Prenex form

Prenex form 1/8

Quantifiers: V,

Prenex form 2/8

Quantifiers: V,

Let ¢(x) be the formula (z < 0).

Prenex form 2/8

Quantifiers: V,

Let ¢(z) be the formula (x < 0). We might want to say that the real numbers
have an element x which satisfies this formula. We write

Prenex form 2/8

Quantifiers: V,

Let ¢(z) be the formula (x < 0). We might want to say that the real numbers
have an element x which satisfies this formula. We write

(3z)p(z)

Prenex form 2/8

Quantifiers: V,

Let ¢(z) be the formula (x < 0). We might want to say that the real numbers
have an element x which satisfies this formula. We write

(3z)p(z)

and read this “there exists = such that ¢(x)”

Prenex form

Quantifiers: V,

Let ¢(z) be the formula (x < 0). We might want to say that the real numbers
have an element x which satisfies this formula. We write

(3z)p(z)

and read this “there exists = such that ¢(x)” or “there exists x such that
(x <0)”.

Prenex form 2/8

Quantifiers: V,

Let ¢(z) be the formula (x < 0). We might want to say that the real numbers
have an element x which satisfies this formula. We write

(3z)p(z)

and read this “there exists = such that ¢(x)” or “there exists x such that
(x < 0)”. This is true in the real numbers, and the assertion that it is true
means “there is some x in R such that z < 0”. (For example, z = —1isa
value in R that winesses the truth of this statement.)

Prenex form 2/8

Quantifiers: V,

Let ¢(z) be the formula (x < 0). We might want to say that the real numbers
have an element x which satisfies this formula. We write

(3z)p(z)

and read this “there exists = such that ¢(x)” or “there exists x such that
(x < 0)”. This is true in the real numbers, and the assertion that it is true
means “there is some x in R such that z < 0”. (For example, z = —1isa
value in R that winesses the truth of this statement.)

We write (Vz)(z < 0) and say “forall z, z < 0”.

Prenex form 2/8

Quantifiers: V,

Let ¢(z) be the formula (x < 0). We might want to say that the real numbers
have an element x which satisfies this formula. We write

(3z)p(z)

and read this “there exists = such that ¢(x)” or “there exists x such that
(x < 0)”. This is true in the real numbers, and the assertion that it is true
means “there is some x in R such that z < 0”. (For example, z = —1isa
value in R that winesses the truth of this statement.)

We write (Vz)(xz < 0) and say “forall x, z < 0”. This statement would be
true in the real numbers if “for all x in R, z < 0”.

Prenex form 2/8

Quantifiers: V,

Let ¢(z) be the formula (x < 0). We might want to say that the real numbers
have an element x which satisfies this formula. We write

(3z)p(z)

and read this “there exists = such that ¢(x)” or “there exists x such that
(x < 0)”. This is true in the real numbers, and the assertion that it is true
means “there is some x in R such that z < 0”. (For example, z = —1isa
value in R that winesses the truth of this statement.)

We write (Vz)(xz < 0) and say “forall x, z < 0”. This statement would be
true in the real numbers if “for all z in R, x < 0”. (Which is NOT the case!)

Prenex form 2/8

Quantifiers: V,

Let ¢(z) be the formula (x < 0). We might want to say that the real numbers
have an element x which satisfies this formula. We write

(3z)p(z)

and read this “there exists = such that ¢(x)” or “there exists x such that
(x < 0)”. This is true in the real numbers, and the assertion that it is true
means “there is some x in R such that z < 0”. (For example, z = —1isa
value in R that winesses the truth of this statement.)

We write (Vz)(xz < 0) and say “forall x, z < 0”. This statement would be
true in the real numbers if “for all z in R, x < 0”. (Which is NOT the case!)

Note that (3z)¢(x) is true in R but false in N.

Prenex form 2/8

Quantifiers: V,

Let ¢(z) be the formula (x < 0). We might want to say that the real numbers
have an element x which satisfies this formula. We write

(3z)p(z)

and read this “there exists = such that ¢(x)” or “there exists x such that
(x < 0)”. This is true in the real numbers, and the assertion that it is true
means “there is some x in R such that z < 0”. (For example, z = —1isa
value in R that winesses the truth of this statement.)

We write (Vz)(xz < 0) and say “forall x, z < 0”. This statement would be
true in the real numbers if “for all z in R, x < 0”. (Which is NOT the case!)

Note that (3z)p(z) is true in R but false in N. We learn if (3z)(x < 0) is true
in a structure by examining the table for “<”.

Prenex form 2/8

Prenex form

Prenex form 3/8

Prenex form

Prenex form means “quantifiers in front”.

Prenex form 3/8

Prenex form

Prenex form means “quantifiers in front”. That is, a statement in prenex form
has the form (quantifier prefix)(“matrix”).

