Prenex form

Quantifiers: \forall, \exists

Quantifiers: \forall, \exists

Let $\varphi(x)$ be the formula $(x<0)$.

Quantifiers: \forall, \exists

Let $\varphi(x)$ be the formula $(x<0)$. We might want to say that the real numbers have an element x which satisfies this formula. We write

Quantifiers: \forall, \exists

Let $\varphi(x)$ be the formula $(x<0)$. We might want to say that the real numbers have an element x which satisfies this formula. We write

$$
(\exists x) \varphi(x)
$$

Quantifiers: \forall, \exists

Let $\varphi(x)$ be the formula $(x<0)$. We might want to say that the real numbers have an element x which satisfies this formula. We write

$$
(\exists x) \varphi(x)
$$

and read this "there exists x such that $\varphi(x)$ "

Quantifiers: \forall, \exists

Let $\varphi(x)$ be the formula $(x<0)$. We might want to say that the real numbers have an element x which satisfies this formula. We write

$$
(\exists x) \varphi(x)
$$

and read this "there exists x such that $\varphi(x)$ " or "there exists x such that $(x<0)$ ".

Quantifiers: \forall, \exists

Let $\varphi(x)$ be the formula $(x<0)$. We might want to say that the real numbers have an element x which satisfies this formula. We write

$$
(\exists x) \varphi(x)
$$

and read this "there exists x such that $\varphi(x)$ " or "there exists x such that $(x<0)$ ". This is true in the real numbers, and the assertion that it is true means "there is some x in \mathbb{R} such that $x<0$ ". (For example, $x=-1$ is a value in \mathbb{R} that winesses the truth of this statement.)

Quantifiers: \forall, \exists

Let $\varphi(x)$ be the formula $(x<0)$. We might want to say that the real numbers have an element x which satisfies this formula. We write

$$
(\exists x) \varphi(x)
$$

and read this "there exists x such that $\varphi(x)$ " or "there exists x such that $(x<0)$ ". This is true in the real numbers, and the assertion that it is true means "there is some x in \mathbb{R} such that $x<0$ ". (For example, $x=-1$ is a value in \mathbb{R} that winesses the truth of this statement.)

We write $(\forall x)(x<0)$ and say "forall $x, x<0$ ".

Quantifiers: \forall, \exists

Let $\varphi(x)$ be the formula $(x<0)$. We might want to say that the real numbers have an element x which satisfies this formula. We write

$$
(\exists x) \varphi(x)
$$

and read this "there exists x such that $\varphi(x)$ " or "there exists x such that $(x<0)$ ". This is true in the real numbers, and the assertion that it is true means "there is some x in \mathbb{R} such that $x<0$ ". (For example, $x=-1$ is a value in \mathbb{R} that winesses the truth of this statement.)

We write $(\forall x)(x<0)$ and say "forall $x, x<0$ ". This statement would be true in the real numbers if "for all x in $\mathbb{R}, x<0$ ".

Quantifiers: \forall, \exists

Let $\varphi(x)$ be the formula $(x<0)$. We might want to say that the real numbers have an element x which satisfies this formula. We write

$$
(\exists x) \varphi(x)
$$

and read this "there exists x such that $\varphi(x)$ " or "there exists x such that $(x<0)$ ". This is true in the real numbers, and the assertion that it is true means "there is some x in \mathbb{R} such that $x<0$ ". (For example, $x=-1$ is a value in \mathbb{R} that winesses the truth of this statement.)

We write $(\forall x)(x<0)$ and say "forall $x, x<0$ ". This statement would be true in the real numbers if "for all x in $\mathbb{R}, x<0$ ". (Which is NOT the case!)

Quantifiers: \forall, \exists

Let $\varphi(x)$ be the formula $(x<0)$. We might want to say that the real numbers have an element x which satisfies this formula. We write

$$
(\exists x) \varphi(x)
$$

and read this "there exists x such that $\varphi(x)$ " or "there exists x such that $(x<0)$ ". This is true in the real numbers, and the assertion that it is true means "there is some x in \mathbb{R} such that $x<0$ ". (For example, $x=-1$ is a value in \mathbb{R} that winesses the truth of this statement.)

We write $(\forall x)(x<0)$ and say "forall $x, x<0$ ". This statement would be true in the real numbers if "for all x in $\mathbb{R}, x<0$ ". (Which is NOT the case!) Note that $(\exists x) \varphi(x)$ is true in \mathbb{R} but false in \mathbb{N}.

Quantifiers: \forall, \exists

Let $\varphi(x)$ be the formula $(x<0)$. We might want to say that the real numbers have an element x which satisfies this formula. We write

$$
(\exists x) \varphi(x)
$$

and read this "there exists x such that $\varphi(x)$ " or "there exists x such that $(x<0)$ ". This is true in the real numbers, and the assertion that it is true means "there is some x in \mathbb{R} such that $x<0$ ". (For example, $x=-1$ is a value in \mathbb{R} that winesses the truth of this statement.)

We write $(\forall x)(x<0)$ and say "forall $x, x<0$ ". This statement would be true in the real numbers if "for all x in $\mathbb{R}, x<0$ ". (Which is NOT the case!)

Note that $(\exists x) \varphi(x)$ is true in \mathbb{R} but false in \mathbb{N}. We learn if $(\exists x)(x<0)$ is true in a structure by examining the table for " $<$ ".

Prenex form

Prenex form

Prenex form means "quantifiers in front".

Prenex form

Prenex form means "quantifiers in front". That is, a statement in prenex form has the form (quantifier prefix)("matrix").

Prenex form

Prenex form means "quantifiers in front". That is, a statement in prenex form has the form (quantifier prefix)("matrix").
Fact: Every formal sentence is logically equivalent to one in prenex form.

