Practice with Inclusion/Exclusion, Stirling, and Bell numbers!

(1) Let $m=2 \cdot 3 \cdot 5 \cdot 7 \cdot 11 \cdot 13 \cdot 17 \cdot 19=969969$ be the product of the first 8 distinct prime numbers. How many ways are there to factor m ? Here, a factorization of m is a representation of m as a product of natural numbers greater than 1 , as in $m=30 \cdot 323 \cdot 1001$. (Assume that the order of the factors does not matter, so $m=30 \cdot 323 \cdot 1001$ and $m=1001 \cdot 323 \cdot 30$ are the same factorization.)
(2) In a class of 20 students, how many study groups can be formed which include at least one of the three students Archibald, Beryl, or Cornelia? Assume that a study group must involve at least 2 students.
(3) How many 6-digit numbers have the property that, for every k, the k th digit is different than the $(7-k)$ th digit?
(4) A news organization reports that the percentage of voters who would be satisfied with candidates A, B, C for President is $65 \%, 57 \%, 58 \%$ respectively. Furthermore, 28% would accept A or $B, 30 \%$ would accept A or $C, 27 \%$ would accept B or C, and 12% would accept any of the three. Is this fake news?
(5) If $f: k \rightarrow k$ is a bijection, then i is called a fixed point of f if $f(i)=i$. What percentage of bijections $f: k \rightarrow k$ have no fixed points? (Count the number of bijections with no fixed points, then divide by the total number of of bijections.)
(6) Explain why $S(n, 2)=2^{n-1}-1$ if $n>0$.
(7) Explain why $S(n, n-1)=\binom{n}{2}$.
(8) Assume that $|A|=10$. How many equivalence relations on A have 5 equivalence classes?
(9) How many solutions are there to $x_{1}+x_{2}+x_{3}+x_{4}=25$ if each x_{i} must be a natural number from the interval $[0,10]$?