Prenex form 3/8

Prenex form

Prenex form means “quantifiers in front”. That is, a statement in prenex form

has the form (quantifier prefix)(“matrix”).
Fact: Every formal sentence is logically equivalent to one in prenex form.

Prenex form 3/8

Prenex form

Prenex form means “quantifiers in front”. That is, a statement in prenex form

has the form (quantifier prefix)(“matrix”).
Fact: Every formal sentence is logically equivalent to one in prenex form.

Axiom of Extensionality, not in prenex form:

(V) (vy)((z = y) & (V2)((z € 2) & (2 €9)))

Prenex form 3/8

Prenex form

Prenex form means “quantifiers in front”. That is, a statement in prenex form

has the form (quantifier prefix)(“matrix”).
Fact: Every formal sentence is logically equivalent to one in prenex form.

Axiom of Extensionality, not in prenex form:

(V) (vy)((z = y) & (V2)((z € 2) & (2 €9)))

Axiom of Extensionality, in prenex form:

(V) (Vy) (V2) Bw) (((z =y) = ((z € 2) & (2 € y)))A
((wex) & (wey) = (r=y)))

Prenex form 3/8

Prenex form

Prenex form means “quantifiers in front”. That is, a statement in prenex form
has the form (quantifier prefix)(“matrix”).
Fact: Every formal sentence is logically equivalent to one in prenex form.

Axiom of Extensionality, not in prenex form:

(V) (vy)((z = y) & (V2)((z € 2) & (2 €9)))

Axiom of Extensionality, in prenex form:

(V) (Vy) (V2) Bw) (((z =y) = ((z € 2) & (2 € y)))A
((wex) & (wey) = (r=y)))

We will describe a process to determine the truth of a sentence in a structure if
the sentence is written in prenex form.

Prenex form 3/8

Interaction of V, 3 with =, A, V

Prenex form 4/8

Interaction of V, 3 with =, A, V

“It is not true that every cat has stripes”

Prenex form 4/8

Interaction of V, 3 with =, A, V

“It is not true that every cat has stripes” is equivalent to

Prenex form 4/8

Interaction of V, 3 with =, A, V

“It is not true that every cat has stripes” is equivalent to “some cat does not
have stripes”.

Prenex form 4/8

Interaction of V, 3 with =, A, V

“It is not true that every cat has stripes” is equivalent to “some cat does not
have stripes”.

—(Ve)Stripes(c) = (Je)—Stripes(c)

Prenex form 4/8

Interaction of V, 3 with =, A, V

“It is not true that every cat has stripes” is equivalent to “some cat does not
have stripes”.

—(Ve)Stripes(c) = (Je)—Stripes(c)

“It is not true that every x has property P”

Prenex form 4/8

Interaction of V, 3 with =, A, V

“It is not true that every cat has stripes” is equivalent to “some cat does not
have stripes”.

—(Ve)Stripes(c) = (Je)—Stripes(c)

“It is not true that every x has property P is equivalent to

Prenex form 4/8

Interaction of V, 3 with =, A, V

“It is not true that every cat has stripes” is equivalent to “some cat does not
have stripes”.

—(Ve)Stripes(c) = (Je)—Stripes(c)

“It is not true that every x has property P” is equivalent to “some = does not
have property P”.

Prenex form 4/8

Interaction of V, 3 with =, A, V

“It is not true that every cat has stripes” is equivalent to “some cat does not
have stripes”.

—(Ve)Stripes(c) = (Je)—Stripes(c)
“It is not true that every x has property P” is equivalent to “some = does not
have property P”.

- (Vo) P = (Jz)-P

Prenex form 4/8

Interaction of V, 3 with =, A, V

“It is not true that every cat has stripes” is equivalent to “some cat does not
have stripes”.

—(Ve)Stripes(c) = (Je)—Stripes(c)
“It is not true that every x has property P” is equivalent to “some = does not
have property P”.

- (Vo) P = (Jz)-P

“It is not true that some x has property P”

Prenex form 4/8

Interaction of V, 3 with =, A, V

“It is not true that every cat has stripes” is equivalent to “some cat does not
have stripes”.

—(Ve)Stripes(c) = (Je)—Stripes(c)
“It is not true that every x has property P” is equivalent to “some = does not
have property P”.

- (Vo) P = (Jz)-P

“It is not true that some x has property P is equivalent to

Prenex form 4/8

Interaction of V, 3 with =, A, V

“It is not true that every cat has stripes” is equivalent to “some cat does not
have stripes”.

—(Ve)Stripes(c) = (Je)—Stripes(c)

“It is not true that every x has property P” is equivalent to “some = does not
have property P”.

- (Vo) P = (Jz)-P

“It is not true that some x has property P is equivalent to “every z fails to
have property P”.

Prenex form 4/8

Interaction of V, 3 with =, A, V

“It is not true that every cat has stripes” is equivalent to “some cat does not
have stripes”.

—(Ve)Stripes(c) = (Je)—Stripes(c)
“It is not true that every x has property P” is equivalent to “some = does not
have property P”.