Prenex form

Prenex form means "quantifiers in front". That is, a statement in prenex form has the form (quantifier prefix)("matrix").
Fact: Every formal sentence is logically equivalent to one in prenex form. Axiom of Extensionality, not in prenex form:

$$
(\forall x)(\forall y)((x=y) \leftrightarrow(\forall z)((z \in x) \leftrightarrow(z \in y)))
$$

Prenex form

Prenex form means "quantifiers in front". That is, a statement in prenex form has the form (quantifier prefix)("matrix").
Fact: Every formal sentence is logically equivalent to one in prenex form.
Axiom of Extensionality, not in prenex form:

$$
(\forall x)(\forall y)((x=y) \leftrightarrow(\forall z)((z \in x) \leftrightarrow(z \in y)))
$$

Axiom of Extensionality, in prenex form:

$$
\begin{aligned}
(\forall x)(\forall y)(\forall z)(\exists w) \quad(((x=y) \rightarrow((z \in x) \leftrightarrow(z \in y))) \wedge \\
(((w \in x) \leftrightarrow(w \in y)) \rightarrow(x=y)))
\end{aligned}
$$

Prenex form

Prenex form means "quantifiers in front". That is, a statement in prenex form has the form (quantifier prefix)("matrix").
Fact: Every formal sentence is logically equivalent to one in prenex form.
Axiom of Extensionality, not in prenex form:

$$
(\forall x)(\forall y)((x=y) \leftrightarrow(\forall z)((z \in x) \leftrightarrow(z \in y)))
$$

Axiom of Extensionality, in prenex form:

$$
\begin{aligned}
(\forall x)(\forall y)(\forall z)(\exists w) \quad(((x=y) \rightarrow((z \in x) \leftrightarrow(z \in y))) \wedge \\
(((w \in x) \leftrightarrow(w \in y)) \rightarrow(x=y)))
\end{aligned}
$$

We will describe a process to determine the truth of a sentence in a structure if the sentence is written in prenex form.

Interaction of \forall, \exists with \neg, \wedge, \vee

Interaction of \forall, \exists with \neg, \wedge, \vee

"It is not true that every cat has stripes"

Interaction of \forall, \exists with \neg, \wedge, \vee

"It is not true that every cat has stripes" is equivalent to

Interaction of \forall, \exists with \neg, \wedge, \vee

"It is not true that every cat has stripes" is equivalent to "some cat does not have stripes".

Interaction of \forall, \exists with \neg, \wedge, \vee

"It is not true that every cat has stripes" is equivalent to "some cat does not have stripes".

$$
\neg(\forall c) \operatorname{Stripes}(c) \equiv(\exists c) \neg \operatorname{Stripes}(c)
$$

Interaction of \forall, \exists with \neg, \wedge, \vee

"It is not true that every cat has stripes" is equivalent to "some cat does not have stripes".

$$
\neg(\forall c) \operatorname{Stripes}(c) \equiv(\exists c) \neg \operatorname{Stripes}(c)
$$

"It is not true that every x has property P "

Interaction of \forall, \exists with \neg, \wedge, \vee

"It is not true that every cat has stripes" is equivalent to "some cat does not have stripes".

$$
\neg(\forall c) \operatorname{Stripes}(c) \equiv(\exists c) \neg \operatorname{Stripes}(c)
$$

"It is not true that every x has property P " is equivalent to

Interaction of \forall, \exists with \neg, \wedge, \vee

"It is not true that every cat has stripes" is equivalent to "some cat does not have stripes".

$$
\neg(\forall c) \operatorname{Stripes}(c) \equiv(\exists c) \neg \operatorname{Stripes}(c)
$$

"It is not true that every x has property P " is equivalent to "some x does not have property $P^{\prime \prime}$.

Interaction of \forall, \exists with \neg, \wedge, \vee

"It is not true that every cat has stripes" is equivalent to "some cat does not have stripes".

$$
\neg(\forall c) \operatorname{Stripes}(c) \equiv(\exists c) \neg \operatorname{Stripes}(c)
$$

"It is not true that every x has property P " is equivalent to "some x does not have property $P^{\prime \prime}$.

$$
\neg(\forall x) P \equiv(\exists x) \neg P
$$

Interaction of \forall, \exists with \neg, \wedge, \vee

"It is not true that every cat has stripes" is equivalent to "some cat does not have stripes".

$$
\neg(\forall c) \operatorname{Stripes}(c) \equiv(\exists c) \neg \operatorname{Stripes}(c)
$$

"It is not true that every x has property P " is equivalent to "some x does not have property $P^{\prime \prime}$.

$$
\neg(\forall x) P \equiv(\exists x) \neg P
$$

"It is not true that some x has property P "

Interaction of \forall, \exists with \neg, \wedge, \vee

"It is not true that every cat has stripes" is equivalent to "some cat does not have stripes".

$$
\neg(\forall c) \operatorname{Stripes}(c) \equiv(\exists c) \neg \operatorname{Stripes}(c)
$$

"It is not true that every x has property P " is equivalent to "some x does not have property $P^{\prime \prime}$.

$$
\neg(\forall x) P \equiv(\exists x) \neg P
$$

"It is not true that some x has property P " is equivalent to

Interaction of \forall, \exists with \neg, \wedge, \vee

"It is not true that every cat has stripes" is equivalent to "some cat does not have stripes".

$$
\neg(\forall c) \operatorname{Stripes}(c) \equiv(\exists c) \neg \operatorname{Stripes}(c)
$$

"It is not true that every x has property P " is equivalent to "some x does not have property $P^{\prime \prime}$.

$$
\neg(\forall x) P \equiv(\exists x) \neg P
$$

"It is not true that some x has property P " is equivalent to "every x fails to have property $P^{\prime \prime}$.

Interaction of \forall, \exists with \neg, \wedge, \vee

"It is not true that every cat has stripes" is equivalent to "some cat does not have stripes".

$$
\neg(\forall c) \operatorname{Stripes}(c) \equiv(\exists c) \neg \operatorname{Stripes}(c)
$$

"It is not true that every x has property P " is equivalent to "some x does not have property $P^{\prime \prime}$.

$$
\neg(\forall x) P \equiv(\exists x) \neg P
$$

"It is not true that some x has property P " is equivalent to "every x fails to have property $P^{\prime \prime}$.

$$
\neg(\exists x) P \equiv(\forall x) \neg P
$$

Cat-free explanation, I

Cat-free explanation, I

Given the table for an arbitrary predicate,

Cat-free explanation, I

Given the table for an arbitrary predicate, say $P(x, \bar{y})$,

Cat-free explanation, I

Given the table for an arbitrary predicate, say $P(x, \bar{y})$, we will indicate why the tables for $\neg(\forall x) P(x, \bar{y})$ and $(\exists x) \neg P(x, \bar{y})$ are the same.

Cat-free explanation, I

Given the table for an arbitrary predicate, say $P(x, \bar{y})$, we will indicate why the tables for $\neg(\forall x) P(x, \bar{y})$ and $(\exists x) \neg P(x, \bar{y})$ are the same.

