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Quantifiers: ∀, ∃

Let φ(x) be the formula (x < 0). We might want to say that the real numbers
have an element x which satisfies this formula. We write

(∃x)φ(x)

and read this “there exists x such that φ(x)” or “there exists x such that
(x < 0)”. This is true in the real numbers, and the assertion that it is true
means “there is some x in R such that x < 0”. (For example, x = −1 is a
value in R that winesses the truth of this statement.)

We write (∀x)(x < 0) and say “forall x, x < 0”. This statement would be
true in the real numbers if “for all x in R, x < 0”. (Which is NOT the case!)

Note that (∃x)φ(x) is true in R but false in N. We learn if (∃x)(x < 0) is true
in a structure by examining the table for “<”.
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Prenex form

Prenex form means “quantifiers in front”. That is, a statement in prenex form
has the form (quantifier prefix)(“matrix”).
Fact: Every formal sentence is logically equivalent to one in prenex form.

Axiom of Extensionality, not in prenex form:

(∀x)(∀y)((x = y) ↔ (∀z)((z ∈ x) ↔ (z ∈ y)))

Axiom of Extensionality, in prenex form:

(∀x)(∀y)(∀z)(∃w) (((x = y) → ((z ∈ x) ↔ (z ∈ y)))∧
(((w ∈ x) ↔ (w ∈ y)) → (x = y)))

We will describe a process to determine the truth of a sentence in a structure if
the sentence is written in prenex form.
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Interaction of ∀, ∃ with ¬, ∧, ∨

“It is not true that every cat has stripes” is equivalent to “some cat does not
have stripes”.

¬(∀c)Stripes(c) ≡ (∃c)¬Stripes(c)

“It is not true that every x has property P ” is equivalent to “some x does not
have property P ”.

¬(∀x)P ≡ (∃x)¬P

“It is not true that some x has property P ” is equivalent to “every x fails to
have property P ”.

¬(∃x)P ≡ (∀x)¬P
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Cat-free explanation, I

Given the table for an arbitrary predicate, say P (x, ȳ), we will indicate why
the tables for ¬(∀x)P (x, ȳ) and (∃x)¬P (x, ȳ) are the same.

x

ȳP (x, ȳ)

x

ȳ(∀x)P (x, ȳ)

x

ȳ¬(∀x)P (x, ȳ)
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ȳ(∀x)P (x, ȳ)
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Cat-free explanation, II

x

ȳP (x, ȳ)

x

ȳ¬P (x, ȳ)

x

ȳ(∃x)¬P (x, ȳ)
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Rules for prenex form

We have rules to move quantifiers to the front, without altering the meaning.

1 ¬(∀x)P ≡ (∃x)(¬P ).
2 ¬(∃x)P ≡ (∀x)(¬P ).
3 P ∨ ((∃x)Q) ≡ (∃x)(P ∨ Q) if P does not depend on x.
4 P ∨ ((∀x)Q) ≡ (∀x)(P ∨ Q) if P does not depend on x.
5 P ∧ ((∃x)Q) ≡ (∃x)(P ∧ Q) if P does not depend on x.
6 P ∧ ((∀x)Q) ≡ (∀x)(P ∧ Q) if P does not depend on x.

More rules are derivable from these.

1 P → (∀x)Q ≡ (¬P ) ∨ (∀x)Q ≡ (∀x)((¬P ) ∨ Q) ≡ (∀x)(P → Q)
if P does not depend on x.

2 ((∀x)P ) → Q ≡ (¬(∀x)P ) ∨ Q ≡ ((∃x)(¬P )) ∨ Q ≡
(∃x)((¬P ) ∨ Q) ≡ (∃x)(P → Q) if Q does not depend on x.

3 ((∀x)P (x)) ↔ Q ≡ (((∀x)P (x)) → Q) ∧ (Q → ((∀x)P (x))) ≡
(((∀x)P (x)) → Q) ∧ (Q → ((∀y)P (y))) ≡ ((∃x)(P (x) →
Q)) ∧ ((∀y)(Q → P (y))) ≡ (∃x)(∀y)((P (x) → Q) ∧ (Q → P (y))) if
Q does not depend on x and P (x), Q do not depend on y.

Prenex form 7 / 8



Rules for prenex form

We have rules to move quantifiers to the front, without altering the meaning.

1 ¬(∀x)P ≡ (∃x)(¬P ).
2 ¬(∃x)P ≡ (∀x)(¬P ).
3 P ∨ ((∃x)Q) ≡ (∃x)(P ∨ Q) if P does not depend on x.
4 P ∨ ((∀x)Q) ≡ (∀x)(P ∨ Q) if P does not depend on x.
5 P ∧ ((∃x)Q) ≡ (∃x)(P ∧ Q) if P does not depend on x.
6 P ∧ ((∀x)Q) ≡ (∀x)(P ∧ Q) if P does not depend on x.

More rules are derivable from these.

1 P → (∀x)Q ≡ (¬P ) ∨ (∀x)Q ≡ (∀x)((¬P ) ∨ Q) ≡ (∀x)(P → Q)
if P does not depend on x.

2 ((∀x)P ) → Q ≡ (¬(∀x)P ) ∨ Q ≡ ((∃x)(¬P )) ∨ Q ≡
(∃x)((¬P ) ∨ Q) ≡ (∃x)(P → Q) if Q does not depend on x.

3 ((∀x)P (x)) ↔ Q ≡ (((∀x)P (x)) → Q) ∧ (Q → ((∀x)P (x))) ≡
(((∀x)P (x)) → Q) ∧ (Q → ((∀y)P (y))) ≡ ((∃x)(P (x) →
Q)) ∧ ((∀y)(Q → P (y))) ≡ (∃x)(∀y)((P (x) → Q) ∧ (Q → P (y))) if
Q does not depend on x and P (x), Q do not depend on y.

Prenex form 7 / 8



Rules for prenex form

We have rules to move quantifiers to the front, without altering the meaning.
1 ¬(∀x)P ≡ (∃x)(¬P ).

2 ¬(∃x)P ≡ (∀x)(¬P ).
3 P ∨ ((∃x)Q) ≡ (∃x)(P ∨ Q) if P does not depend on x.
4 P ∨ ((∀x)Q) ≡ (∀x)(P ∨ Q) if P does not depend on x.
5 P ∧ ((∃x)Q) ≡ (∃x)(P ∧ Q) if P does not depend on x.
6 P ∧ ((∀x)Q) ≡ (∀x)(P ∧ Q) if P does not depend on x.

More rules are derivable from these.

1 P → (∀x)Q ≡ (¬P ) ∨ (∀x)Q ≡ (∀x)((¬P ) ∨ Q) ≡ (∀x)(P → Q)
if P does not depend on x.

2 ((∀x)P ) → Q ≡ (¬(∀x)P ) ∨ Q ≡ ((∃x)(¬P )) ∨ Q ≡
(∃x)((¬P ) ∨ Q) ≡ (∃x)(P → Q) if Q does not depend on x.

3 ((∀x)P (x)) ↔ Q ≡ (((∀x)P (x)) → Q) ∧ (Q → ((∀x)P (x))) ≡
(((∀x)P (x)) → Q) ∧ (Q → ((∀y)P (y))) ≡ ((∃x)(P (x) →
Q)) ∧ ((∀y)(Q → P (y))) ≡ (∃x)(∀y)((P (x) → Q) ∧ (Q → P (y))) if
Q does not depend on x and P (x), Q do not depend on y.