- (Vo) P = (Jz)-P

“It is not true that some x has property P is equivalent to “every z fails to
have property P”.

—(3x)P = (Vz)-P

Prenex form 4/8

Cat-free explanation, I

Prenex form 5/8

Cat-free explanation, I

Given the table for an arbitrary predicate,

Prenex form 5/8

Cat-free explanation, I

Given the table for an arbitrary predicate, say P(z,¥),

Prenex form 5/8

Cat-free explanation, I

Given the table for an arbitrary predicate, say P(x, %), we will indicate why
the tables for =(Vz)P(x, y) and (3z)—P(x,y) are the same.

Prenex form 5/8

Cat-free explanation, I

Given the table for an arbitrary predicate, say P(x, %), we will indicate why
the tables for =(Vz)P(x, y) and (3z)—P(x,y) are the same.

P(z,y) J

Prenex form 5/8

Cat-free explanation, I

Given the table for an arbitrary predicate, say P(x, %), we will indicate why
the tables for =(Vz)P(x, y) and (3z)—P(x,y) are the same.

P(z,y) J

Prenex form 5/8

Cat-free explanation, I

Given the table for an arbitrary predicate, say P(x, %), we will indicate why
the tables for =(Vz)P(x, y) and (3z)—P(x,y) are the same.

P(z,y) J

Prenex form 5/8

Cat-free explanation, II

Prenex form 6/8

Cat-free explanation, II

P(z,y)]

Prenex form 6/8

Cat-free explanation, II

P(z,y)]

~P(z,9) y

Prenex form 6/8

Cat-free explanation, II

P(z,y)]

~P(z,9) y (3z)=P(z,9)

Prenex form 6/8

Rules for prenex form

Prenex form 7/8

Rules for prenex form

We have rules to move quantifiers to the front, without altering the meaning.

Prenex form 7/8

Rules for prenex form

We have rules to move quantifiers to the front, without altering the meaning.
Q ~(Vx)P = (Jx)(—P).

Prenex form 7/8

Rules for prenex form

We have rules to move quantifiers to the front, without altering the meaning.
Q ~(Vx)P = (Jx)(—P).

Prenex form 7/8

Rules for prenex form

We have rules to move quantifiers to the front, without altering the meaning.
Q ~(Vx)P = (Jx)(—P).
Q@ —(Iz)P = (Vx)(—P).

Prenex form 7/8

Rules for prenex form

We have rules to move quantifiers to the front, without altering the meaning.
Q ~(Vx)P = (Jx)(—P).
Q@ —(Iz)P = (Vx)(—P).

Prenex form 7/8

Rules for prenex form

We have rules to move quantifiers to the front, without altering the meaning.
Q@ ~(Vx)P = (Fx)(—P).
Q@ —(3x)P = (Vx)(=P).
@ PV ((Fr)Q) = (3z)(P Vv Q) if P does not depend on z.

Prenex form 7/8

Rules for prenex form

We have rules to move quantifiers to the front, without altering the meaning.
Q@ ~(Vx)P = (Fx)(—P).
Q@ —(3x)P = (Vx)(=P).
@ PV ((Fr)Q) = (3z)(P Vv Q) if P does not depend on z.

Prenex form 7/8

Rules for prenex form

We have rules to move quantifiers to the front, without altering the meaning.
0 —(Vz)P = (3z)(=P).
~(32)P = (Va)(-P).
0 PV ((32)Q) (3z)(P Vv Q) if P does not depend on x.
Q PV ((V2)Q) (Vx)(P V Q) if P does not depend on x.

Prenex form 7/8

Rules for prenex form

We have rules to move quantifiers to the front, without altering the meaning.
0 —(Vz)P = (3z)(=P).
~(32)P = (Va)(-P).
0 PV ((32)Q) (3z)(P Vv Q) if P does not depend on x.
Q PV ((V2)Q) (Vx)(P V Q) if P does not depend on x.

Prenex form 7/8

Rules for prenex form

We have rules to move quantifiers to the front, without altering the meaning.
-(Vz)P = (3z)(—P).
—(3x)P = (Vx)(—=P).

00000
e liae
< <
2 E2E
L0
N

Prenex form 7/8

Rules for prenex form

We have rules to move quantifiers to the front, without altering the meaning.
-(Vz)P = (3z)(—P).
—(3x)P = (Vx)(—=P).

00000
e liae
< <
2 E2E
L0
N

Prenex form 7/8

Rules for prenex form

We have rules to move quantifiers to the front, without altering the meaning.

Q@ ~(Vx)P = (Fx)(—P).
Q@ —(3x)P = (Vx)(=P).
@ PV ((Fr)Q) = (3z)(P Vv Q) if P does not depend on z.
Q@ PV ((Vr)Q) = (Vz)(PV Q) if P does not depend on z.
@ PA((Fr)Q) = (3z)(P A Q) if P does not depend on .
Q PA(V2)Q) = (Vz)(P A Q) if P does not depend on .