Cat-free explanation, I

Given the table for an arbitrary predicate, say $P(x, \bar{y})$, we will indicate why the tables for $\neg(\forall x) P(x, \bar{y})$ and $(\exists x) \neg P(x, \bar{y})$ are the same.

Cat-free explanation, I

Given the table for an arbitrary predicate, say $P(x, \bar{y})$, we will indicate why the tables for $\neg(\forall x) P(x, \bar{y})$ and $(\exists x) \neg P(x, \bar{y})$ are the same.

Cat-free explanation, II

Cat-free explanation, II

Cat-free explanation, II

$P(x, \bar{y})$

Cat-free explanation, II

Rules for prenex form

Rules for prenex form

We have rules to move quantifiers to the front, without altering the meaning.

Rules for prenex form

We have rules to move quantifiers to the front, without altering the meaning. (1) $\neg(\forall x) P \equiv(\exists x)(\neg P)$.

Rules for prenex form

We have rules to move quantifiers to the front, without altering the meaning. (1) $\neg(\forall x) P \equiv(\exists x)(\neg P)$.

Rules for prenex form

We have rules to move quantifiers to the front, without altering the meaning.
(1) $\neg(\forall x) P \equiv(\exists x)(\neg P)$.
(2) $\neg(\exists x) P \equiv(\forall x)(\neg P)$.

Rules for prenex form

We have rules to move quantifiers to the front, without altering the meaning.
(1) $\neg(\forall x) P \equiv(\exists x)(\neg P)$.
(2) $\neg(\exists x) P \equiv(\forall x)(\neg P)$.

Rules for prenex form

We have rules to move quantifiers to the front, without altering the meaning.
(1) $\neg(\forall x) P \equiv(\exists x)(\neg P)$.
(2) $\neg(\exists x) P \equiv(\forall x)(\neg P)$.
(3) $P \vee((\exists x) Q) \equiv(\exists x)(P \vee Q)$ if P does not depend on x.

Rules for prenex form

We have rules to move quantifiers to the front, without altering the meaning.
(1) $\neg(\forall x) P \equiv(\exists x)(\neg P)$.
(2) $\neg(\exists x) P \equiv(\forall x)(\neg P)$.
(3) $P \vee((\exists x) Q) \equiv(\exists x)(P \vee Q)$ if P does not depend on x.

Rules for prenex form

We have rules to move quantifiers to the front, without altering the meaning.
(1) $\neg(\forall x) P \equiv(\exists x)(\neg P)$.
(2) $\neg(\exists x) P \equiv(\forall x)(\neg P)$.
(3) $P \vee((\exists x) Q) \equiv(\exists x)(P \vee Q)$ if P does not depend on x.
(4) $P \vee((\forall x) Q) \equiv(\forall x)(P \vee Q)$ if P does not depend on x.

Rules for prenex form

We have rules to move quantifiers to the front, without altering the meaning.
(1) $\neg(\forall x) P \equiv(\exists x)(\neg P)$.
(2) $\neg(\exists x) P \equiv(\forall x)(\neg P)$.
(3) $P \vee((\exists x) Q) \equiv(\exists x)(P \vee Q)$ if P does not depend on x.
(4) $P \vee((\forall x) Q) \equiv(\forall x)(P \vee Q)$ if P does not depend on x.

Rules for prenex form

We have rules to move quantifiers to the front, without altering the meaning.
(1) $\neg(\forall x) P \equiv(\exists x)(\neg P)$.
(2) $\neg(\exists x) P \equiv(\forall x)(\neg P)$.
(3) $P \vee((\exists x) Q) \equiv(\exists x)(P \vee Q)$ if P does not depend on x.
(4) $P \vee((\forall x) Q) \equiv(\forall x)(P \vee Q)$ if P does not depend on x.
(6) $P \wedge((\exists x) Q) \equiv(\exists x)(P \wedge Q)$ if P does not depend on x.

Rules for prenex form

We have rules to move quantifiers to the front, without altering the meaning.
(1) $\neg(\forall x) P \equiv(\exists x)(\neg P)$.
(2) $\neg(\exists x) P \equiv(\forall x)(\neg P)$.
(3) $P \vee((\exists x) Q) \equiv(\exists x)(P \vee Q)$ if P does not depend on x.
(4) $P \vee((\forall x) Q) \equiv(\forall x)(P \vee Q)$ if P does not depend on x.
(6) $P \wedge((\exists x) Q) \equiv(\exists x)(P \wedge Q)$ if P does not depend on x.

Rules for prenex form

We have rules to move quantifiers to the front, without altering the meaning.
(1) $\neg(\forall x) P \equiv(\exists x)(\neg P)$.
(2) $\neg(\exists x) P \equiv(\forall x)(\neg P)$.
(3) $P \vee((\exists x) Q) \equiv(\exists x)(P \vee Q)$ if P does not depend on x.
(9) $P \vee((\forall x) Q) \equiv(\forall x)(P \vee Q)$ if P does not depend on x.
(0) $P \wedge((\exists x) Q) \equiv(\exists x)(P \wedge Q)$ if P does not depend on x.
(1) $P \wedge((\forall x) Q) \equiv(\forall x)(P \wedge Q)$ if P does not depend on x.

Rules for prenex form

We have rules to move quantifiers to the front, without altering the meaning.
(1) $\neg(\forall x) P \equiv(\exists x)(\neg P)$.
(2) $\neg(\exists x) P \equiv(\forall x)(\neg P)$.
(3) $P \vee((\exists x) Q) \equiv(\exists x)(P \vee Q)$ if P does not depend on x.
(9) $P \vee((\forall x) Q) \equiv(\forall x)(P \vee Q)$ if P does not depend on x.
(0) $P \wedge((\exists x) Q) \equiv(\exists x)(P \wedge Q)$ if P does not depend on x.
(1) $P \wedge((\forall x) Q) \equiv(\forall x)(P \wedge Q)$ if P does not depend on x.

Rules for prenex form

We have rules to move quantifiers to the front, without altering the meaning.
(1) $\neg(\forall x) P \equiv(\exists x)(\neg P)$.
(2) $\neg(\exists x) P \equiv(\forall x)(\neg P)$.
(3) $P \vee((\exists x) Q) \equiv(\exists x)(P \vee Q)$ if P does not depend on x.
(4) $P \vee((\forall x) Q) \equiv(\forall x)(P \vee Q)$ if P does not depend on x.
(0) $P \wedge((\exists x) Q) \equiv(\exists x)(P \wedge Q)$ if P does not depend on x.
(6) $P \wedge((\forall x) Q) \equiv(\forall x)(P \wedge Q)$ if P does not depend on x.