Prenex form 7 / 8



Rules for prenex form

We have rules to move quantifiers to the front, without altering the meaning.
1 ¬(∀x)P ≡ (∃x)(¬P ).

2 ¬(∃x)P ≡ (∀x)(¬P ).
3 P ∨ ((∃x)Q) ≡ (∃x)(P ∨ Q) if P does not depend on x.
4 P ∨ ((∀x)Q) ≡ (∀x)(P ∨ Q) if P does not depend on x.
5 P ∧ ((∃x)Q) ≡ (∃x)(P ∧ Q) if P does not depend on x.
6 P ∧ ((∀x)Q) ≡ (∀x)(P ∧ Q) if P does not depend on x.

More rules are derivable from these.

1 P → (∀x)Q ≡ (¬P ) ∨ (∀x)Q ≡ (∀x)((¬P ) ∨ Q) ≡ (∀x)(P → Q)
if P does not depend on x.

2 ((∀x)P ) → Q ≡ (¬(∀x)P ) ∨ Q ≡ ((∃x)(¬P )) ∨ Q ≡
(∃x)((¬P ) ∨ Q) ≡ (∃x)(P → Q) if Q does not depend on x.

3 ((∀x)P (x)) ↔ Q ≡ (((∀x)P (x)) → Q) ∧ (Q → ((∀x)P (x))) ≡
(((∀x)P (x)) → Q) ∧ (Q → ((∀y)P (y))) ≡ ((∃x)(P (x) →
Q)) ∧ ((∀y)(Q → P (y))) ≡ (∃x)(∀y)((P (x) → Q) ∧ (Q → P (y))) if
Q does not depend on x and P (x), Q do not depend on y.

Prenex form 7 / 8



Rules for prenex form

We have rules to move quantifiers to the front, without altering the meaning.
1 ¬(∀x)P ≡ (∃x)(¬P ).
2 ¬(∃x)P ≡ (∀x)(¬P ).

3 P ∨ ((∃x)Q) ≡ (∃x)(P ∨ Q) if P does not depend on x.
4 P ∨ ((∀x)Q) ≡ (∀x)(P ∨ Q) if P does not depend on x.
5 P ∧ ((∃x)Q) ≡ (∃x)(P ∧ Q) if P does not depend on x.
6 P ∧ ((∀x)Q) ≡ (∀x)(P ∧ Q) if P does not depend on x.

More rules are derivable from these.

1 P → (∀x)Q ≡ (¬P ) ∨ (∀x)Q ≡ (∀x)((¬P ) ∨ Q) ≡ (∀x)(P → Q)
if P does not depend on x.

2 ((∀x)P ) → Q ≡ (¬(∀x)P ) ∨ Q ≡ ((∃x)(¬P )) ∨ Q ≡
(∃x)((¬P ) ∨ Q) ≡ (∃x)(P → Q) if Q does not depend on x.

3 ((∀x)P (x)) ↔ Q ≡ (((∀x)P (x)) → Q) ∧ (Q → ((∀x)P (x))) ≡
(((∀x)P (x)) → Q) ∧ (Q → ((∀y)P (y))) ≡ ((∃x)(P (x) →
Q)) ∧ ((∀y)(Q → P (y))) ≡ (∃x)(∀y)((P (x) → Q) ∧ (Q → P (y))) if
Q does not depend on x and P (x), Q do not depend on y.

Prenex form 7 / 8



Rules for prenex form

We have rules to move quantifiers to the front, without altering the meaning.
1 ¬(∀x)P ≡ (∃x)(¬P ).
2 ¬(∃x)P ≡ (∀x)(¬P ).

3 P ∨ ((∃x)Q) ≡ (∃x)(P ∨ Q) if P does not depend on x.
4 P ∨ ((∀x)Q) ≡ (∀x)(P ∨ Q) if P does not depend on x.
5 P ∧ ((∃x)Q) ≡ (∃x)(P ∧ Q) if P does not depend on x.
6 P ∧ ((∀x)Q) ≡ (∀x)(P ∧ Q) if P does not depend on x.

More rules are derivable from these.

1 P → (∀x)Q ≡ (¬P ) ∨ (∀x)Q ≡ (∀x)((¬P ) ∨ Q) ≡ (∀x)(P → Q)
if P does not depend on x.

2 ((∀x)P ) → Q ≡ (¬(∀x)P ) ∨ Q ≡ ((∃x)(¬P )) ∨ Q ≡
(∃x)((¬P ) ∨ Q) ≡ (∃x)(P → Q) if Q does not depend on x.

3 ((∀x)P (x)) ↔ Q ≡ (((∀x)P (x)) → Q) ∧ (Q → ((∀x)P (x))) ≡
(((∀x)P (x)) → Q) ∧ (Q → ((∀y)P (y))) ≡ ((∃x)(P (x) →
Q)) ∧ ((∀y)(Q → P (y))) ≡ (∃x)(∀y)((P (x) → Q) ∧ (Q → P (y))) if
Q does not depend on x and P (x), Q do not depend on y.

Prenex form 7 / 8



Rules for prenex form

We have rules to move quantifiers to the front, without altering the meaning.
1 ¬(∀x)P ≡ (∃x)(¬P ).
2 ¬(∃x)P ≡ (∀x)(¬P ).
3 P ∨ ((∃x)Q) ≡ (∃x)(P ∨ Q) if P does not depend on x.

4 P ∨ ((∀x)Q) ≡ (∀x)(P ∨ Q) if P does not depend on x.
5 P ∧ ((∃x)Q) ≡ (∃x)(P ∧ Q) if P does not depend on x.
6 P ∧ ((∀x)Q) ≡ (∀x)(P ∧ Q) if P does not depend on x.

More rules are derivable from these.

1 P → (∀x)Q ≡ (¬P ) ∨ (∀x)Q ≡ (∀x)((¬P ) ∨ Q) ≡ (∀x)(P → Q)
if P does not depend on x.

2 ((∀x)P ) → Q ≡ (¬(∀x)P ) ∨ Q ≡ ((∃x)(¬P )) ∨ Q ≡
(∃x)((¬P ) ∨ Q) ≡ (∃x)(P → Q) if Q does not depend on x.

3 ((∀x)P (x)) ↔ Q ≡ (((∀x)P (x)) → Q) ∧ (Q → ((∀x)P (x))) ≡
(((∀x)P (x)) → Q) ∧ (Q → ((∀y)P (y))) ≡ ((∃x)(P (x) →
Q)) ∧ ((∀y)(Q → P (y))) ≡ (∃x)(∀y)((P (x) → Q) ∧ (Q → P (y))) if
Q does not depend on x and P (x), Q do not depend on y.

Prenex form 7 / 8



Rules for prenex form

We have rules to move quantifiers to the front, without altering the meaning.
1 ¬(∀x)P ≡ (∃x)(¬P ).
2 ¬(∃x)P ≡ (∀x)(¬P ).
3 P ∨ ((∃x)Q) ≡ (∃x)(P ∨ Q) if P does not depend on x.

4 P ∨ ((∀x)Q) ≡ (∀x)(P ∨ Q) if P does not depend on x.
5 P ∧ ((∃x)Q) ≡ (∃x)(P ∧ Q) if P does not depend on x.
6 P ∧ ((∀x)Q) ≡ (∀x)(P ∧ Q) if P does not depend on x.

More rules are derivable from these.