Prenex form 7/8

Rules for prenex form

We have rules to move quantifiers to the front, without altering the meaning.

Q@ ~(Vx)P = (Fx)(—P).
Q@ —(3x)P = (Vx)(=P).
@ PV ((Fr)Q) = (3z)(P Vv Q) if P does not depend on z.
Q@ PV ((Vr)Q) = (Vz)(PV Q) if P does not depend on z.
@ PA((Fr)Q) = (3z)(P A Q) if P does not depend on .
Q PA(V2)Q) = (Vz)(P A Q) if P does not depend on .

Prenex form 7/8

Rules for prenex form

We have rules to move quantifiers to the front, without altering the meaning.

Q@ ~(Vx)P = (Fx)(—P).
Q@ —(3x)P = (Vx)(=P).
@ PV ((Fr)Q) = (3z)(P Vv Q) if P does not depend on z.
Q@ PV ((Vr)Q) = (Vz)(PV Q) if P does not depend on z.
@ PA((Fr)Q) = (3z)(P A Q) if P does not depend on .
Q PA(V2)Q) = (Vz)(P A Q) if P does not depend on .

More rules are derivable from these.

Prenex form 7/8

Rules for prenex form

We have rules to move quantifiers to the front, without altering the meaning.

Q@ ~(Vx)P = (Fx)(—P).
Q@ —(3x)P = (Vx)(=P).
@ PV ((Fr)Q) = (3z)(P Vv Q) if P does not depend on z.
Q@ PV ((Vr)Q) = (Vz)(PV Q) if P does not depend on z.
@ PA((Fr)Q) = (3z)(P A Q) if P does not depend on .
Q PA(V2)Q) = (Vz)(P A Q) if P does not depend on .

More rules are derivable from these.

Q@ P— (Vx)Q = (-P)V (V2)Q

Prenex form 7/8

Rules for prenex form

We have rules to move quantifiers to the front, without altering the meaning.

Q@ ~(Vx)P = (Fx)(—P).
Q@ —(3x)P = (Vx)(=P).
@ PV ((Fr)Q) = (3z)(P Vv Q) if P does not depend on z.
Q@ PV ((Vr)Q) = (Vz)(PV Q) if P does not depend on z.
@ PA((Fr)Q) = (3z)(P A Q) if P does not depend on .
Q PA(V2)Q) = (Vz)(P A Q) if P does not depend on .

More rules are derivable from these.

Q@ P— (Vx)Q = (-P)V (V2)Q

Prenex form 7/8

Rules for prenex form

We have rules to move quantifiers to the front, without altering the meaning.
Q@ ~(Vx)P = (Fx)(—P).
Q@ —(3x)P = (Vx)(=P).

(3z)(P Vv Q) if P does not depend on .

(Vx)(P V Q) if P does not depend on x.

(3z)(P A Q) if P does not depend on .

(Vz)(P A Q) if P does not depend on x.

More rules are derivable from these.

0 P—(Vo)Q = (=P)V(v2)Q = (Vo)((-P) vV Q)

Prenex form 7/8

Rules for prenex form

We have rules to move quantifiers to the front, without altering the meaning.
Q@ ~(Vx)P = (Fx)(—P).
Q@ —(3x)P = (Vx)(=P).

(3z)(P Vv Q) if P does not depend on .

(Vx)(P V Q) if P does not depend on x.

(3z)(P A Q) if P does not depend on .

(Vz)(P A Q) if P does not depend on x.

More rules are derivable from these.

Q P—-(Vo)Q = (-P)V(V2)Q = (Vx)((-P)VvQ) = (Vz)(P — Q)

Prenex form 7/8

Rules for prenex form

We have rules to move quantifiers to the front, without altering the meaning.
Q@ ~(Vx)P = (Fx)(—P).
Q@ —(3x)P = (Vx)(=P).

(3z)(P Vv Q) if P does not depend on .

(Vx)(P V Q) if P does not depend on x.

(3z)(P A Q) if P does not depend on .

(Vz)(P A Q) if P does not depend on x.

More rules are derivable from these.
@ P— (¥2)Q = (-P)V (v0)Q = (¥2)((~P)V Q) = (va)(P = Q)

if P does not depend on .

Prenex form 7/8

Rules for prenex form

We have rules to move quantifiers to the front, without altering the meaning.
Q@ ~(Vx)P = (Fx)(—P).
Q@ —(3x)P = (Vx)(=P).

(3z)(P Vv Q) if P does not depend on .

(Vx)(P V Q) if P does not depend on x.

(3z)(P A Q) if P does not depend on .

(Vz)(P A Q) if P does not depend on x.

More rules are derivable from these.
QO P— (V2)Q = (=P)V (V2)Q = (Vo) (=P)VQ) = (Vz)(P — Q)
if P does not depend on .