More rules are derivable from these.

Rules for prenex form

We have rules to move quantifiers to the front, without altering the meaning.
(1) $\neg(\forall x) P \equiv(\exists x)(\neg P)$.
(2) $\neg(\exists x) P \equiv(\forall x)(\neg P)$.
(3) $P \vee((\exists x) Q) \equiv(\exists x)(P \vee Q)$ if P does not depend on x.
(1) $P \vee((\forall x) Q) \equiv(\forall x)(P \vee Q)$ if P does not depend on x.
(0) $P \wedge((\exists x) Q) \equiv(\exists x)(P \wedge Q)$ if P does not depend on x.
(1) $P \wedge((\forall x) Q) \equiv(\forall x)(P \wedge Q)$ if P does not depend on x.

More rules are derivable from these.
(1) $P \rightarrow(\forall x) Q \equiv(\neg P) \vee(\forall x) Q$

Rules for prenex form

We have rules to move quantifiers to the front, without altering the meaning.
(1) $\neg(\forall x) P \equiv(\exists x)(\neg P)$.
(2) $\neg(\exists x) P \equiv(\forall x)(\neg P)$.
(3) $P \vee((\exists x) Q) \equiv(\exists x)(P \vee Q)$ if P does not depend on x.
(1) $P \vee((\forall x) Q) \equiv(\forall x)(P \vee Q)$ if P does not depend on x.
(0) $P \wedge((\exists x) Q) \equiv(\exists x)(P \wedge Q)$ if P does not depend on x.
(1) $P \wedge((\forall x) Q) \equiv(\forall x)(P \wedge Q)$ if P does not depend on x.

More rules are derivable from these.
(1) $P \rightarrow(\forall x) Q \equiv(\neg P) \vee(\forall x) Q$

Rules for prenex form

We have rules to move quantifiers to the front, without altering the meaning.
(1) $\neg(\forall x) P \equiv(\exists x)(\neg P)$.
(2) $\neg(\exists x) P \equiv(\forall x)(\neg P)$.
(3) $P \vee((\exists x) Q) \equiv(\exists x)(P \vee Q)$ if P does not depend on x.
(9) $P \vee((\forall x) Q) \equiv(\forall x)(P \vee Q)$ if P does not depend on x.
(6) $P \wedge((\exists x) Q) \equiv(\exists x)(P \wedge Q)$ if P does not depend on x.
(1) $P \wedge((\forall x) Q) \equiv(\forall x)(P \wedge Q)$ if P does not depend on x.

More rules are derivable from these.
(1) $P \rightarrow(\forall x) Q \equiv(\neg P) \vee(\forall x) Q \equiv(\forall x)((\neg P) \vee Q)$

Rules for prenex form

We have rules to move quantifiers to the front, without altering the meaning.
(1) $\neg(\forall x) P \equiv(\exists x)(\neg P)$.
(2) $\neg(\exists x) P \equiv(\forall x)(\neg P)$.
(3) $P \vee((\exists x) Q) \equiv(\exists x)(P \vee Q)$ if P does not depend on x.
(9) $P \vee((\forall x) Q) \equiv(\forall x)(P \vee Q)$ if P does not depend on x.
(0) $P \wedge((\exists x) Q) \equiv(\exists x)(P \wedge Q)$ if P does not depend on x.
(1) $P \wedge((\forall x) Q) \equiv(\forall x)(P \wedge Q)$ if P does not depend on x.

More rules are derivable from these.
(1) $P \rightarrow(\forall x) Q \equiv(\neg P) \vee(\forall x) Q \equiv(\forall x)((\neg P) \vee Q) \equiv(\forall x)(P \rightarrow Q)$

Rules for prenex form

We have rules to move quantifiers to the front, without altering the meaning.
(1) $\neg(\forall x) P \equiv(\exists x)(\neg P)$.
(2) $\neg(\exists x) P \equiv(\forall x)(\neg P)$.
(3) $P \vee((\exists x) Q) \equiv(\exists x)(P \vee Q)$ if P does not depend on x.
(9) $P \vee((\forall x) Q) \equiv(\forall x)(P \vee Q)$ if P does not depend on x.
(6) $P \wedge((\exists x) Q) \equiv(\exists x)(P \wedge Q)$ if P does not depend on x.
(1) $P \wedge((\forall x) Q) \equiv(\forall x)(P \wedge Q)$ if P does not depend on x.

More rules are derivable from these.
(1) $P \rightarrow(\forall x) Q \equiv(\neg P) \vee(\forall x) Q \equiv(\forall x)((\neg P) \vee Q) \equiv(\forall x)(P \rightarrow Q)$
if P does not depend on x.

Rules for prenex form

We have rules to move quantifiers to the front, without altering the meaning.
(1) $\neg(\forall x) P \equiv(\exists x)(\neg P)$.
(2) $\neg(\exists x) P \equiv(\forall x)(\neg P)$.
(3) $P \vee((\exists x) Q) \equiv(\exists x)(P \vee Q)$ if P does not depend on x.
(9) $P \vee((\forall x) Q) \equiv(\forall x)(P \vee Q)$ if P does not depend on x.
(0) $P \wedge((\exists x) Q) \equiv(\exists x)(P \wedge Q)$ if P does not depend on x.
(1) $P \wedge((\forall x) Q) \equiv(\forall x)(P \wedge Q)$ if P does not depend on x.

More rules are derivable from these.
(1) $P \rightarrow(\forall x) Q \equiv(\neg P) \vee(\forall x) Q \equiv(\forall x)((\neg P) \vee Q) \equiv(\forall x)(P \rightarrow Q)$
if P does not depend on x.
(2) $((\forall x) P) \rightarrow Q \equiv(\neg(\forall x) P) \vee Q$

Rules for prenex form

We have rules to move quantifiers to the front, without altering the meaning.
(1) $\neg(\forall x) P \equiv(\exists x)(\neg P)$.
(2) $\neg(\exists x) P \equiv(\forall x)(\neg P)$.
(3) $P \vee((\exists x) Q) \equiv(\exists x)(P \vee Q)$ if P does not depend on x.
(9) $P \vee((\forall x) Q) \equiv(\forall x)(P \vee Q)$ if P does not depend on x.
(0) $P \wedge((\exists x) Q) \equiv(\exists x)(P \wedge Q)$ if P does not depend on x.
(1) $P \wedge((\forall x) Q) \equiv(\forall x)(P \wedge Q)$ if P does not depend on x.

