in w) \wedge(w \in x)) . \quad(\wedge=\text { and })
$$

Example.
If $x=\{\{A, B, C\},\{C, D\},\{D, E\}\}$, then $\bigcup x=\{A, B, C, D, E\}$.

Axiom 6: The Axiom of Power Set

Axiom 6: The Axiom of Power Set

We say that x is a subset of y if

Axiom 6: The Axiom of Power Set

We say that x is a subset of y if

$$
(\forall z)((z \in x) \rightarrow(z \in y))
$$

Axiom 6: The Axiom of Power Set

We say that x is a subset of y if

$$
(\forall z)((z \in x) \rightarrow(z \in y)) .
$$

We write $x \subseteq y$.

Axiom 6: The Axiom of Power Set

We say that x is a subset of y if

$$
(\forall z)((z \in x) \rightarrow(z \in y)) .
$$

We write $x \subseteq y$. (The relation \subseteq is defined in terms of \in.)

Axiom 6: The Axiom of Power Set

We say that x is a subset of y if

$$
(\forall z)((z \in x) \rightarrow(z \in y)) .
$$

We write $x \subseteq y$. (The relation \subseteq is defined in terms of \in.) Examples.

Axiom 6: The Axiom of Power Set

We say that x is a subset of y if

$$
(\forall z)((z \in x) \rightarrow(z \in y)) .
$$

We write $x \subseteq y$. (The relation \subseteq is defined in terms of \in.) Examples.
(c) $\{0,2\} \subseteq\{0,1,2,3\}$.

Axiom 6: The Axiom of Power Set

We say that x is a subset of y if

$$
(\forall z)((z \in x) \rightarrow(z \in y)) .
$$

We write $x \subseteq y$. (The relation \subseteq is defined in terms of \in.) Examples.
(c) $\{0,2\} \subseteq\{0,1,2,3\}$.

Axiom 6: The Axiom of Power Set

We say that x is a subset of y if

$$
(\forall z)((z \in x) \rightarrow(z \in y)) .
$$

We write $x \subseteq y$. (The relation \subseteq is defined in terms of \in.)
Examples.
(1) $\{0,2\} \subseteq\{0,1,2,3\}$.
(2) $\{A, B\} \subseteq\{A, B\}$.

Axiom 6: The Axiom of Power Set

We say that x is a subset of y if

$$
(\forall z)((z \in x) \rightarrow(z \in y)) .
$$

We write $x \subseteq y$. (The relation \subseteq is defined in terms of \in.)
Examples.
(1) $\{0,2\} \subseteq\{0,1,2,3\}$.
(2) $\{A, B\} \subseteq\{A, B\}$.

Axiom 6: The Axiom of Power Set

We say that x is a subset of y if

$$
(\forall z)((z \in x) \rightarrow(z \in y))
$$

We write $x \subseteq y$. (The relation \subseteq is defined in terms of \in.) Examples.
(1) $\{0,2\} \subseteq\{0,1,2,3\}$.
(2) $\{A, B\} \subseteq\{A, B\}$. In fact, $X \subseteq X$ for any X.

Axiom 6: The Axiom of Power Set

We say that x is a subset of y if

$$
(\forall z)((z \in x) \rightarrow(z \in y))
$$

We write $x \subseteq y$. (The relation \subseteq is defined in terms of \in.) Examples.
(1) $\{0,2\} \subseteq\{0,1,2,3\}$.
(2) $\{A, B\} \subseteq\{A, B\}$. In fact, $X \subseteq X$ for any X.
(3) $\} \subseteq X$ for any set X.

Axiom 6: The Axiom of Power Set

We say that x is a subset of y if

$$
(\forall z)((z \in x) \rightarrow(z \in y))
$$

We write $x \subseteq y$. (The relation \subseteq is defined in terms of \in.) Examples.
(1) $\{0,2\} \subseteq\{0,1,2,3\}$.
(2) $\{A, B\} \subseteq\{A, B\}$. In fact, $X \subseteq X$ for any X.
(3) $\} \subseteq X$ for any set X.