Q@ (Vo)P)—Q = (-(Vo)P)VvQ

Prenex form 7/8

Rules for prenex form

We have rules to move quantifiers to the front, without altering the meaning.
Q@ ~(Vx)P = (Fx)(—P).
Q@ —(3x)P = (Vx)(=P).

(3z)(P Vv Q) if P does not depend on .

(Vx)(P V Q) if P does not depend on x.

(3z)(P A Q) if P does not depend on .

(Vz)(P A Q) if P does not depend on x.

More rules are derivable from these.
QO P— (V2)Q = (=P)V (V2)Q = (Vo) (=P)VQ) = (Vz)(P — Q)
if P does not depend on .

Q@ (Vo)P)—Q = (-(Vo)P)VvQ

Prenex form 7/8

Rules for prenex form

We have rules to move quantifiers to the front, without altering the meaning.
Q ~(Vx)P = (Jx)(—P).
Q@ —(Iz)P = (Vx)(—P).

)
@ PV ((Fr)Q) = (3z)(P Vv Q) if P does not depend on z.
Q@ PV ((Vr)Q) = (Vz)(PV Q) if P does not depend on z.
@ PA((Fr)Q) = (3z)(P A Q) if P does not depend on .
Q PA(V2)Q) = (Vz)(P A Q) if P does not depend on .

More rules are derivable from these.
@ P— (¥2)Q = (-P)V (v0)Q = (¥2)((~P)V Q) = (va)(P = Q)

if P does not depend on .

@ (V2)P) = Q = (=(V2)P)v@Q = ((Bx)(=P)) v Q

Prenex form 7/8

Rules for prenex form

We have rules to move quantifiers to the front, without altering the meaning.
Q ~(Vx)P = (Jx)(—P).

Q@ —(3x)P = (Vx)(=P).

@ PV ((Fr)Q) = (3z)(P Vv Q) if P does not depend on z.
Q@ PV ((Vr)Q) = (Vz)(PV Q) if P does not depend on z.
@ PA((Fr)Q) = (3z)(P A Q) if P does not depend on .
Q PA(V2)Q) = (Vz)(P A Q) if P does not depend on .

More rules are derivable from these.
@ P— (¥2)Q = (-P)V (v0)Q = (¥2)((~P)V Q) = (va)(P = Q)
if P does not depend on .
@ (Vo)P) = Q = (~(Vz)P)vQ = (Bz)(-P))VQ =
(Fz)((=P) vV Q)

Prenex form 7/8

Rules for prenex form

We have rules to move quantifiers to the front, without altering the meaning.

Q@ ~(Vx)P = (Fx)(—P).
@ ~(32)P = (Vz)(-P).
@ Pv((3)Q) = (Jz)(P V Q) if P does not depend on .
Q@ PV ((Vr)Q) = (Vz)(PV Q) if P does not depend on z.
@ PA((Fr)Q) = (Fz)(P A Q) if P does not depend on z.
Q PA(V2)Q) = (Vz)(P A Q) if P does not depend on .

More rules are derivable from these.
QO P— (V2)Q = (=P)V (V2)Q = (Vo) (=P)VQ) = (Vz)(P — Q)
if P does not depend on .

@ ((v2)P) = Q = (=(Vz)P)vQ = (B)(-P))vQ =

)V
B2)(=P)v Q) = (Fz)(P = Q)

Rules for prenex form

We have rules to move quantifiers to the front, without altering the meaning.
Q ~(Vx)P = (Jx)(—P).
Q@ —(Iz)P = (Vx)(—P).

)
@ PV ((Fr)Q) = (3z)(P Vv Q) if P does not depend on z.
Q@ PV ((Vr)Q) = (Vz)(PV Q) if P does not depend on z.
@ PA((Fr)Q) = (3z)(P A Q) if P does not depend on .
Q PA(V2)Q) = (Vz)(P A Q) if P does not depend on .

More rules are derivable from these.
@ P— (¥2)Q = (-P)V (v0)Q = (¥2)((~P)V Q) = (va)(P = Q)

if P does not depend on .

@ (Vo)P) »Q = (~(Vo)P)vQ = (Bx)(-P))VQ =
(Fz)((-P) v Q) = (Fz)(P — Q) if Q does not depend on z.

Prenex form 7/8

Rules for prenex form

We have rules to move quantifiers to the front, without altering the meaning.

Q@ ~(Vx)P = (Fx)(—P).
@ ~(32)P = (Vz)(-P).
@ Pv((3)Q) = (Jz)(P V Q) if P does not depend on .
Q@ PV ((Vr)Q) = (Vz)(PV Q) if P does not depend on z.
@ PA((Fr)Q) = (Fz)(P A Q) if P does not depend on z.
Q PA(V2)Q) = (Vz)(P A Q) if P does not depend on .

More rules are derivable from these.