More rules are derivable from these.
(1) $P \rightarrow(\forall x) Q \equiv(\neg P) \vee(\forall x) Q \equiv(\forall x)((\neg P) \vee Q) \equiv(\forall x)(P \rightarrow Q)$
if P does not depend on x.
(2) $((\forall x) P) \rightarrow Q \equiv(\neg(\forall x) P) \vee Q$

Rules for prenex form

We have rules to move quantifiers to the front, without altering the meaning.
(1) $\neg(\forall x) P \equiv(\exists x)(\neg P)$.
(2) $\neg(\exists x) P \equiv(\forall x)(\neg P)$.
(3) $P \vee((\exists x) Q) \equiv(\exists x)(P \vee Q)$ if P does not depend on x.
(9) $P \vee((\forall x) Q) \equiv(\forall x)(P \vee Q)$ if P does not depend on x.
(0) $P \wedge((\exists x) Q) \equiv(\exists x)(P \wedge Q)$ if P does not depend on x.
(1) $P \wedge((\forall x) Q) \equiv(\forall x)(P \wedge Q)$ if P does not depend on x.

More rules are derivable from these.
(1) $P \rightarrow(\forall x) Q \equiv(\neg P) \vee(\forall x) Q \equiv(\forall x)((\neg P) \vee Q) \equiv(\forall x)(P \rightarrow Q)$
if P does not depend on x.
(2) $((\forall x) P) \rightarrow Q \equiv(\neg(\forall x) P) \vee Q \equiv((\exists x)(\neg P)) \vee Q$

Rules for prenex form

We have rules to move quantifiers to the front, without altering the meaning.
(1) $\neg(\forall x) P \equiv(\exists x)(\neg P)$.
(2) $\neg(\exists x) P \equiv(\forall x)(\neg P)$.
(3) $P \vee((\exists x) Q) \equiv(\exists x)(P \vee Q)$ if P does not depend on x.
(9) $P \vee((\forall x) Q) \equiv(\forall x)(P \vee Q)$ if P does not depend on x.
(0) $P \wedge((\exists x) Q) \equiv(\exists x)(P \wedge Q)$ if P does not depend on x.
(1) $P \wedge((\forall x) Q) \equiv(\forall x)(P \wedge Q)$ if P does not depend on x.

More rules are derivable from these.
(1) $P \rightarrow(\forall x) Q \equiv(\neg P) \vee(\forall x) Q \equiv(\forall x)((\neg P) \vee Q) \equiv(\forall x)(P \rightarrow Q)$
if P does not depend on x.
(2) $((\forall x) P) \rightarrow Q \equiv(\neg(\forall x) P) \vee Q \equiv((\exists x)(\neg P)) \vee Q \equiv$ $(\exists x)((\neg P) \vee Q)$

Rules for prenex form

We have rules to move quantifiers to the front, without altering the meaning.
(1) $\neg(\forall x) P \equiv(\exists x)(\neg P)$.
(2) $\neg(\exists x) P \equiv(\forall x)(\neg P)$.
(3) $P \vee((\exists x) Q) \equiv(\exists x)(P \vee Q)$ if P does not depend on x.
(9) $P \vee((\forall x) Q) \equiv(\forall x)(P \vee Q)$ if P does not depend on x.
(6) $P \wedge((\exists x) Q) \equiv(\exists x)(P \wedge Q)$ if P does not depend on x.
(1) $P \wedge((\forall x) Q) \equiv(\forall x)(P \wedge Q)$ if P does not depend on x.

More rules are derivable from these.
(1) $P \rightarrow(\forall x) Q \equiv(\neg P) \vee(\forall x) Q \equiv(\forall x)((\neg P) \vee Q) \equiv(\forall x)(P \rightarrow Q)$
if P does not depend on x.
(2) $((\forall x) P) \rightarrow Q \equiv(\neg(\forall x) P) \vee Q \equiv((\exists x)(\neg P)) \vee Q \equiv$ $(\exists x)((\neg P) \vee Q) \equiv(\exists x)(P \rightarrow Q)$

Rules for prenex form

We have rules to move quantifiers to the front, without altering the meaning.
(1) $\neg(\forall x) P \equiv(\exists x)(\neg P)$.
(2) $\neg(\exists x) P \equiv(\forall x)(\neg P)$.
(3) $P \vee((\exists x) Q) \equiv(\exists x)(P \vee Q)$ if P does not depend on x.
(9) $P \vee((\forall x) Q) \equiv(\forall x)(P \vee Q)$ if P does not depend on x.
(6) $P \wedge((\exists x) Q) \equiv(\exists x)(P \wedge Q)$ if P does not depend on x.
(1) $P \wedge((\forall x) Q) \equiv(\forall x)(P \wedge Q)$ if P does not depend on x.

More rules are derivable from these.
(1) $P \rightarrow(\forall x) Q \equiv(\neg P) \vee(\forall x) Q \equiv(\forall x)((\neg P) \vee Q) \equiv(\forall x)(P \rightarrow Q)$
if P does not depend on x.
(2) $((\forall x) P) \rightarrow Q \equiv(\neg(\forall x) P) \vee Q \equiv((\exists x)(\neg P)) \vee Q \equiv$ $(\exists x)((\neg P) \vee Q) \equiv(\exists x)(P \rightarrow Q)$ if Q does not depend on x.

Rules for prenex form

We have rules to move quantifiers to the front, without altering the meaning.
(1) $\neg(\forall x) P \equiv(\exists x)(\neg P)$.
(2) $\neg(\exists x) P \equiv(\forall x)(\neg P)$.
(3) $P \vee((\exists x) Q) \equiv(\exists x)(P \vee Q)$ if P does not depend on x.
(9) $P \vee((\forall x) Q) \equiv(\forall x)(P \vee Q)$ if P does not depend on x.
(6) $P \wedge((\exists x) Q) \equiv(\exists x)(P \wedge Q)$ if P does not depend on x.
(1) $P \wedge((\forall x) Q) \equiv(\forall x)(P \wedge Q)$ if P does not depend on x.

