
Practice with Inclusion/Exclusion, Stirling, and Bell numbers!

(1) Let m = 2 · 3 · 5 · 7 · 11 · 13 · 17 · 19 = 969969 be the product of the first 8 distinct
prime numbers. How many ways are there to factor m? Here, a factorization of
m is a representation of m as a product of natural numbers greater than 1, as in
m = 30 · 323 · 1001. (Assume that the order of the factors does not matter, so
m = 30 · 323 · 1001 and m = 1001 · 323 · 30 are the same factorization.)

Factorizations of m (like m = 30·323·1001 = (2·3·5)(17·19)(7·11·13)) correspond
to partitions of {2, 3, 5, 7, 11, 13, 17, 19} (like 2, 3, 5/17, 19/7, 11, 13). The number of
partitions of this 8-element set of primes is B8 = 4140.

(2) In a class of 20 students, how many study groups can be formed which include at
least one of the three students Archibald, Beryl, or Cornelia? Assume that a study
group must involve at least 2 students.

Let A be the set of study groups that contain Archibald, B be the set of study
groups that contain Beryl, and C be the set of study groups that contain Cornelia.
We want to compute |A ∪B ∪ C|.

It is not hard to see that the number of study groups that contain Archibald is
220−1 − 1. (The non-Archibald members of the study group form a nonempty subset
chosen from the 20− 1 other students.) Similarly, the number of study groups that
contain Archibald and Beryl is 220−2 = 218, and the number of study groups that
contain Archibald, Beryl, and Cornelia is 220−3 = 217. By Inclusion/Exclusion

|A ∪B ∪ C| = |A|+ |B|+ |C| − |A ∩B| − |A ∩ C| − |B ∩ C|+ |A ∩B ∩ C|
= 3|A| − 3|A ∩B|+ |A ∩B ∩ C|
= 3(219 − 1)− 3(218) + 217.

(3) How many 6-digit numbers have the property that, for every k, the kth digit is
different than the (7− k)th digit?

Let X be the set of all 6-digit numbers. Let A be the subset of X consisting of
numbers whose first and last digit are equal. Let B be the subset of X consisting of
numbers whose second and second-to-last digit are equal. Let C be the subset of X
consisting of numbers whose third and third-to-last digit are equal. We are trying
to count |X| − |A ∪B ∪ C|:(
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103 = 10393 = 729000.
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Another way to solve this problem is to pick the first three digits arbitrarily (in
10× 10× 10 ways), then pick the last three so that they satisfy the conditions that
the 1st digit is different from the 6th, the 2nd is different from the 5th, and the 3rd
is different from the 4th (9 × 9 × 9 ways to pick the last 3 digits). Altogether this
yields 10393 numbers.

(4) A news organization reports that the percentage of voters who would be satisfied
with candidates A, B, C for President is 65%, 57%, 58% respectively. Furthermore,
28% would accept A or B, 30% would accept A or C, 27% would accept B or C,
and 12% would accept any of the three. Is this fake news?

Yes, it is fake news. One calculates that 107% of voters support at least one
candidate.

(5) If f : k → k is a bijection, then i is called a fixed point of f if f(i) = i. What
percentage of bijections f : k → k have no fixed points? (Count the number of
bijections with no fixed points, then divide by the total number of of bijections.)

Let X be the set of all bijections f : k → k. |X| = k!. Now, for i = 1 . . . , k, let
Ai be the subset of X consisting of the bijections where f(i) = i. We want to first
count d = |X| − |A1 ∪ · · · ∪ Ak|, and then compute d/|X| = d/k!. The value of d is
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. Observe that this percentage approaches

1
e
as k → ∞.
Remarks: a permutation with no fixed points is called a “derangement”. This

exercise shows that the percentage of permutations of a k-element set that are de-
rangements is approximately 1

e
when k is large.

(6) Explain why S(n, 2) = 2n−1 − 1 if n > 0.

S(n, 2) is the number of partitions of X = {1, 2, . . . , n} into 2 cells. When X ̸= ∅
(n > 0), such a partition will look like 1ab · · ·m/pqr · · · z, with the first cell inhabited
by the element 1 and possibly some other elements and the second cell inhabited by
some nonempty subset of X. These partitions can be counted by specifying the
elements in the second cell. The set of elements of the second cell can be any
nonempty subset of the set X \{1} = {2, 3, . . . , n}. Thus, S(n, 2) equals the number
of nonempty substes of an (n− 1)-element set, which is 2n−1 − 1.
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(7) Explain why S(n, n− 1) =
(
n
2

)
.

S(n, n − 1) is the number of partitions of {1, 2, . . . , n} into n − 1 cells. All the
cells must have one element, except that one cell has two elements. We can count
partitions like this by first choosing the elements which inhabit the 2-element cell
and then allowing all other elements to inhabit singleton cells. We can choose the
2-element cell in

(
n
2

)
ways.

(8) Assume that |A| = 10. How many equivalence relations on A have 5 equivalence
classes?

S(10, 5) = 42525.

(9) How many solutions are there to x1 + x2 + x3 + x4 = 25 if each xi must be a natural
number from the interval [0, 10]?

Let X be the set of solutions to x1+x2+x3+x4 = 25 in the nonnegative integers.
Let Ai be the subset of X where xi > 10. We want to count |X|−|A1∪A2∪A3∪A4|.
The answer is(
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