Axiom 6: The Axiom of Power Set

We say that x is a subset of y if

$$
(\forall z)((z \in x) \rightarrow(z \in y))
$$

We write $x \subseteq y$. (The relation \subseteq is defined in terms of \in.)

Examples.

(1) $\{0,2\} \subseteq\{0,1,2,3\}$.
(2) $\{A, B\} \subseteq\{A, B\}$. In fact, $X \subseteq X$ for any X.
(3) $\} \subseteq X$ for any set X.
(4) The subsets of $\{x, y, z\}$ are 8 sets

$$
\},\{x\},\{y\},\{z\},\{x, y\},\{x, z\},\{y, z\},\{x, y, z\}
$$

Axiom 6: The Axiom of Power Set

We say that x is a subset of y if

$$
(\forall z)((z \in x) \rightarrow(z \in y))
$$

We write $x \subseteq y$. (The relation \subseteq is defined in terms of \in.)

Examples.

(1) $\{0,2\} \subseteq\{0,1,2,3\}$.
(2) $\{A, B\} \subseteq\{A, B\}$. In fact, $X \subseteq X$ for any X.
(3) $\} \subseteq X$ for any set X.
(4) The subsets of $\{x, y, z\}$ are 8 sets

$$
\},\{x\},\{y\},\{z\},\{x, y\},\{x, z\},\{y, z\},\{x, y, z\}
$$

Axiom 6: The Axiom of Power Set

We say that x is a subset of y if

$$
(\forall z)((z \in x) \rightarrow(z \in y))
$$

We write $x \subseteq y$. (The relation \subseteq is defined in terms of \in.)

Examples.

(1) $\{0,2\} \subseteq\{0,1,2,3\}$.
(2) $\{A, B\} \subseteq\{A, B\}$. In fact, $X \subseteq X$ for any X.
(3) $\} \subseteq X$ for any set X.
(4) The subsets of $\{x, y, z\}$ are 8 sets

$$
\},\{x\},\{y\},\{z\},\{x, y\},\{x, z\},\{y, z\},\{x, y, z\}
$$

The Axiom:

Axiom 6: The Axiom of Power Set

We say that x is a subset of y if

$$
(\forall z)((z \in x) \rightarrow(z \in y))
$$

We write $x \subseteq y$. (The relation \subseteq is defined in terms of \in.)
Examples.
(1) $\{0,2\} \subseteq\{0,1,2,3\}$.
(2) $\{A, B\} \subseteq\{A, B\}$. In fact, $X \subseteq X$ for any X.
(3) $\} \subseteq X$ for any set X.
(4) The subsets of $\{x, y, z\}$ are 8 sets

$$
\},\{x\},\{y\},\{z\},\{x, y\},\{x, z\},\{y, z\},\{x, y, z\}
$$

The Axiom:
If x is a set, then there is a set $\mathcal{P}(x)$ whose elements are exactly the subsets of x.

Axiom 6: The Axiom of Power Set

We say that x is a subset of y if

$$
(\forall z)((z \in x) \rightarrow(z \in y))
$$

We write $x \subseteq y$. (The relation \subseteq is defined in terms of \in.)
Examples.
(1) $\{0,2\} \subseteq\{0,1,2,3\}$.
(2) $\{A, B\} \subseteq\{A, B\}$. In fact, $X \subseteq X$ for any X.
(3) $\} \subseteq X$ for any set X.
(4) The subsets of $\{x, y, z\}$ are 8 sets

$$
\},\{x\},\{y\},\{z\},\{x, y\},\{x, z\},\{y, z\},\{x, y, z\}
$$

The Axiom:
If x is a set, then there is a set $\mathcal{P}(x)$ whose elements are exactly the subsets of x.

$$
(\forall x)(\exists P)(\forall y)((y \in P) \leftrightarrow(y \subseteq x))
$$

Enriching the language with new symbols

Enriching the language with new symbols

We are discussing set theory using the background language of logic.