1 P → (∀x)Q ≡ (¬P ) ∨ (∀x)Q ≡ (∀x)((¬P ) ∨ Q) ≡ (∀x)(P → Q)
if P does not depend on x.

2 ((∀x)P ) → Q ≡ (¬(∀x)P ) ∨ Q ≡ ((∃x)(¬P )) ∨ Q ≡
(∃x)((¬P ) ∨ Q) ≡ (∃x)(P → Q) if Q does not depend on x.

3 ((∀x)P (x)) ↔ Q ≡ (((∀x)P (x)) → Q) ∧ (Q → ((∀x)P (x))) ≡
(((∀x)P (x)) → Q) ∧ (Q → ((∀y)P (y))) ≡ ((∃x)(P (x) →
Q)) ∧ ((∀y)(Q → P (y))) ≡ (∃x)(∀y)((P (x) → Q) ∧ (Q → P (y))) if
Q does not depend on x and P (x), Q do not depend on y.

Prenex form 7 / 8



Rules for prenex form

We have rules to move quantifiers to the front, without altering the meaning.
1 ¬(∀x)P ≡ (∃x)(¬P ).
2 ¬(∃x)P ≡ (∀x)(¬P ).
3 P ∨ ((∃x)Q) ≡ (∃x)(P ∨ Q) if P does not depend on x.
4 P ∨ ((∀x)Q) ≡ (∀x)(P ∨ Q) if P does not depend on x.

5 P ∧ ((∃x)Q) ≡ (∃x)(P ∧ Q) if P does not depend on x.
6 P ∧ ((∀x)Q) ≡ (∀x)(P ∧ Q) if P does not depend on x.

More rules are derivable from these.

1 P → (∀x)Q ≡ (¬P ) ∨ (∀x)Q ≡ (∀x)((¬P ) ∨ Q) ≡ (∀x)(P → Q)
if P does not depend on x.

2 ((∀x)P ) → Q ≡ (¬(∀x)P ) ∨ Q ≡ ((∃x)(¬P )) ∨ Q ≡
(∃x)((¬P ) ∨ Q) ≡ (∃x)(P → Q) if Q does not depend on x.

3 ((∀x)P (x)) ↔ Q ≡ (((∀x)P (x)) → Q) ∧ (Q → ((∀x)P (x))) ≡
(((∀x)P (x)) → Q) ∧ (Q → ((∀y)P (y))) ≡ ((∃x)(P (x) →
Q)) ∧ ((∀y)(Q → P (y))) ≡ (∃x)(∀y)((P (x) → Q) ∧ (Q → P (y))) if
Q does not depend on x and P (x), Q do not depend on y.

Prenex form 7 / 8



Rules for prenex form

We have rules to move quantifiers to the front, without altering the meaning.
1 ¬(∀x)P ≡ (∃x)(¬P ).
2 ¬(∃x)P ≡ (∀x)(¬P ).
3 P ∨ ((∃x)Q) ≡ (∃x)(P ∨ Q) if P does not depend on x.
4 P ∨ ((∀x)Q) ≡ (∀x)(P ∨ Q) if P does not depend on x.

5 P ∧ ((∃x)Q) ≡ (∃x)(P ∧ Q) if P does not depend on x.
6 P ∧ ((∀x)Q) ≡ (∀x)(P ∧ Q) if P does not depend on x.

More rules are derivable from these.

1 P → (∀x)Q ≡ (¬P ) ∨ (∀x)Q ≡ (∀x)((¬P ) ∨ Q) ≡ (∀x)(P → Q)
if P does not depend on x.

2 ((∀x)P ) → Q ≡ (¬(∀x)P ) ∨ Q ≡ ((∃x)(¬P )) ∨ Q ≡
(∃x)((¬P ) ∨ Q) ≡ (∃x)(P → Q) if Q does not depend on x.

3 ((∀x)P (x)) ↔ Q ≡ (((∀x)P (x)) → Q) ∧ (Q → ((∀x)P (x))) ≡
(((∀x)P (x)) → Q) ∧ (Q → ((∀y)P (y))) ≡ ((∃x)(P (x) →
Q)) ∧ ((∀y)(Q → P (y))) ≡ (∃x)(∀y)((P (x) → Q) ∧ (Q → P (y))) if
Q does not depend on x and P (x), Q do not depend on y.

Prenex form 7 / 8



Rules for prenex form

We have rules to move quantifiers to the front, without altering the meaning.
1 ¬(∀x)P ≡ (∃x)(¬P ).
2 ¬(∃x)P ≡ (∀x)(¬P ).
3 P ∨ ((∃x)Q) ≡ (∃x)(P ∨ Q) if P does not depend on x.
4 P ∨ ((∀x)Q) ≡ (∀x)(P ∨ Q) if P does not depend on x.
5 P ∧ ((∃x)Q) ≡ (∃x)(P ∧ Q) if P does not depend on x.

6 P ∧ ((∀x)Q) ≡ (∀x)(P ∧ Q) if P does not depend on x.

More rules are derivable from these.

1 P → (∀x)Q ≡ (¬P ) ∨ (∀x)Q ≡ (∀x)((¬P ) ∨ Q) ≡ (∀x)(P → Q)
if P does not depend on x.

2 ((∀x)P ) → Q ≡ (¬(∀x)P ) ∨ Q ≡ ((∃x)(¬P )) ∨ Q ≡
(∃x)((¬P ) ∨ Q) ≡ (∃x)(P → Q) if Q does not depend on x.

3 ((∀x)P (x)) ↔ Q ≡ (((∀x)P (x)) → Q) ∧ (Q → ((∀x)P (x))) ≡
(((∀x)P (x)) → Q) ∧ (Q → ((∀y)P (y))) ≡ ((∃x)(P (x) →
Q)) ∧ ((∀y)(Q → P (y))) ≡ (∃x)(∀y)((P (x) → Q) ∧ (Q → P (y))) if
Q does not depend on x and P (x), Q do not depend on y.

Prenex form 7 / 8



Rules for prenex form

We have rules to move quantifiers to the front, without altering the meaning.
1 ¬(∀x)P ≡ (∃x)(¬P ).
2 ¬(∃x)P ≡ (∀x)(¬P ).
3 P ∨ ((∃x)Q) ≡ (∃x)(P ∨ Q) if P does not depend on x.
4 P ∨ ((∀x)Q) ≡ (∀x)(P ∨ Q) if P does not depend on x.
5 P ∧ ((∃x)Q) ≡ (∃x)(P ∧ Q) if P does not depend on x.

6 P ∧ ((∀x)Q) ≡ (∀x)(P ∧ Q) if P does not depend on x.

More rules are derivable from these.

1 P → (∀x)Q ≡ (¬P ) ∨ (∀x)Q ≡ (∀x)((¬P ) ∨ Q) ≡ (∀x)(P → Q)
if P does not depend on x.

2 ((∀x)P ) → Q ≡ (¬(∀x)P ) ∨ Q ≡ ((∃x)(¬P )) ∨ Q ≡
(∃x)((¬P ) ∨ Q) ≡ (∃x)(P → Q) if Q does not depend on x.

3 ((∀x)P (x)) ↔ Q ≡ (((∀x)P (x)) → Q) ∧ (Q → ((∀x)P (x))) ≡
(((∀x)P (x)) → Q) ∧ (Q → ((∀y)P (y))) ≡ ((∃x)(P (x) →
Q)) ∧ ((∀y)(Q → P (y))) ≡ (∃x)(∀y)((P (x) → Q) ∧ (Q → P (y))) if
Q does not depend on x and P (x), Q do not depend on y.

