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value in R that winesses the truth of this statement.)

We write (Vz)(xz < 0) and say “forall x, z < 0”. This statement would be
true in the real numbers if “for all z in R, x < 0”. (Which is NOT the case!)

Note that (3z)p(z) is true in R but false in N. We learn if (3z)(x < 0) is true
in a structure by examining the table for “<”.
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Prenex form

Prenex form means “quantifiers in front”. That is, a statement in prenex form
has the form (quantifier prefix)(“matrix”).
Fact: Every formal sentence is logically equivalent to one in prenex form.

Axiom of Extensionality, not in prenex form:

(V) (vy)((z = y) & (V2)((z € 2) & (2 €9)))

Axiom of Extensionality, in prenex form:

(V) (Vy) (V2) Bw)  (((z =y) = ((z € 2) & (2 € y)))A
((wex) & (wey) = (r=y)))

We will describe a process to determine the truth of a sentence in a structure if
the sentence is written in prenex form.
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Cat-free explanation, II

P(z,y) ]

~P(z,9) y (3z)=P(z,9)
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