Enriching the language with new symbols

We are discussing set theory using the background language of logic. This language allows us to use the nonlogical symbol \in of set membership,

Enriching the language with new symbols

We are discussing set theory using the background language of logic. This language allows us to use the nonlogical symbol \in of set membership, variables x, y, z, \ldots to denote the objects of interest

Enriching the language with new symbols

We are discussing set theory using the background language of logic. This language allows us to use the nonlogical symbol \in of set membership, variables x, y, z, \ldots to denote the objects of interest (= sets),

Enriching the language with new symbols

We are discussing set theory using the background language of logic. This language allows us to use the nonlogical symbol \in of set membership, variables x, y, z, \ldots to denote the objects of interest (= sets), plus logical symbols:

Enriching the language with new symbols

We are discussing set theory using the background language of logic. This language allows us to use the nonlogical symbol \in of set membership, variables x, y, z, \ldots to denote the objects of interest (= sets), plus logical symbols:
© \wedge

Enriching the language with new symbols

We are discussing set theory using the background language of logic. This language allows us to use the nonlogical symbol \in of set membership, variables x, y, z, \ldots to denote the objects of interest (= sets), plus logical symbols:
© \wedge

Enriching the language with new symbols

We are discussing set theory using the background language of logic. This language allows us to use the nonlogical symbol \in of set membership, variables x, y, z, \ldots to denote the objects of interest (= sets), plus logical symbols:
© \wedge "and"

Enriching the language with new symbols

We are discussing set theory using the background language of logic. This language allows us to use the nonlogical symbol \in of set membership, variables x, y, z, \ldots to denote the objects of interest (= sets), plus logical symbols:
(1) \wedge "and"
(2) \vee

Enriching the language with new symbols

We are discussing set theory using the background language of logic. This language allows us to use the nonlogical symbol \in of set membership, variables x, y, z, \ldots to denote the objects of interest (= sets), plus logical symbols:
(1) \wedge "and"
(2) \vee

Enriching the language with new symbols

We are discussing set theory using the background language of logic. This language allows us to use the nonlogical symbol \in of set membership, variables x, y, z, \ldots to denote the objects of interest (= sets), plus logical symbols:
(1) \wedge "and"
(2) V "or"

Enriching the language with new symbols

We are discussing set theory using the background language of logic. This language allows us to use the nonlogical symbol \in of set membership, variables x, y, z, \ldots to denote the objects of interest (= sets), plus logical symbols:
© \wedge "and"
(3) V "or"
(3)

Enriching the language with new symbols

We are discussing set theory using the background language of logic. This language allows us to use the nonlogical symbol \in of set membership, variables x, y, z, \ldots to denote the objects of interest (= sets), plus logical symbols:
© \wedge "and"
(3) V "or"
(3)

Enriching the language with new symbols

We are discussing set theory using the background language of logic. This language allows us to use the nonlogical symbol \in of set membership, variables x, y, z, \ldots to denote the objects of interest (= sets), plus logical symbols:
© \wedge "and"
(2) V "or"
(3) \neg "not"

Enriching the language with new symbols

We are discussing set theory using the background language of logic. This language allows us to use the nonlogical symbol \in of set membership, variables x, y, z, \ldots to denote the objects of interest (= sets), plus logical symbols:
© \wedge "and"
(2) V "or"
(3) "not"
() \rightarrow

Enriching the language with new symbols

We are discussing set theory using the background language of logic. This language allows us to use the nonlogical symbol \in of set membership, variables x, y, z, \ldots to denote the objects of interest (= sets), plus logical symbols:
© \wedge "and"
(2) V "or"
(3) "not"
() \rightarrow

Enriching the language with new symbols

We are discussing set theory using the background language of logic. This language allows us to use the nonlogical symbol \in of set membership, variables x, y, z, \ldots to denote the objects of interest (= sets), plus logical symbols:
(1) \wedge "and"
(2) V "or"
(3) \neg "not"
(9) \rightarrow "implies", or "if, then"