Prenex form 7 / 8



Rules for prenex form

We have rules to move quantifiers to the front, without altering the meaning.
1 ¬(∀x)P ≡ (∃x)(¬P ).
2 ¬(∃x)P ≡ (∀x)(¬P ).
3 P ∨ ((∃x)Q) ≡ (∃x)(P ∨ Q) if P does not depend on x.
4 P ∨ ((∀x)Q) ≡ (∀x)(P ∨ Q) if P does not depend on x.
5 P ∧ ((∃x)Q) ≡ (∃x)(P ∧ Q) if P does not depend on x.
6 P ∧ ((∀x)Q) ≡ (∀x)(P ∧ Q) if P does not depend on x.

More rules are derivable from these.

1 P → (∀x)Q ≡ (¬P ) ∨ (∀x)Q ≡ (∀x)((¬P ) ∨ Q) ≡ (∀x)(P → Q)
if P does not depend on x.

2 ((∀x)P ) → Q ≡ (¬(∀x)P ) ∨ Q ≡ ((∃x)(¬P )) ∨ Q ≡
(∃x)((¬P ) ∨ Q) ≡ (∃x)(P → Q) if Q does not depend on x.

3 ((∀x)P (x)) ↔ Q ≡ (((∀x)P (x)) → Q) ∧ (Q → ((∀x)P (x))) ≡
(((∀x)P (x)) → Q) ∧ (Q → ((∀y)P (y))) ≡ ((∃x)(P (x) →
Q)) ∧ ((∀y)(Q → P (y))) ≡ (∃x)(∀y)((P (x) → Q) ∧ (Q → P (y))) if
Q does not depend on x and P (x), Q do not depend on y.

Prenex form 7 / 8



Rules for prenex form

We have rules to move quantifiers to the front, without altering the meaning.
1 ¬(∀x)P ≡ (∃x)(¬P ).
2 ¬(∃x)P ≡ (∀x)(¬P ).
3 P ∨ ((∃x)Q) ≡ (∃x)(P ∨ Q) if P does not depend on x.
4 P ∨ ((∀x)Q) ≡ (∀x)(P ∨ Q) if P does not depend on x.
5 P ∧ ((∃x)Q) ≡ (∃x)(P ∧ Q) if P does not depend on x.
6 P ∧ ((∀x)Q) ≡ (∀x)(P ∧ Q) if P does not depend on x.

More rules are derivable from these.

1 P → (∀x)Q ≡ (¬P ) ∨ (∀x)Q ≡ (∀x)((¬P ) ∨ Q) ≡ (∀x)(P → Q)
if P does not depend on x.

2 ((∀x)P ) → Q ≡ (¬(∀x)P ) ∨ Q ≡ ((∃x)(¬P )) ∨ Q ≡
(∃x)((¬P ) ∨ Q) ≡ (∃x)(P → Q) if Q does not depend on x.

3 ((∀x)P (x)) ↔ Q ≡ (((∀x)P (x)) → Q) ∧ (Q → ((∀x)P (x))) ≡
(((∀x)P (x)) → Q) ∧ (Q → ((∀y)P (y))) ≡ ((∃x)(P (x) →
Q)) ∧ ((∀y)(Q → P (y))) ≡ (∃x)(∀y)((P (x) → Q) ∧ (Q → P (y))) if
Q does not depend on x and P (x), Q do not depend on y.

Prenex form 7 / 8



Rules for prenex form

We have rules to move quantifiers to the front, without altering the meaning.
1 ¬(∀x)P ≡ (∃x)(¬P ).
2 ¬(∃x)P ≡ (∀x)(¬P ).
3 P ∨ ((∃x)Q) ≡ (∃x)(P ∨ Q) if P does not depend on x.
4 P ∨ ((∀x)Q) ≡ (∀x)(P ∨ Q) if P does not depend on x.
5 P ∧ ((∃x)Q) ≡ (∃x)(P ∧ Q) if P does not depend on x.
6 P ∧ ((∀x)Q) ≡ (∀x)(P ∧ Q) if P does not depend on x.

More rules are derivable from these.

1 P → (∀x)Q ≡ (¬P ) ∨ (∀x)Q ≡ (∀x)((¬P ) ∨ Q) ≡ (∀x)(P → Q)
if P does not depend on x.

2 ((∀x)P ) → Q ≡ (¬(∀x)P ) ∨ Q ≡ ((∃x)(¬P )) ∨ Q ≡
(∃x)((¬P ) ∨ Q) ≡ (∃x)(P → Q) if Q does not depend on x.

3 ((∀x)P (x)) ↔ Q ≡ (((∀x)P (x)) → Q) ∧ (Q → ((∀x)P (x))) ≡
(((∀x)P (x)) → Q) ∧ (Q → ((∀y)P (y))) ≡ ((∃x)(P (x) →
Q)) ∧ ((∀y)(Q → P (y))) ≡ (∃x)(∀y)((P (x) → Q) ∧ (Q → P (y))) if
Q does not depend on x and P (x), Q do not depend on y.

Prenex form 7 / 8



Rules for prenex form

We have rules to move quantifiers to the front, without altering the meaning.
1 ¬(∀x)P ≡ (∃x)(¬P ).
2 ¬(∃x)P ≡ (∀x)(¬P ).
3 P ∨ ((∃x)Q) ≡ (∃x)(P ∨ Q) if P does not depend on x.
4 P ∨ ((∀x)Q) ≡ (∀x)(P ∨ Q) if P does not depend on x.
5 P ∧ ((∃x)Q) ≡ (∃x)(P ∧ Q) if P does not depend on x.
6 P ∧ ((∀x)Q) ≡ (∀x)(P ∧ Q) if P does not depend on x.

More rules are derivable from these.
1 P → (∀x)Q ≡ (¬P ) ∨ (∀x)Q

≡ (∀x)((¬P ) ∨ Q) ≡ (∀x)(P → Q)
if P does not depend on x.

2 ((∀x)P ) → Q ≡ (¬(∀x)P ) ∨ Q ≡ ((∃x)(¬P )) ∨ Q ≡
(∃x)((¬P ) ∨ Q) ≡ (∃x)(P → Q) if Q does not depend on x.

3 ((∀x)P (x)) ↔ Q ≡ (((∀x)P (x)) → Q) ∧ (Q → ((∀x)P (x))) ≡
(((∀x)P (x)) → Q) ∧ (Q → ((∀y)P (y))) ≡ ((∃x)(P (x) →
Q)) ∧ ((∀y)(Q → P (y))) ≡ (∃x)(∀y)((P (x) → Q) ∧ (Q → P (y))) if
Q does not depend on x and P (x), Q do not depend on y.

Prenex form 7 / 8



Rules for prenex form

We have rules to move quantifiers to the front, without altering the meaning.
1 ¬(∀x)P ≡ (∃x)(¬P ).
2 ¬(∃x)P ≡ (∀x)(¬P ).
3 P ∨ ((∃x)Q) ≡ (∃x)(P ∨ Q) if P does not depend on x.
4 P ∨ ((∀x)Q) ≡ (∀x)(P ∨ Q) if P does not depend on x.
5 P ∧ ((∃x)Q) ≡ (∃x)(P ∧ Q) if P does not depend on x.
6 P ∧ ((∀x)Q) ≡ (∀x)(P ∧ Q) if P does not depend on x.