@ P (¥2)Q = (-P)V(v)Q = (va)(-P)V Q) = (va)(P - Q)
if P does not depend on .

@ ((v2)P) = Q = (=(Vz)P)vQ = (Bz)(-P))vQ =
(Fz)((-P) v Q) = (Fz)(P — Q) if Q does not depend on z.

Q ((v2)P(z)) < Q

Rules for prenex form

We have rules to move quantifiers to the front, without altering the meaning.

Q@ ~(Vx)P = (Fx)(—P).
@ ~(32)P = (Vz)(-P).
@ Pv((3)Q) = (Jz)(P V Q) if P does not depend on .
Q@ PV ((Vr)Q) = (Vz)(PV Q) if P does not depend on z.
@ PA((Fr)Q) = (Fz)(P A Q) if P does not depend on z.
Q PA(V2)Q) = (Vz)(P A Q) if P does not depend on .

More rules are derivable from these.

@ P (¥2)Q = (-P)V(v)Q = (va)(-P)V Q) = (va)(P - Q)
if P does not depend on .

@ ((v2)P) = Q = (=(Vz)P)vQ = (Bz)(-P))vQ =
(Fz)((-P) v Q) = (Fz)(P — Q) if Q does not depend on z.

Q ((v2)P(z)) < Q

Rules for prenex form

We have rules to move quantifiers to the front, without altering the meaning.

Q@ ~(Vx)P = (Fx)(—P).
@ ~(32)P = (Vz)(-P).
@ Pv((3)Q) = (Jz)(P V Q) if P does not depend on .
Q@ PV ((Vr)Q) = (Vz)(PV Q) if P does not depend on z.
@ PA((Fr)Q) = (Fz)(P A Q) if P does not depend on z.
Q PA(V2)Q) = (Vz)(P A Q) if P does not depend on .

More rules are derivable from these.
QO P— (V2)Q = (=P)V (V2)Q = (Vo) (=P)VQ) = (Vz)(P — Q)
if P does not depend on .

@ ((v2)P) = Q = (=(Vz)P)vQ = (Bz)(-P))vQ =

V
(Fz)((-P) v Q) = (Fz)(P — Q) if Q does not depend on z.
Q ((Va)P(x)) & Q = (((Va)P(

z)) = Q) A (Q — ((Vz)P(x)))

Rules for prenex form

We have rules to move quantifiers to the front, without altering the meaning.

Q@ ~(Vx)P = (Fx)(—P).
@ ~(32)P = (Vz)(-P).
@ Pv((3)Q) = (Jz)(P V Q) if P does not depend on .
Q@ PV ((Vr)Q) = (Vz)(PV Q) if P does not depend on z.
@ PA((Fr)Q) = (Fz)(P A Q) if P does not depend on z.
Q PA(V2)Q) = (Vz)(P A Q) if P does not depend on .

More rules are derivable from these.

@ P— (¥2)Q = (-P)V (v0)Q = (¥2)((~P)V Q) = (va)(P = Q)
if P does not depend on .

Q@ (Vo)P) = Q = (~(Vz)P)vQ = (Bz)(-P))VQ =
(Fz)(=P)VQ) = (Fz)(P = Q)
E(x)P ())HQ‘(((z)P(x)

oes not depend on .

Qd
Q)) (Q — ((Vz)P(z))) =

)

)
(V) P(z)) = Q) A (Q — ((Vy) P

if
_)
(y

Rules for prenex form

We have rules to move quantifiers to the front, without altering the meaning.
0 —(Vz)P = (3z)(=P).
-(3 (Va)(~P).

0 PV ((Fz)(PVQ

QO PV((Vz)(PVQ

@ PA((Fz (Fx)(PAQ

0 PA((V2)Q) = (va)(PAQ

More rules are derivable from these.
@ P— (¥2)Q = (-P)V (v0)Q = (¥2)((~P)V Q) = (va)(P = Q)
if P does not depend on .
Q@ (Vo)P) - Q = (-(Vx)P)vQ = ((Fz)(-P))VQ =
(Fz)((-P) v Q) = (Fz)(P — Q) if Q does not depend on z.
Q ((Vz)P(z)) < Q = ((Vr)P(z)) = Q) AN (Q — ((Vz)P(x))) =
) = (Bx)(P(z) —

)P =
(Fx)Q if P does not depend on z.
(Vx)Q if P does not depend on .
(Fx)Q if P does not depend on x.
(V.

if P does not depend on .

~— — —

TR ?5

~— — — —

Q
(

(V) P(z)) = Q) A(Q — ((Vy) P(y))
Q) A (V)@ = P(y)))

Rules for prenex form

We have rules to move quantifiers to the front, without altering the meaning.
0 —(Vz)P = (3z)(=P).
-(3 (Va)(~P).

0 PV ((Fz)(PVQ

QO PV((Vz)(PVQ

@ PA((Fz (Fx)(PAQ

0 PA((V2)Q) = (va)(PAQ

More rules are derivable from these.