Enriching the language with new symbols

We are discussing set theory using the background language of logic. This language allows us to use the nonlogical symbol \in of set membership, variables x, y, z, \ldots to denote the objects of interest (= sets), plus logical symbols:
(1) \wedge "and"
(2) V "or"
(3) \neg "not"
(9) \rightarrow "implies", or "if, then"
(3) \leftrightarrow

Enriching the language with new symbols

We are discussing set theory using the background language of logic. This language allows us to use the nonlogical symbol \in of set membership, variables x, y, z, \ldots to denote the objects of interest (= sets), plus logical symbols:
(1) \wedge "and"
(2) V "or"
(3) \neg "not"
(9) \rightarrow "implies", or "if, then"
(3) \leftrightarrow

Enriching the language with new symbols

We are discussing set theory using the background language of logic. This language allows us to use the nonlogical symbol \in of set membership, variables x, y, z, \ldots to denote the objects of interest (= sets), plus logical symbols:
(1) \wedge "and"
(2) V "or"
(3) \neg "not"
(9) \rightarrow "implies", or "if, then"
(0) \leftrightarrow "if and only if"

Enriching the language with new symbols

We are discussing set theory using the background language of logic. This language allows us to use the nonlogical symbol \in of set membership, variables x, y, z, \ldots to denote the objects of interest (= sets), plus logical symbols:
(1) \wedge "and"
(2) V "or"
(3) \neg "not"
© \rightarrow "implies", or "if, then"
© \leftrightarrow "if and only if"
(c) \forall

Enriching the language with new symbols

We are discussing set theory using the background language of logic. This language allows us to use the nonlogical symbol \in of set membership, variables x, y, z, \ldots to denote the objects of interest (= sets), plus logical symbols:
(1) \wedge "and"
(2) V "or"
(3) \neg "not"
© \rightarrow "implies", or "if, then"
© \leftrightarrow "if and only if"
(c) \forall

Enriching the language with new symbols

We are discussing set theory using the background language of logic. This language allows us to use the nonlogical symbol \in of set membership, variables x, y, z, \ldots to denote the objects of interest (= sets), plus logical symbols:
(1) \wedge "and"
(2) V "or"
(3) \neg "not"
© \rightarrow "implies", or "if, then"
© \leftrightarrow "if and only if"
(c) \forall "for all"

Enriching the language with new symbols

We are discussing set theory using the background language of logic. This language allows us to use the nonlogical symbol \in of set membership, variables x, y, z, \ldots to denote the objects of interest (= sets), plus logical symbols:
(1) \wedge "and"
(2) V "or"
(3) \neg "not"
© \rightarrow "implies", or "if, then"
© \leftrightarrow "if and only if"
(0) \forall "for all" (universal quantifier)

Enriching the language with new symbols

We are discussing set theory using the background language of logic. This language allows us to use the nonlogical symbol \in of set membership, variables x, y, z, \ldots to denote the objects of interest (= sets), plus logical symbols:
(1) \wedge "and"
(2) V "or"
(3) \neg "not"
(9) \rightarrow "implies", or "if, then"
© \leftrightarrow "if and only if"
(0) \forall "for all" (universal quantifier)
© \exists

Enriching the language with new symbols

We are discussing set theory using the background language of logic. This language allows us to use the nonlogical symbol \in of set membership, variables x, y, z, \ldots to denote the objects of interest (= sets), plus logical symbols:
(1) \wedge "and"
(2) V "or"
(3) \neg "not"
(9) \rightarrow "implies", or "if, then"
© \leftrightarrow "if and only if"
(0) \forall "for all" (universal quantifier)
© \exists

Enriching the language with new symbols

We are discussing set theory using the background language of logic. This language allows us to use the nonlogical symbol \in of set membership, variables x, y, z, \ldots to denote the objects of interest (= sets), plus logical symbols:
(1) \wedge "and"
(2) V "or"
(3) \neg "not"
(9) \rightarrow "implies", or "if, then"
© \leftrightarrow "if and only if"
(0) \forall "for all" (universal quantifier)
© \exists "there exists"