More rules are derivable from these.
1 P → (∀x)Q ≡ (¬P ) ∨ (∀x)Q

≡ (∀x)((¬P ) ∨ Q) ≡ (∀x)(P → Q)
if P does not depend on x.

2 ((∀x)P ) → Q ≡ (¬(∀x)P ) ∨ Q ≡ ((∃x)(¬P )) ∨ Q ≡
(∃x)((¬P ) ∨ Q) ≡ (∃x)(P → Q) if Q does not depend on x.

3 ((∀x)P (x)) ↔ Q ≡ (((∀x)P (x)) → Q) ∧ (Q → ((∀x)P (x))) ≡
(((∀x)P (x)) → Q) ∧ (Q → ((∀y)P (y))) ≡ ((∃x)(P (x) →
Q)) ∧ ((∀y)(Q → P (y))) ≡ (∃x)(∀y)((P (x) → Q) ∧ (Q → P (y))) if
Q does not depend on x and P (x), Q do not depend on y.

Prenex form 7 / 8



Rules for prenex form

We have rules to move quantifiers to the front, without altering the meaning.
1 ¬(∀x)P ≡ (∃x)(¬P ).
2 ¬(∃x)P ≡ (∀x)(¬P ).
3 P ∨ ((∃x)Q) ≡ (∃x)(P ∨ Q) if P does not depend on x.
4 P ∨ ((∀x)Q) ≡ (∀x)(P ∨ Q) if P does not depend on x.
5 P ∧ ((∃x)Q) ≡ (∃x)(P ∧ Q) if P does not depend on x.
6 P ∧ ((∀x)Q) ≡ (∀x)(P ∧ Q) if P does not depend on x.

More rules are derivable from these.
1 P → (∀x)Q ≡ (¬P ) ∨ (∀x)Q ≡ (∀x)((¬P ) ∨ Q)

≡ (∀x)(P → Q)
if P does not depend on x.

2 ((∀x)P ) → Q ≡ (¬(∀x)P ) ∨ Q ≡ ((∃x)(¬P )) ∨ Q ≡
(∃x)((¬P ) ∨ Q) ≡ (∃x)(P → Q) if Q does not depend on x.

3 ((∀x)P (x)) ↔ Q ≡ (((∀x)P (x)) → Q) ∧ (Q → ((∀x)P (x))) ≡
(((∀x)P (x)) → Q) ∧ (Q → ((∀y)P (y))) ≡ ((∃x)(P (x) →
Q)) ∧ ((∀y)(Q → P (y))) ≡ (∃x)(∀y)((P (x) → Q) ∧ (Q → P (y))) if
Q does not depend on x and P (x), Q do not depend on y.

Prenex form 7 / 8



Rules for prenex form

We have rules to move quantifiers to the front, without altering the meaning.
1 ¬(∀x)P ≡ (∃x)(¬P ).
2 ¬(∃x)P ≡ (∀x)(¬P ).
3 P ∨ ((∃x)Q) ≡ (∃x)(P ∨ Q) if P does not depend on x.
4 P ∨ ((∀x)Q) ≡ (∀x)(P ∨ Q) if P does not depend on x.
5 P ∧ ((∃x)Q) ≡ (∃x)(P ∧ Q) if P does not depend on x.
6 P ∧ ((∀x)Q) ≡ (∀x)(P ∧ Q) if P does not depend on x.

More rules are derivable from these.
1 P → (∀x)Q ≡ (¬P ) ∨ (∀x)Q ≡ (∀x)((¬P ) ∨ Q) ≡ (∀x)(P → Q)

if P does not depend on x.

2 ((∀x)P ) → Q ≡ (¬(∀x)P ) ∨ Q ≡ ((∃x)(¬P )) ∨ Q ≡
(∃x)((¬P ) ∨ Q) ≡ (∃x)(P → Q) if Q does not depend on x.

3 ((∀x)P (x)) ↔ Q ≡ (((∀x)P (x)) → Q) ∧ (Q → ((∀x)P (x))) ≡
(((∀x)P (x)) → Q) ∧ (Q → ((∀y)P (y))) ≡ ((∃x)(P (x) →
Q)) ∧ ((∀y)(Q → P (y))) ≡ (∃x)(∀y)((P (x) → Q) ∧ (Q → P (y))) if
Q does not depend on x and P (x), Q do not depend on y.

Prenex form 7 / 8



Rules for prenex form

We have rules to move quantifiers to the front, without altering the meaning.
1 ¬(∀x)P ≡ (∃x)(¬P ).
2 ¬(∃x)P ≡ (∀x)(¬P ).
3 P ∨ ((∃x)Q) ≡ (∃x)(P ∨ Q) if P does not depend on x.
4 P ∨ ((∀x)Q) ≡ (∀x)(P ∨ Q) if P does not depend on x.
5 P ∧ ((∃x)Q) ≡ (∃x)(P ∧ Q) if P does not depend on x.
6 P ∧ ((∀x)Q) ≡ (∀x)(P ∧ Q) if P does not depend on x.

More rules are derivable from these.
1 P → (∀x)Q ≡ (¬P ) ∨ (∀x)Q ≡ (∀x)((¬P ) ∨ Q) ≡ (∀x)(P → Q)

if P does not depend on x.

2 ((∀x)P ) → Q ≡ (¬(∀x)P ) ∨ Q ≡ ((∃x)(¬P )) ∨ Q ≡
(∃x)((¬P ) ∨ Q) ≡ (∃x)(P → Q) if Q does not depend on x.

3 ((∀x)P (x)) ↔ Q ≡ (((∀x)P (x)) → Q) ∧ (Q → ((∀x)P (x))) ≡
(((∀x)P (x)) → Q) ∧ (Q → ((∀y)P (y))) ≡ ((∃x)(P (x) →
Q)) ∧ ((∀y)(Q → P (y))) ≡ (∃x)(∀y)((P (x) → Q) ∧ (Q → P (y))) if
Q does not depend on x and P (x), Q do not depend on y.

Prenex form 7 / 8



Rules for prenex form

We have rules to move quantifiers to the front, without altering the meaning.
1 ¬(∀x)P ≡ (∃x)(¬P ).
2 ¬(∃x)P ≡ (∀x)(¬P ).
3 P ∨ ((∃x)Q) ≡ (∃x)(P ∨ Q) if P does not depend on x.
4 P ∨ ((∀x)Q) ≡ (∀x)(P ∨ Q) if P does not depend on x.
5 P ∧ ((∃x)Q) ≡ (∃x)(P ∧ Q) if P does not depend on x.
6 P ∧ ((∀x)Q) ≡ (∀x)(P ∧ Q) if P does not depend on x.

More rules are derivable from these.
1 P → (∀x)Q ≡ (¬P ) ∨ (∀x)Q ≡ (∀x)((¬P ) ∨ Q) ≡ (∀x)(P → Q)

if P does not depend on x.
2 ((∀x)P ) → Q ≡ (¬(∀x)P ) ∨ Q

≡ ((∃x)(¬P )) ∨ Q ≡
(∃x)((¬P ) ∨ Q) ≡ (∃x)(P → Q) if Q does not depend on x.

3 ((∀x)P (x)) ↔ Q ≡ (((∀x)P (x)) → Q) ∧ (Q → ((∀x)P (x))) ≡
(((∀x)P (x)) → Q) ∧ (Q → ((∀y)P (y))) ≡ ((∃x)(P (x) →
Q)) ∧ ((∀y)(Q → P (y))) ≡ (∃x)(∀y)((P (x) → Q) ∧ (Q → P (y))) if
Q does not depend on x and P (x), Q do not depend on y.