More rules are derivable from these.
(1) $P \rightarrow(\forall x) Q \equiv(\neg P) \vee(\forall x) Q \equiv(\forall x)((\neg P) \vee Q) \equiv(\forall x)(P \rightarrow Q)$
if P does not depend on x.
(2) $((\forall x) P) \rightarrow Q \equiv(\neg(\forall x) P) \vee Q \equiv((\exists x)(\neg P)) \vee Q \equiv$ $(\exists x)((\neg P) \vee Q) \equiv(\exists x)(P \rightarrow Q)$ if Q does not depend on x.
(3) $((\forall x) P(x)) \leftrightarrow Q$

Rules for prenex form

We have rules to move quantifiers to the front, without altering the meaning.
(1) $\neg(\forall x) P \equiv(\exists x)(\neg P)$.
(2) $\neg(\exists x) P \equiv(\forall x)(\neg P)$.
(3) $P \vee((\exists x) Q) \equiv(\exists x)(P \vee Q)$ if P does not depend on x.
(9) $P \vee((\forall x) Q) \equiv(\forall x)(P \vee Q)$ if P does not depend on x.
(6) $P \wedge((\exists x) Q) \equiv(\exists x)(P \wedge Q)$ if P does not depend on x.
(1) $P \wedge((\forall x) Q) \equiv(\forall x)(P \wedge Q)$ if P does not depend on x.

More rules are derivable from these.
(1) $P \rightarrow(\forall x) Q \equiv(\neg P) \vee(\forall x) Q \equiv(\forall x)((\neg P) \vee Q) \equiv(\forall x)(P \rightarrow Q)$
if P does not depend on x.
(2) $((\forall x) P) \rightarrow Q \equiv(\neg(\forall x) P) \vee Q \equiv((\exists x)(\neg P)) \vee Q \equiv$ $(\exists x)((\neg P) \vee Q) \equiv(\exists x)(P \rightarrow Q)$ if Q does not depend on x.
(3) $((\forall x) P(x)) \leftrightarrow Q$

Rules for prenex form

We have rules to move quantifiers to the front, without altering the meaning.
(1) $\neg(\forall x) P \equiv(\exists x)(\neg P)$.
(2) $\neg(\exists x) P \equiv(\forall x)(\neg P)$.
(3) $P \vee((\exists x) Q) \equiv(\exists x)(P \vee Q)$ if P does not depend on x.
(9) $P \vee((\forall x) Q) \equiv(\forall x)(P \vee Q)$ if P does not depend on x.
(0) $P \wedge((\exists x) Q) \equiv(\exists x)(P \wedge Q)$ if P does not depend on x.
(1) $P \wedge((\forall x) Q) \equiv(\forall x)(P \wedge Q)$ if P does not depend on x.

More rules are derivable from these.
(1) $P \rightarrow(\forall x) Q \equiv(\neg P) \vee(\forall x) Q \equiv(\forall x)((\neg P) \vee Q) \equiv(\forall x)(P \rightarrow Q)$
if P does not depend on x.
(2) $((\forall x) P) \rightarrow Q \equiv(\neg(\forall x) P) \vee Q \equiv((\exists x)(\neg P)) \vee Q \equiv$ $(\exists x)((\neg P) \vee Q) \equiv(\exists x)(P \rightarrow Q)$ if Q does not depend on x.
(3) $((\forall x) P(x)) \leftrightarrow Q \equiv(((\forall x) P(x)) \rightarrow Q) \wedge(Q \rightarrow((\forall x) P(x)))$

Rules for prenex form

We have rules to move quantifiers to the front, without altering the meaning.
(1) $\neg(\forall x) P \equiv(\exists x)(\neg P)$.
(2) $\neg(\exists x) P \equiv(\forall x)(\neg P)$.
(3) $P \vee((\exists x) Q) \equiv(\exists x)(P \vee Q)$ if P does not depend on x.
(1) $P \vee((\forall x) Q) \equiv(\forall x)(P \vee Q)$ if P does not depend on x.
(6) $P \wedge((\exists x) Q) \equiv(\exists x)(P \wedge Q)$ if P does not depend on x.
(1) $P \wedge((\forall x) Q) \equiv(\forall x)(P \wedge Q)$ if P does not depend on x.

More rules are derivable from these.
(1) $P \rightarrow(\forall x) Q \equiv(\neg P) \vee(\forall x) Q \equiv(\forall x)((\neg P) \vee Q) \equiv(\forall x)(P \rightarrow Q)$
if P does not depend on x.
(2) $((\forall x) P) \rightarrow Q \equiv(\neg(\forall x) P) \vee Q \equiv((\exists x)(\neg P)) \vee Q \equiv$ $(\exists x)((\neg P) \vee Q) \equiv(\exists x)(P \rightarrow Q)$ if Q does not depend on x.
(3) $((\forall x) P(x)) \leftrightarrow Q \equiv(((\forall x) P(x)) \rightarrow Q) \wedge(Q \rightarrow((\forall x) P(x))) \equiv$ $(((\forall x) P(x)) \rightarrow Q) \wedge(Q \rightarrow((\forall y) P(y)))$

Rules for prenex form

We have rules to move quantifiers to the front, without altering the meaning.
(1) $\neg(\forall x) P \equiv(\exists x)(\neg P)$.
(2) $\neg(\exists x) P \equiv(\forall x)(\neg P)$.
(3) $P \vee((\exists x) Q) \equiv(\exists x)(P \vee Q)$ if P does not depend on x.
(1) $P \vee((\forall x) Q) \equiv(\forall x)(P \vee Q)$ if P does not depend on x.
(0) $P \wedge((\exists x) Q) \equiv(\exists x)(P \wedge Q)$ if P does not depend on x.
(1) $P \wedge((\forall x) Q) \equiv(\forall x)(P \wedge Q)$ if P does not depend on x.