Enriching the language with new symbols

We are discussing set theory using the background language of logic. This language allows us to use the nonlogical symbol \in of set membership, variables x, y, z, \ldots to denote the objects of interest (= sets), plus logical symbols:
(1) \wedge "and"
(2) V "or"
(3) \neg "not"
© \rightarrow "implies", or "if, then"
© \leftrightarrow "if and only if"
(0) \forall "for all" (universal quantifier)
© \exists "there exists" (existential quantifier)

Enriching the language with new symbols

We are discussing set theory using the background language of logic. This language allows us to use the nonlogical symbol \in of set membership, variables x, y, z, \ldots to denote the objects of interest (= sets), plus logical symbols:
(1) \wedge "and"
(2) V "or"
(3) \neg "not"
© \rightarrow "implies", or "if, then"
© \leftrightarrow "if and only if"
(0) \forall "for all" (universal quantifier)

O \exists "there exists" (existential quantifier)
With these, we can define complex concepts, such as:

Enriching the language with new symbols

We are discussing set theory using the background language of logic. This language allows us to use the nonlogical symbol \in of set membership, variables x, y, z, \ldots to denote the objects of interest (= sets), plus logical symbols:
(1) \wedge "and"
(2) \vee "or"
(3) \neg "not"
(4) \rightarrow "implies", or "if, then"
(5) \leftrightarrow "if and only if"
(6) \forall "for all" (universal quantifier)
© \exists "there exists" (existential quantifier)
With these, we can define complex concepts, such as:
(1) $(x=\emptyset) \quad \varphi_{\emptyset}(x): \quad "(\forall y)(y \notin x) "$

Enriching the language with new symbols

We are discussing set theory using the background language of logic. This language allows us to use the nonlogical symbol \in of set membership, variables x, y, z, \ldots to denote the objects of interest (= sets), plus logical symbols:
(1) \wedge "and"
(2) \vee "or"
(3) \neg "not"
(4) \rightarrow "implies", or "if, then"
(5) \leftrightarrow "if and only if"
(6) \forall "for all" (universal quantifier)
© \exists "there exists" (existential quantifier)
With these, we can define complex concepts, such as:
(1) $(x=\emptyset) \quad \varphi_{\emptyset}(x): \quad "(\forall y)(y \notin x) "$

Enriching the language with new symbols

We are discussing set theory using the background language of logic. This language allows us to use the nonlogical symbol \in of set membership, variables x, y, z, \ldots to denote the objects of interest (= sets), plus logical symbols:
(1) \wedge "and"
(2) \vee "or"
(3) \neg "not"
(4) \rightarrow "implies", or "if, then"
(5) \leftrightarrow "if and only if"
(6) \forall "for all" (universal quantifier)
(\exists "there exists" (existential quantifier)
With these, we can define complex concepts, such as:
(1) $(x=\emptyset) \quad \varphi_{\emptyset}(x): "(\forall y)(y \notin x) " \quad(\varphi=\mathrm{phi})$

Enriching the language with new symbols

We are discussing set theory using the background language of logic. This language allows us to use the nonlogical symbol \in of set membership, variables x, y, z, \ldots to denote the objects of interest (= sets), plus logical symbols:
(1) \wedge "and"
(2) \vee "or"
(3) \neg "not"
(4) \rightarrow "implies", or "if, then"
(5) \leftrightarrow "if and only if"
(6) \forall "for all" (universal quantifier)
© \exists "there exists" (existential quantifier)
With these, we can define complex concepts, such as:
(1) $(x=\emptyset) \quad \varphi_{\emptyset}(x): "(\forall y)(y \notin x) " \quad(\varphi=\mathrm{phi})$
(2) $(x \subseteq y) \quad \varphi \subseteq(x, y): \quad "(\forall z)((z \in x) \rightarrow(z \in y)) "$