Prenex form 7 / 8



Rules for prenex form

We have rules to move quantifiers to the front, without altering the meaning.
1 ¬(∀x)P ≡ (∃x)(¬P ).
2 ¬(∃x)P ≡ (∀x)(¬P ).
3 P ∨ ((∃x)Q) ≡ (∃x)(P ∨ Q) if P does not depend on x.
4 P ∨ ((∀x)Q) ≡ (∀x)(P ∨ Q) if P does not depend on x.
5 P ∧ ((∃x)Q) ≡ (∃x)(P ∧ Q) if P does not depend on x.
6 P ∧ ((∀x)Q) ≡ (∀x)(P ∧ Q) if P does not depend on x.

More rules are derivable from these.
1 P → (∀x)Q ≡ (¬P ) ∨ (∀x)Q ≡ (∀x)((¬P ) ∨ Q) ≡ (∀x)(P → Q)

if P does not depend on x.
2 ((∀x)P ) → Q ≡ (¬(∀x)P ) ∨ Q

≡ ((∃x)(¬P )) ∨ Q ≡
(∃x)((¬P ) ∨ Q) ≡ (∃x)(P → Q) if Q does not depend on x.

3 ((∀x)P (x)) ↔ Q ≡ (((∀x)P (x)) → Q) ∧ (Q → ((∀x)P (x))) ≡
(((∀x)P (x)) → Q) ∧ (Q → ((∀y)P (y))) ≡ ((∃x)(P (x) →
Q)) ∧ ((∀y)(Q → P (y))) ≡ (∃x)(∀y)((P (x) → Q) ∧ (Q → P (y))) if
Q does not depend on x and P (x), Q do not depend on y.

Prenex form 7 / 8



Rules for prenex form

We have rules to move quantifiers to the front, without altering the meaning.
1 ¬(∀x)P ≡ (∃x)(¬P ).
2 ¬(∃x)P ≡ (∀x)(¬P ).
3 P ∨ ((∃x)Q) ≡ (∃x)(P ∨ Q) if P does not depend on x.
4 P ∨ ((∀x)Q) ≡ (∀x)(P ∨ Q) if P does not depend on x.
5 P ∧ ((∃x)Q) ≡ (∃x)(P ∧ Q) if P does not depend on x.
6 P ∧ ((∀x)Q) ≡ (∀x)(P ∧ Q) if P does not depend on x.

More rules are derivable from these.
1 P → (∀x)Q ≡ (¬P ) ∨ (∀x)Q ≡ (∀x)((¬P ) ∨ Q) ≡ (∀x)(P → Q)

if P does not depend on x.
2 ((∀x)P ) → Q ≡ (¬(∀x)P ) ∨ Q ≡ ((∃x)(¬P )) ∨ Q

≡
(∃x)((¬P ) ∨ Q) ≡ (∃x)(P → Q) if Q does not depend on x.

3 ((∀x)P (x)) ↔ Q ≡ (((∀x)P (x)) → Q) ∧ (Q → ((∀x)P (x))) ≡
(((∀x)P (x)) → Q) ∧ (Q → ((∀y)P (y))) ≡ ((∃x)(P (x) →
Q)) ∧ ((∀y)(Q → P (y))) ≡ (∃x)(∀y)((P (x) → Q) ∧ (Q → P (y))) if
Q does not depend on x and P (x), Q do not depend on y.

Prenex form 7 / 8



Rules for prenex form

We have rules to move quantifiers to the front, without altering the meaning.
1 ¬(∀x)P ≡ (∃x)(¬P ).
2 ¬(∃x)P ≡ (∀x)(¬P ).
3 P ∨ ((∃x)Q) ≡ (∃x)(P ∨ Q) if P does not depend on x.
4 P ∨ ((∀x)Q) ≡ (∀x)(P ∨ Q) if P does not depend on x.
5 P ∧ ((∃x)Q) ≡ (∃x)(P ∧ Q) if P does not depend on x.
6 P ∧ ((∀x)Q) ≡ (∀x)(P ∧ Q) if P does not depend on x.

More rules are derivable from these.
1 P → (∀x)Q ≡ (¬P ) ∨ (∀x)Q ≡ (∀x)((¬P ) ∨ Q) ≡ (∀x)(P → Q)

if P does not depend on x.
2 ((∀x)P ) → Q ≡ (¬(∀x)P ) ∨ Q ≡ ((∃x)(¬P )) ∨ Q ≡

(∃x)((¬P ) ∨ Q)

≡ (∃x)(P → Q) if Q does not depend on x.

3 ((∀x)P (x)) ↔ Q ≡ (((∀x)P (x)) → Q) ∧ (Q → ((∀x)P (x))) ≡
(((∀x)P (x)) → Q) ∧ (Q → ((∀y)P (y))) ≡ ((∃x)(P (x) →
Q)) ∧ ((∀y)(Q → P (y))) ≡ (∃x)(∀y)((P (x) → Q) ∧ (Q → P (y))) if
Q does not depend on x and P (x), Q do not depend on y.

Prenex form 7 / 8



Rules for prenex form

We have rules to move quantifiers to the front, without altering the meaning.
1 ¬(∀x)P ≡ (∃x)(¬P ).
2 ¬(∃x)P ≡ (∀x)(¬P ).
3 P ∨ ((∃x)Q) ≡ (∃x)(P ∨ Q) if P does not depend on x.
4 P ∨ ((∀x)Q) ≡ (∀x)(P ∨ Q) if P does not depend on x.
5 P ∧ ((∃x)Q) ≡ (∃x)(P ∧ Q) if P does not depend on x.
6 P ∧ ((∀x)Q) ≡ (∀x)(P ∧ Q) if P does not depend on x.

More rules are derivable from these.
1 P → (∀x)Q ≡ (¬P ) ∨ (∀x)Q ≡ (∀x)((¬P ) ∨ Q) ≡ (∀x)(P → Q)

if P does not depend on x.
2 ((∀x)P ) → Q ≡ (¬(∀x)P ) ∨ Q ≡ ((∃x)(¬P )) ∨ Q ≡

(∃x)((¬P ) ∨ Q) ≡ (∃x)(P → Q)

if Q does not depend on x.

3 ((∀x)P (x)) ↔ Q ≡ (((∀x)P (x)) → Q) ∧ (Q → ((∀x)P (x))) ≡
(((∀x)P (x)) → Q) ∧ (Q → ((∀y)P (y))) ≡ ((∃x)(P (x) →
Q)) ∧ ((∀y)(Q → P (y))) ≡ (∃x)(∀y)((P (x) → Q) ∧ (Q → P (y))) if
Q does not depend on x and P (x), Q do not depend on y.

Prenex form 7 / 8



Rules for prenex form

We have rules to move quantifiers to the front, without altering the meaning.
1 ¬(∀x)P ≡ (∃x)(¬P ).
2 ¬(∃x)P ≡ (∀x)(¬P ).
3 P ∨ ((∃x)Q) ≡ (∃x)(P ∨ Q) if P does not depend on x.
4 P ∨ ((∀x)Q) ≡ (∀x)(P ∨ Q) if P does not depend on x.
5 P ∧ ((∃x)Q) ≡ (∃x)(P ∧ Q) if P does not depend on x.
6 P ∧ ((∀x)Q) ≡ (∀x)(P ∧ Q) if P does not depend on x.