@ P— (v)Q = (~P)V (v)Q = (Va)(-P)V Q) = (va)(P = Q)
if P does not depend on .
(B2)(-P))VQ =

Q@ ((Vz)P) »Q = (~(Vz)P)vQ =
(Fz)((-P) v Q) = (Fz)(P — Q) if Q does not depend on z.
)P(_(cg ((Vz)P(z))) =
P(x)

d
Q@ (Vz)P(x)) « Q = (V2)P(z)) —» Q) AN (Q —
)((Fz)(P(x) —

= Q)N (Q — P(y)))

)P =
(Fx)Q if P does not depend on z.
(Vx)Q if P does not depend on .
(Fx)Q if P does not depend on x.
(V.

if P does not depend on .

~— — —

TR ?5

~— — — —

(V) P(z)) = Q) AQ — ((Vy) P(y))
Q) A (V)@ = P(y)) = (3=)(Yy)(

Rules for prenex form

We have rules to move quantifiers to the front, without altering the meaning.
0 —(Vz)P = (3z)(=P).
-(3 (Va)(~P).

0 PV ((Fz)(PVQ

QO PV((Vz)(PVQ

@ PA((Fz (Fx)(PAQ

0 PA((V2)Q) = (va)(PAQ

More rules are derivable from these.
@ P— (¥2)Q = (-P)V (v0)Q = (¥2)((~P)V Q) = (va)(P = Q)
if P does not depend on .
Q@ (Vo)P) - Q = (-(Vx)P)vQ = ((Fz)(-P))VQ =
(Fz)((-P) v Q) = (Fz)(P — Q) if Q does not depend on z.
Q ((Vo)P(z)) < Q = (((Va)P(z)) —)) ANQ = (V) P(x))) =
(

)P =
(Fx)Q if P does not depend on z.
(Vx)Q if P does not depend on .
(Fx)Q if P does not depend on x.
(V.

if P does not depend on .

~— — —

TR ?5

~— — — —

((Ve)P(x)) = Q) AN(Q — ((Vy) P = (B2)(P(z) —
P(z) = Q)N (Q — P(y))) if

not depend on y.

Q
)
)

Y
Q)N (V) (Q — P(y))) = (F)(Vy
@ does not depend on x and P(x), @ do

(
Q

renex form

Rules for prenex form

We have rules to move quantifiers to the front, without altering the meaning.
0 —(Vz)P = (3z)(=P).
-(3 (Va)(~P).

0 PV ((Fz)(PVQ

QO PV((Vz)(PVQ

@ PA((Fz (Fx)(PAQ

0 PA((V2)Q) = (va)(PAQ

More rules are derivable from these.
@ P— (¥2)Q = (-P)V (v0)Q = (¥2)((~P)V Q) = (va)(P = Q)
if P does not depend on .
Q@ (Vo)P) - Q = (-(Vx)P)vQ = ((Fz)(-P))VQ =
(Fz)((-P) v Q) = (Fz)(P — Q) if Q does not depend on z.
Q ((Vo)P(z)) < Q = (((Va)P(z)) —)) ANQ = (V) P(x))) =
(

)P =
(Fx)Q if P does not depend on z.
(Vx)Q if P does not depend on .
(Fx)Q if P does not depend on x.
(V.

if P does not depend on .

~— — —

TR ?5

~— — — —

((Ve)P(x)) = Q) AN(Q — ((Vy) P = (B2)(P(z) —
P(z) = Q)N (Q — P(y))) if

not depend on y.

Q
)
)

Y
Q)N (V) (Q — P(y))) = (F)(Vy
@ does not depend on x and P(x), @ do

(
Q

renex form

Variable conflict

Prenex form 8/8

Variable conflict

Let’s consider the problem of putting the following sentence into prenex form:

Prenex form 8/8

Variable conflict

Let’s consider the problem of putting the following sentence into prenex form:

((Fz)(z < 0)) A ((3z)(z > 0)).

Prenex form 8/8

Variable conflict

Let’s consider the problem of putting the following sentence into prenex form:

((Fz)(z < 0)) A ((3z)(z > 0)).

@ (Firststep) (3z)((x < 0) A (3x)(x > 0))

Prenex form 8/8

Variable conflict

Let’s consider the problem of putting the following sentence into prenex form:

((Fz)(z < 0)) A ((3z)(z > 0)).

@ (Firststep) (3z)((x < 0) A (3x)(x > 0))

Prenex form 8/8

Variable conflict

Let’s consider the problem of putting the following sentence into prenex form:

((Fz)(z < 0)) A ((3z)(z > 0)).

Q@ (First step) (3x)((z < 0) A (3z)(x > 0)) No error!

Prenex form 8/8

Variable conflict

Let’s consider the problem of putting the following sentence into prenex form:

((Fz)(z < 0)) A ((3z)(z > 0)).