Enriching the language with new symbols

We are discussing set theory using the background language of logic. This language allows us to use the nonlogical symbol \in of set membership, variables x, y, z, \ldots to denote the objects of interest (= sets), plus logical symbols:
(1) \wedge "and"
(2) \vee "or"
(3) \neg "not"
(4) \rightarrow "implies", or "if, then"
(5) \leftrightarrow "if and only if"
(6) \forall "for all" (universal quantifier)
© \exists "there exists" (existential quantifier)
With these, we can define complex concepts, such as:
(1) $(x=\emptyset) \quad \varphi_{\emptyset}(x): "(\forall y)(y \notin x) " \quad(\varphi=\mathrm{phi})$
(2) $(x \subseteq y) \quad \varphi \subseteq(x, y): \quad "(\forall z)((z \in x) \rightarrow(z \in y)) "$

Enriching the language with new symbols

We are discussing set theory using the background language of logic. This language allows us to use the nonlogical symbol \in of set membership, variables x, y, z, \ldots to denote the objects of interest (= sets), plus logical symbols:
© \wedge "and"
(2) \vee "or"
(3) \neg "not"
© \rightarrow "implies", or "if, then"
(0) \leftrightarrow "if and only if"
(0) \forall "for all" (universal quantifier)

- \exists "there exists" (existential quantifier)

With these, we can define complex concepts, such as:
(1) $(x=\emptyset) \quad \varphi_{\emptyset}(x): "(\forall y)(y \notin x) " \quad(\varphi=\mathrm{phi})$
(2) $(x \subseteq y) \quad \varphi \subseteq(x, y): \quad "(\forall z)((z \in x) \rightarrow(z \in y)) "$
(3) $(y=\mathcal{P}(x)) \quad \varphi_{y=\mathcal{P}(x)}(x, y): \quad "(\forall z)\left((z \in y) \leftrightarrow \varphi_{\subseteq}(z, x)\right) "$

Enriching the language with new symbols

We are discussing set theory using the background language of logic. This language allows us to use the nonlogical symbol \in of set membership, variables x, y, z, \ldots to denote the objects of interest (= sets), plus logical symbols:
© \wedge "and"
(2) \vee "or"
(3) \neg "not"
© \rightarrow "implies", or "if, then"
(0) \leftrightarrow "if and only if"
(0) \forall "for all" (universal quantifier)

- \exists "there exists" (existential quantifier)

With these, we can define complex concepts, such as:
(1) $(x=\emptyset) \quad \varphi_{\emptyset}(x): "(\forall y)(y \notin x) " \quad(\varphi=\mathrm{phi})$
(2) $(x \subseteq y) \quad \varphi \subseteq(x, y): \quad "(\forall z)((z \in x) \rightarrow(z \in y)) "$
(3) $(y=\mathcal{P}(x)) \quad \varphi_{y=\mathcal{P}(x)}(x, y): \quad "(\forall z)\left((z \in y) \leftrightarrow \varphi_{\subseteq}(z, x)\right) "$

Enriching the language with new symbols

We are discussing set theory using the background language of logic. This language allows us to use the nonlogical symbol \in of set membership, variables x, y, z, \ldots to denote the objects of interest (= sets), plus logical symbols:
© \wedge "and"
(2) \vee "or"
(3) \neg "not"
© \rightarrow "implies", or "if, then"
(0) \leftrightarrow "if and only if"
(0) \forall "for all" (universal quantifier)

- \exists "there exists" (existential quantifier)

With these, we can define complex concepts, such as:
(1) $(x=\emptyset) \quad \varphi_{\emptyset}(x): "(\forall y)(y \notin x) " \quad(\varphi=\mathrm{phi})$
(2) $(x \subseteq y) \quad \varphi \subseteq(x, y): \quad "(\forall z)((z \in x) \rightarrow(z \in y)) "$
(3) $(y=\mathcal{P}(x)) \quad \varphi_{y=\mathcal{P}(x)}(x, y): \quad "(\forall z)\left((z \in y) \leftrightarrow \varphi_{\subseteq}(z, x)\right) "$