More rules are derivable from these.
1 P → (∀x)Q ≡ (¬P ) ∨ (∀x)Q ≡ (∀x)((¬P ) ∨ Q) ≡ (∀x)(P → Q)

if P does not depend on x.
2 ((∀x)P ) → Q ≡ (¬(∀x)P ) ∨ Q ≡ ((∃x)(¬P )) ∨ Q ≡

(∃x)((¬P ) ∨ Q) ≡ (∃x)(P → Q) if Q does not depend on x.

3 ((∀x)P (x)) ↔ Q ≡ (((∀x)P (x)) → Q) ∧ (Q → ((∀x)P (x))) ≡
(((∀x)P (x)) → Q) ∧ (Q → ((∀y)P (y))) ≡ ((∃x)(P (x) →
Q)) ∧ ((∀y)(Q → P (y))) ≡ (∃x)(∀y)((P (x) → Q) ∧ (Q → P (y))) if
Q does not depend on x and P (x), Q do not depend on y.

Prenex form 7 / 8



Rules for prenex form

We have rules to move quantifiers to the front, without altering the meaning.
1 ¬(∀x)P ≡ (∃x)(¬P ).
2 ¬(∃x)P ≡ (∀x)(¬P ).
3 P ∨ ((∃x)Q) ≡ (∃x)(P ∨ Q) if P does not depend on x.
4 P ∨ ((∀x)Q) ≡ (∀x)(P ∨ Q) if P does not depend on x.
5 P ∧ ((∃x)Q) ≡ (∃x)(P ∧ Q) if P does not depend on x.
6 P ∧ ((∀x)Q) ≡ (∀x)(P ∧ Q) if P does not depend on x.

More rules are derivable from these.
1 P → (∀x)Q ≡ (¬P ) ∨ (∀x)Q ≡ (∀x)((¬P ) ∨ Q) ≡ (∀x)(P → Q)

if P does not depend on x.
2 ((∀x)P ) → Q ≡ (¬(∀x)P ) ∨ Q ≡ ((∃x)(¬P )) ∨ Q ≡

(∃x)((¬P ) ∨ Q) ≡ (∃x)(P → Q) if Q does not depend on x.
3 ((∀x)P (x)) ↔ Q

≡ (((∀x)P (x)) → Q) ∧ (Q → ((∀x)P (x))) ≡
(((∀x)P (x)) → Q) ∧ (Q → ((∀y)P (y))) ≡ ((∃x)(P (x) →
Q)) ∧ ((∀y)(Q → P (y))) ≡ (∃x)(∀y)((P (x) → Q) ∧ (Q → P (y))) if
Q does not depend on x and P (x), Q do not depend on y.

Prenex form 7 / 8



Rules for prenex form

We have rules to move quantifiers to the front, without altering the meaning.
1 ¬(∀x)P ≡ (∃x)(¬P ).
2 ¬(∃x)P ≡ (∀x)(¬P ).
3 P ∨ ((∃x)Q) ≡ (∃x)(P ∨ Q) if P does not depend on x.
4 P ∨ ((∀x)Q) ≡ (∀x)(P ∨ Q) if P does not depend on x.
5 P ∧ ((∃x)Q) ≡ (∃x)(P ∧ Q) if P does not depend on x.
6 P ∧ ((∀x)Q) ≡ (∀x)(P ∧ Q) if P does not depend on x.

More rules are derivable from these.
1 P → (∀x)Q ≡ (¬P ) ∨ (∀x)Q ≡ (∀x)((¬P ) ∨ Q) ≡ (∀x)(P → Q)

if P does not depend on x.
2 ((∀x)P ) → Q ≡ (¬(∀x)P ) ∨ Q ≡ ((∃x)(¬P )) ∨ Q ≡

(∃x)((¬P ) ∨ Q) ≡ (∃x)(P → Q) if Q does not depend on x.
3 ((∀x)P (x)) ↔ Q

≡ (((∀x)P (x)) → Q) ∧ (Q → ((∀x)P (x))) ≡
(((∀x)P (x)) → Q) ∧ (Q → ((∀y)P (y))) ≡ ((∃x)(P (x) →
Q)) ∧ ((∀y)(Q → P (y))) ≡ (∃x)(∀y)((P (x) → Q) ∧ (Q → P (y))) if
Q does not depend on x and P (x), Q do not depend on y.

Prenex form 7 / 8



Rules for prenex form

We have rules to move quantifiers to the front, without altering the meaning.
1 ¬(∀x)P ≡ (∃x)(¬P ).
2 ¬(∃x)P ≡ (∀x)(¬P ).
3 P ∨ ((∃x)Q) ≡ (∃x)(P ∨ Q) if P does not depend on x.
4 P ∨ ((∀x)Q) ≡ (∀x)(P ∨ Q) if P does not depend on x.
5 P ∧ ((∃x)Q) ≡ (∃x)(P ∧ Q) if P does not depend on x.
6 P ∧ ((∀x)Q) ≡ (∀x)(P ∧ Q) if P does not depend on x.

More rules are derivable from these.
1 P → (∀x)Q ≡ (¬P ) ∨ (∀x)Q ≡ (∀x)((¬P ) ∨ Q) ≡ (∀x)(P → Q)

if P does not depend on x.
2 ((∀x)P ) → Q ≡ (¬(∀x)P ) ∨ Q ≡ ((∃x)(¬P )) ∨ Q ≡

(∃x)((¬P ) ∨ Q) ≡ (∃x)(P → Q) if Q does not depend on x.
3 ((∀x)P (x)) ↔ Q ≡ (((∀x)P (x)) → Q) ∧ (Q → ((∀x)P (x)))

≡
(((∀x)P (x)) → Q) ∧ (Q → ((∀y)P (y))) ≡ ((∃x)(P (x) →
Q)) ∧ ((∀y)(Q → P (y))) ≡ (∃x)(∀y)((P (x) → Q) ∧ (Q → P (y))) if
Q does not depend on x and P (x), Q do not depend on y.

Prenex form 7 / 8



Rules for prenex form

We have rules to move quantifiers to the front, without altering the meaning.
1 ¬(∀x)P ≡ (∃x)(¬P ).
2 ¬(∃x)P ≡ (∀x)(¬P ).
3 P ∨ ((∃x)Q) ≡ (∃x)(P ∨ Q) if P does not depend on x.
4 P ∨ ((∀x)Q) ≡ (∀x)(P ∨ Q) if P does not depend on x.
5 P ∧ ((∃x)Q) ≡ (∃x)(P ∧ Q) if P does not depend on x.
6 P ∧ ((∀x)Q) ≡ (∀x)(P ∧ Q) if P does not depend on x.

More rules are derivable from these.
1 P → (∀x)Q ≡ (¬P ) ∨ (∀x)Q ≡ (∀x)((¬P ) ∨ Q) ≡ (∀x)(P → Q)

if P does not depend on x.
2 ((∀x)P ) → Q ≡ (¬(∀x)P ) ∨ Q ≡ ((∃x)(¬P )) ∨ Q ≡

(∃x)((¬P ) ∨ Q) ≡ (∃x)(P → Q) if Q does not depend on x.
3 ((∀x)P (x)) ↔ Q ≡ (((∀x)P (x)) → Q) ∧ (Q → ((∀x)P (x))) ≡

(((∀x)P (x)) → Q) ∧ (Q → ((∀y)P (y)))

≡ ((∃x)(P (x) →
Q)) ∧ ((∀y)(Q → P (y))) ≡ (∃x)(∀y)((P (x) → Q) ∧ (Q → P (y))) if
Q does not depend on x and P (x), Q do not depend on y.