More rules are derivable from these.
(1) $P \rightarrow(\forall x) Q \equiv(\neg P) \vee(\forall x) Q \equiv(\forall x)((\neg P) \vee Q) \equiv(\forall x)(P \rightarrow Q)$
if P does not depend on x.
(2) $((\forall x) P) \rightarrow Q \equiv(\neg(\forall x) P) \vee Q \equiv((\exists x)(\neg P)) \vee Q \equiv$ $(\exists x)((\neg P) \vee Q) \equiv(\exists x)(P \rightarrow Q)$ if Q does not depend on x.
(3) $((\forall x) P(x)) \leftrightarrow Q \equiv(((\forall x) P(x)) \rightarrow Q) \wedge(Q \rightarrow((\forall x) P(x))) \equiv$ $(((\forall x) P(x)) \rightarrow Q) \wedge(Q \rightarrow((\forall y) P(y))) \equiv((\exists x)(P(x) \rightarrow$ $Q)) \wedge((\forall y)(Q \rightarrow P(y)))$

Rules for prenex form

We have rules to move quantifiers to the front, without altering the meaning.
(1) $\neg(\forall x) P \equiv(\exists x)(\neg P)$.
(2) $\neg(\exists x) P \equiv(\forall x)(\neg P)$.
(3) $P \vee((\exists x) Q) \equiv(\exists x)(P \vee Q)$ if P does not depend on x.
(9) $P \vee((\forall x) Q) \equiv(\forall x)(P \vee Q)$ if P does not depend on x.
(0) $P \wedge((\exists x) Q) \equiv(\exists x)(P \wedge Q)$ if P does not depend on x.
(1) $P \wedge((\forall x) Q) \equiv(\forall x)(P \wedge Q)$ if P does not depend on x.

More rules are derivable from these.
(1) $P \rightarrow(\forall x) Q \equiv(\neg P) \vee(\forall x) Q \equiv(\forall x)((\neg P) \vee Q) \equiv(\forall x)(P \rightarrow Q)$
if P does not depend on x.
(2) $((\forall x) P) \rightarrow Q \equiv(\neg(\forall x) P) \vee Q \equiv((\exists x)(\neg P)) \vee Q \equiv$ $(\exists x)((\neg P) \vee Q) \equiv(\exists x)(P \rightarrow Q)$ if Q does not depend on x.
(3) $((\forall x) P(x)) \leftrightarrow Q \equiv(((\forall x) P(x)) \rightarrow Q) \wedge(Q \rightarrow((\forall x) P(x))) \equiv$ $(((\forall x) P(x)) \rightarrow Q) \wedge(Q \rightarrow((\forall y) P(y))) \equiv((\exists x)(P(x) \rightarrow$
$Q)) \wedge((\forall y)(Q \rightarrow P(y))) \equiv(\exists x)(\forall y)((P(x) \rightarrow Q) \wedge(Q \rightarrow P(y)))$

Rules for prenex form

We have rules to move quantifiers to the front, without altering the meaning.
(1) $\neg(\forall x) P \equiv(\exists x)(\neg P)$.
(2) $\neg(\exists x) P \equiv(\forall x)(\neg P)$.
(3) $P \vee((\exists x) Q) \equiv(\exists x)(P \vee Q)$ if P does not depend on x.
(9) $P \vee((\forall x) Q) \equiv(\forall x)(P \vee Q)$ if P does not depend on x.
(0) $P \wedge((\exists x) Q) \equiv(\exists x)(P \wedge Q)$ if P does not depend on x.
(1) $P \wedge((\forall x) Q) \equiv(\forall x)(P \wedge Q)$ if P does not depend on x.

More rules are derivable from these.
(1) $P \rightarrow(\forall x) Q \equiv(\neg P) \vee(\forall x) Q \equiv(\forall x)((\neg P) \vee Q) \equiv(\forall x)(P \rightarrow Q)$ if P does not depend on x.
(2) $((\forall x) P) \rightarrow Q \equiv(\neg(\forall x) P) \vee Q \equiv((\exists x)(\neg P)) \vee Q \equiv$ $(\exists x)((\neg P) \vee Q) \equiv(\exists x)(P \rightarrow Q)$ if Q does not depend on x.
(3) $((\forall x) P(x)) \leftrightarrow Q \equiv(((\forall x) P(x)) \rightarrow Q) \wedge(Q \rightarrow((\forall x) P(x))) \equiv$ $(((\forall x) P(x)) \rightarrow Q) \wedge(Q \rightarrow((\forall y) P(y))) \equiv((\exists x)(P(x) \rightarrow$
$Q)) \wedge((\forall y)(Q \rightarrow P(y))) \equiv(\exists x)(\forall y)((P(x) \rightarrow Q) \wedge(Q \rightarrow P(y)))$ if
Q does not depend on x and $P(x), Q$ do not depend on y.

Rules for prenex form

We have rules to move quantifiers to the front, without altering the meaning.
(1) $\neg(\forall x) P \equiv(\exists x)(\neg P)$.
(2) $\neg(\exists x) P \equiv(\forall x)(\neg P)$.
(3) $P \vee((\exists x) Q) \equiv(\exists x)(P \vee Q)$ if P does not depend on x.
(9) $P \vee((\forall x) Q) \equiv(\forall x)(P \vee Q)$ if P does not depend on x.
(0) $P \wedge((\exists x) Q) \equiv(\exists x)(P \wedge Q)$ if P does not depend on x.
(1) $P \wedge((\forall x) Q) \equiv(\forall x)(P \wedge Q)$ if P does not depend on x.

More rules are derivable from these.
(1) $P \rightarrow(\forall x) Q \equiv(\neg P) \vee(\forall x) Q \equiv(\forall x)((\neg P) \vee Q) \equiv(\forall x)(P \rightarrow Q)$ if P does not depend on x.
(2) $((\forall x) P) \rightarrow Q \equiv(\neg(\forall x) P) \vee Q \equiv((\exists x)(\neg P)) \vee Q \equiv$ $(\exists x)((\neg P) \vee Q) \equiv(\exists x)(P \rightarrow Q)$ if Q does not depend on x.
(3) $((\forall x) P(x)) \leftrightarrow Q \equiv(((\forall x) P(x)) \rightarrow Q) \wedge(Q \rightarrow((\forall x) P(x))) \equiv$ $(((\forall x) P(x)) \rightarrow Q) \wedge(Q \rightarrow((\forall y) P(y))) \equiv((\exists x)(P(x) \rightarrow$
$Q)) \wedge((\forall y)(Q \rightarrow P(y))) \equiv(\exists x)(\forall y)((P(x) \rightarrow Q) \wedge(Q \rightarrow P(y)))$ if
Q does not depend on x and $P(x), Q$ do not depend on y.