Q@ (First step) (3x)((z < 0) A (3z)(x > 0)) No error!
@ (Second step) (Fz)(Fz)((z < 0) A (x > 0))

Prenex form 8/8

Variable conflict

Let’s consider the problem of putting the following sentence into prenex form:

((Fz)(z < 0)) A ((3z)(z > 0)).

Q@ (First step) (3x)((z < 0) A (3z)(x > 0)) No error!
@ (Second step) (Fz)(Fz)((z < 0) A (x > 0))

Prenex form 8/8

Variable conflict

Let’s consider the problem of putting the following sentence into prenex form:

((Fz)(z < 0)) A ((3z)(z > 0)).

Q@ (First step) (3x)((z < 0) A (3z)(x > 0)) No error!
@ (Second step) (3z)(3z)((z < 0) A (z > 0)) Error!

Prenex form 8/8

Variable conflict

Let’s consider the problem of putting the following sentence into prenex form:

((Fz)(z < 0)) A ((3z)(z > 0)).

Q@ (First step) (3x)((z < 0) A (3z)(x > 0)) No error!
@ (Second step) (3z)(3z)((z < 0) A (z > 0)) Error!
@ (Alternative second step) (3z)((x < 0) A (z > 0))

Prenex form 8/8

Variable conflict

Let’s consider the problem of putting the following sentence into prenex form:

((Fz)(z < 0)) A ((3z)(z > 0)).

Q@ (First step) (3x)((z < 0) A (3z)(x > 0)) No error!
@ (Second step) (3z)(3z)((z < 0) A (z > 0)) Error!
@ (Alternative second step) (3z)((x < 0) A (z > 0))

Prenex form 8/8

Variable conflict

Let’s consider the problem of putting the following sentence into prenex form:

((Fz)(z < 0)) A ((3z)(z > 0)).

Q@ (First step) (3x)((z < 0) A (3z)(x > 0)) No error!
@ (Second step) (3z)(3z)((z < 0) A (z > 0)) Error!
@ (Alternative second step) (3x)((z < 0) A (z > 0)) Error!

Prenex form 8/8

Variable conflict

Let’s consider the problem of putting the following sentence into prenex form:

((Fz)(z < 0)) A ((3z)(z > 0)).

Q@ (First step) (3x)((z < 0) A (3z)(x > 0)) No error!

@ (Second step) (3z)(3z)((z < 0) A (z > 0)) Error!

@ (Alternative second step) (3x)((z < 0) A (z > 0)) Error!
We need to “standardize the variables apart”, first.

Prenex form 8/8

Variable conflict

Let’s consider the problem of putting the following sentence into prenex form:

((Fz)(z < 0)) A ((3z)(z > 0)).

Q@ (First step) (3x)((z < 0) A (3z)(x > 0)) No error!
@ (Second step) (3z)(3z)((z < 0) A (z > 0)) Error!
@ (Alternative second step) (3x)((z < 0) A (z > 0)) Error!

We need to “standardize the variables apart”, first. That is, rewrite the original
sentence as

Prenex form 8/8

Variable conflict

Let’s consider the problem of putting the following sentence into prenex form:

((Fz)(z < 0)) A ((3z)(z > 0)).

Q@ (First step) (3x)((z < 0) A (3z)(x > 0)) No error!
@ (Second step) (3z)(3z)((z < 0) A (z > 0)) Error!
@ (Alternative second step) (3x)((z < 0) A (z > 0)) Error!

We need to “standardize the variables apart”, first. That is, rewrite the original
sentence as

((Bz)(z < 0)) A ((By)(y > 0)),

in order to avoid variable conflicts.

Prenex form 8/8

Variable conflict

Let’s consider the problem of putting the following sentence into prenex form:

((Fz)(z < 0)) A ((3z)(z > 0)).

Q@ (First step) (3x)((z < 0) A (3z)(x > 0)) No error!
@ (Second step) (3z)(3z)((z < 0) A (z > 0)) Error!
@ (Alternative second step) (3x)((z < 0) A (z > 0)) Error!

We need to “standardize the variables apart”, first. That is, rewrite the original
sentence as

((Bz)(z < 0)) A ((By)(y > 0)),

in order to avoid variable conflicts. A prenex form for the sentence is

Prenex form 8/8

Variable conflict

Let’s consider the problem of putting the following sentence into prenex form:

((Fz)(z < 0)) A ((3z)(z > 0)).

Q@ (First step) (3x)((z < 0) A (3z)(x > 0)) No error!
@ (Second step) (3z)(3z)((z < 0) A (z > 0)) Error!
@ (Alternative second step) (3x)((z < 0) A (z > 0)) Error!

We need to “standardize the variables apart”, first. That is, rewrite the original
sentence as

((Bz)(z < 0)) A ((By)(y > 0)),

in order to avoid variable conflicts. A prenex form for the sentence is

(B2)(Fy)((z < 0) A (y > 0)).

Prenex form 8/8