Prenex form 7 / 8



Rules for prenex form

We have rules to move quantifiers to the front, without altering the meaning.
1 ¬(∀x)P ≡ (∃x)(¬P ).
2 ¬(∃x)P ≡ (∀x)(¬P ).
3 P ∨ ((∃x)Q) ≡ (∃x)(P ∨ Q) if P does not depend on x.
4 P ∨ ((∀x)Q) ≡ (∀x)(P ∨ Q) if P does not depend on x.
5 P ∧ ((∃x)Q) ≡ (∃x)(P ∧ Q) if P does not depend on x.
6 P ∧ ((∀x)Q) ≡ (∀x)(P ∧ Q) if P does not depend on x.

More rules are derivable from these.
1 P → (∀x)Q ≡ (¬P ) ∨ (∀x)Q ≡ (∀x)((¬P ) ∨ Q) ≡ (∀x)(P → Q)

if P does not depend on x.
2 ((∀x)P ) → Q ≡ (¬(∀x)P ) ∨ Q ≡ ((∃x)(¬P )) ∨ Q ≡

(∃x)((¬P ) ∨ Q) ≡ (∃x)(P → Q) if Q does not depend on x.
3 ((∀x)P (x)) ↔ Q ≡ (((∀x)P (x)) → Q) ∧ (Q → ((∀x)P (x))) ≡

(((∀x)P (x)) → Q) ∧ (Q → ((∀y)P (y))) ≡ ((∃x)(P (x) →
Q)) ∧ ((∀y)(Q → P (y)))

≡ (∃x)(∀y)((P (x) → Q) ∧ (Q → P (y))) if
Q does not depend on x and P (x), Q do not depend on y.

Prenex form 7 / 8



Rules for prenex form

We have rules to move quantifiers to the front, without altering the meaning.
1 ¬(∀x)P ≡ (∃x)(¬P ).
2 ¬(∃x)P ≡ (∀x)(¬P ).
3 P ∨ ((∃x)Q) ≡ (∃x)(P ∨ Q) if P does not depend on x.
4 P ∨ ((∀x)Q) ≡ (∀x)(P ∨ Q) if P does not depend on x.
5 P ∧ ((∃x)Q) ≡ (∃x)(P ∧ Q) if P does not depend on x.
6 P ∧ ((∀x)Q) ≡ (∀x)(P ∧ Q) if P does not depend on x.

More rules are derivable from these.
1 P → (∀x)Q ≡ (¬P ) ∨ (∀x)Q ≡ (∀x)((¬P ) ∨ Q) ≡ (∀x)(P → Q)

if P does not depend on x.
2 ((∀x)P ) → Q ≡ (¬(∀x)P ) ∨ Q ≡ ((∃x)(¬P )) ∨ Q ≡

(∃x)((¬P ) ∨ Q) ≡ (∃x)(P → Q) if Q does not depend on x.
3 ((∀x)P (x)) ↔ Q ≡ (((∀x)P (x)) → Q) ∧ (Q → ((∀x)P (x))) ≡

(((∀x)P (x)) → Q) ∧ (Q → ((∀y)P (y))) ≡ ((∃x)(P (x) →
Q)) ∧ ((∀y)(Q → P (y))) ≡ (∃x)(∀y)((P (x) → Q) ∧ (Q → P (y)))

if
Q does not depend on x and P (x), Q do not depend on y.

Prenex form 7 / 8



Rules for prenex form

We have rules to move quantifiers to the front, without altering the meaning.
1 ¬(∀x)P ≡ (∃x)(¬P ).
2 ¬(∃x)P ≡ (∀x)(¬P ).
3 P ∨ ((∃x)Q) ≡ (∃x)(P ∨ Q) if P does not depend on x.
4 P ∨ ((∀x)Q) ≡ (∀x)(P ∨ Q) if P does not depend on x.
5 P ∧ ((∃x)Q) ≡ (∃x)(P ∧ Q) if P does not depend on x.
6 P ∧ ((∀x)Q) ≡ (∀x)(P ∧ Q) if P does not depend on x.

More rules are derivable from these.
1 P → (∀x)Q ≡ (¬P ) ∨ (∀x)Q ≡ (∀x)((¬P ) ∨ Q) ≡ (∀x)(P → Q)

if P does not depend on x.
2 ((∀x)P ) → Q ≡ (¬(∀x)P ) ∨ Q ≡ ((∃x)(¬P )) ∨ Q ≡

(∃x)((¬P ) ∨ Q) ≡ (∃x)(P → Q) if Q does not depend on x.
3 ((∀x)P (x)) ↔ Q ≡ (((∀x)P (x)) → Q) ∧ (Q → ((∀x)P (x))) ≡

(((∀x)P (x)) → Q) ∧ (Q → ((∀y)P (y))) ≡ ((∃x)(P (x) →
Q)) ∧ ((∀y)(Q → P (y))) ≡ (∃x)(∀y)((P (x) → Q) ∧ (Q → P (y))) if
Q does not depend on x and P (x), Q do not depend on y.

Prenex form 7 / 8



Rules for prenex form

We have rules to move quantifiers to the front, without altering the meaning.
1 ¬(∀x)P ≡ (∃x)(¬P ).
2 ¬(∃x)P ≡ (∀x)(¬P ).
3 P ∨ ((∃x)Q) ≡ (∃x)(P ∨ Q) if P does not depend on x.
4 P ∨ ((∀x)Q) ≡ (∀x)(P ∨ Q) if P does not depend on x.
5 P ∧ ((∃x)Q) ≡ (∃x)(P ∧ Q) if P does not depend on x.
6 P ∧ ((∀x)Q) ≡ (∀x)(P ∧ Q) if P does not depend on x.

More rules are derivable from these.
1 P → (∀x)Q ≡ (¬P ) ∨ (∀x)Q ≡ (∀x)((¬P ) ∨ Q) ≡ (∀x)(P → Q)

if P does not depend on x.
2 ((∀x)P ) → Q ≡ (¬(∀x)P ) ∨ Q ≡ ((∃x)(¬P )) ∨ Q ≡

(∃x)((¬P ) ∨ Q) ≡ (∃x)(P → Q) if Q does not depend on x.
3 ((∀x)P (x)) ↔ Q ≡ (((∀x)P (x)) → Q) ∧ (Q → ((∀x)P (x))) ≡

(((∀x)P (x)) → Q) ∧ (Q → ((∀y)P (y))) ≡ ((∃x)(P (x) →
Q)) ∧ ((∀y)(Q → P (y))) ≡ (∃x)(∀y)((P (x) → Q) ∧ (Q → P (y))) if
Q does not depend on x and P (x), Q do not depend on y.

Prenex form 7 / 8



Variable conflict

Let’s consider the problem of putting the following sentence into prenex form:

((∃x)(x < 0)) ∧ ((∃x)(x > 0)).

1 (First step) (∃x)((x < 0) ∧ (∃x)(x > 0)) No error!
2 (Second step) (∃x)(∃x)((x < 0) ∧ (x > 0)) Error!
3 (Alternative second step) (∃x)((x < 0) ∧ (x > 0)) Error!

We need to “standardize the variables apart”, first. That is, rewrite the original
sentence as

((∃x)(x < 0)) ∧ ((∃y)(y > 0)),

in order to avoid variable conflicts. A prenex form for the sentence is

(∃x)(∃y)((x < 0) ∧ (y > 0)).
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