Variable conflict

Variable conflict

Let's consider the problem of putting the following sentence into prenex form:

Variable conflict

Let's consider the problem of putting the following sentence into prenex form:

$$
((\exists x)(x<0)) \wedge((\exists x)(x>0)) .
$$

Variable conflict

Let's consider the problem of putting the following sentence into prenex form:

$$
((\exists x)(x<0)) \wedge((\exists x)(x>0)) .
$$

(1) (First step) $(\exists x)((x<0) \wedge(\exists x)(x>0))$

Variable conflict

Let's consider the problem of putting the following sentence into prenex form:

$$
((\exists x)(x<0)) \wedge((\exists x)(x>0)) .
$$

(1) (First step) $(\exists x)((x<0) \wedge(\exists x)(x>0))$

Variable conflict

Let's consider the problem of putting the following sentence into prenex form:

$$
((\exists x)(x<0)) \wedge((\exists x)(x>0)) .
$$

(1) (First step) $(\exists x)((x<0) \wedge(\exists x)(x>0))$ No error!

Variable conflict

Let's consider the problem of putting the following sentence into prenex form:

$$
((\exists x)(x<0)) \wedge((\exists x)(x>0)) .
$$

(1) (First step) $(\exists x)((x<0) \wedge(\exists x)(x>0))$ No error!
(2) (Second step) $(\exists x)(\exists x)((x<0) \wedge(x>0))$

Variable conflict

Let's consider the problem of putting the following sentence into prenex form:

$$
((\exists x)(x<0)) \wedge((\exists x)(x>0)) .
$$

(1) (First step) $(\exists x)((x<0) \wedge(\exists x)(x>0))$ No error!
(2) (Second step) $(\exists x)(\exists x)((x<0) \wedge(x>0))$

Variable conflict

Let's consider the problem of putting the following sentence into prenex form:

$$
((\exists x)(x<0)) \wedge((\exists x)(x>0)) .
$$

(1) (First step) $(\exists x)((x<0) \wedge(\exists x)(x>0))$ No error!
(2) (Second step) $(\exists x)(\exists x)((x<0) \wedge(x>0))$ Error!

Variable conflict

Let's consider the problem of putting the following sentence into prenex form:

$$
((\exists x)(x<0)) \wedge((\exists x)(x>0)) .
$$

(1) (First step) $(\exists x)((x<0) \wedge(\exists x)(x>0))$ No error!

2 (Second step) $(\exists x)(\exists x)((x<0) \wedge(x>0))$ Error!
(3) (Alternative second step) $(\exists x)((x<0) \wedge(x>0))$

Variable conflict

Let's consider the problem of putting the following sentence into prenex form:

$$
((\exists x)(x<0)) \wedge((\exists x)(x>0)) .
$$

(1) (First step) $(\exists x)((x<0) \wedge(\exists x)(x>0))$ No error!

2 (Second step) $(\exists x)(\exists x)((x<0) \wedge(x>0))$ Error!
(3) (Alternative second step) $(\exists x)((x<0) \wedge(x>0))$

Variable conflict

Let's consider the problem of putting the following sentence into prenex form:

$$
((\exists x)(x<0)) \wedge((\exists x)(x>0)) .
$$

(1) (First step) $(\exists x)((x<0) \wedge(\exists x)(x>0))$ No error!

2 (Second step) $(\exists x)(\exists x)((x<0) \wedge(x>0))$ Error!
(3) (Alternative second step) $(\exists x)((x<0) \wedge(x>0))$ Error!

Variable conflict

Let's consider the problem of putting the following sentence into prenex form:

$$
((\exists x)(x<0)) \wedge((\exists x)(x>0)) .
$$

(1) (First step) $(\exists x)((x<0) \wedge(\exists x)(x>0))$ No error!

2 (Second step) $(\exists x)(\exists x)((x<0) \wedge(x>0))$ Error!
(3) (Alternative second step) $(\exists x)((x<0) \wedge(x>0))$ Error!

We need to "standardize the variables apart", first.

Variable conflict

Let's consider the problem of putting the following sentence into prenex form:

$$
((\exists x)(x<0)) \wedge((\exists x)(x>0)) .
$$

(1) (First step) $(\exists x)((x<0) \wedge(\exists x)(x>0))$ No error!

2 (Second step) $(\exists x)(\exists x)((x<0) \wedge(x>0))$ Error!
(3) (Alternative second step) $(\exists x)((x<0) \wedge(x>0))$ Error!

We need to "standardize the variables apart", first. That is, rewrite the original sentence as

Variable conflict

Let's consider the problem of putting the following sentence into prenex form:

$$
((\exists x)(x<0)) \wedge((\exists x)(x>0))
$$

(1) (First step) $(\exists x)((x<0) \wedge(\exists x)(x>0))$ No error!

2 (Second step) $(\exists x)(\exists x)((x<0) \wedge(x>0))$ Error!
(3) (Alternative second step) $(\exists x)((x<0) \wedge(x>0))$ Error!

We need to "standardize the variables apart", first. That is, rewrite the original sentence as

$$
((\exists x)(x<0)) \wedge((\exists y)(y>0))
$$

in order to avoid variable conflicts.

Variable conflict

Let's consider the problem of putting the following sentence into prenex form:

$$
((\exists x)(x<0)) \wedge((\exists x)(x>0))
$$

(1) (First step) $(\exists x)((x<0) \wedge(\exists x)(x>0))$ No error!

2 (Second step) $(\exists x)(\exists x)((x<0) \wedge(x>0))$ Error!
(3) (Alternative second step) $(\exists x)((x<0) \wedge(x>0))$ Error!

We need to "standardize the variables apart", first. That is, rewrite the original sentence as

$$
((\exists x)(x<0)) \wedge((\exists y)(y>0)),
$$

in order to avoid variable conflicts. A prenex form for the sentence is

Variable conflict

Let's consider the problem of putting the following sentence into prenex form:

$$
((\exists x)(x<0)) \wedge((\exists x)(x>0))
$$

(1) (First step) $(\exists x)((x<0) \wedge(\exists x)(x>0))$ No error!

2 (Second step) $(\exists x)(\exists x)((x<0) \wedge(x>0))$ Error!
(3) (Alternative second step) $(\exists x)((x<0) \wedge(x>0))$ Error!

We need to "standardize the variables apart", first. That is, rewrite the original sentence as

$$
((\exists x)(x<0)) \wedge((\exists y)(y>0)),
$$

in order to avoid variable conflicts. A prenex form for the sentence is

$$
(\exists x)(\exists y)((x<0) \wedge(y>0))
$$

