
Ordered Pairs, Relations

Ordered Pairs, Relations 1 / 12



The Kuratowski encoding

Throughout mathematics we use ordered pairs, triples, etc, to construct more
complex objects (like functions and relations):

(a, b) (Ordered pair)
(a, b, c) (Ordered triple)

Definition. (Kuratowski encoding) If a and b are sets, then the set
{{a}, {a, b}} is denoted (a, b) and it is called the “ordered pair with first
coordinate a and second cordinate b”. (If a and b are sets, then (a, b) is a set.)

Define (a, b, c) = ((a, b), c) and (a1, . . . , an, an+1) = ((a1, . . . , an), an+1).

Examples.

1 (a, a) = {{a}, {a, a}} = {{a}, {a}} = {{a}}.
2 (a, b, c) = {{{{a}, {a, b}}}, {{{a}, {a, b}}, c}}.
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Main property of ordered pairs

Theorem. (a, b) = (c, d) if and only if a = c and b = d.

Proof. [⇐] If a = c and b = d, then (a, b) must equal (c, d), since (. . .?)

[⇒] Assume that (a, b) = (c, d).
Then {{a}, {a, b}} = {{c}, {c, d}}.
If a = b, this means {{a}} = {{c}, {c, d}}, so {c, d} = {a} = {c}, so
d = c = a = b. In this case, we are done.

We may assume that a 6= b and c 6= d.
Either (i) {a} = {c} and {a, b} = {c, d} or (ii) {a} = {c, d} and
{a, b} = {c}.
Case (ii) can’t happen, since it leads to c = a = d.

What remains is Case (i). Here {a} = {c} implies a = c. Since we also have
b ∈ {a, b} = {c, d} and b 6= a = c we must have b = d. 2.
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Cartesian product

Definition. If A and B are sets, then

A× B = {(a, b) | a ∈ A, b ∈ B}

is called “the Cartesian product of A and B”.
(A× B is the set of all ordered pairs whose first coordinate lies in A and whose
second coordinate lies in B.)

•

•

•

A

B

(a, b)

a

b

A× B
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Cartesian product

Theorem. If A and B are sets, then A× B is a set.

Proof.
Since {a}, {a, b} ∈ P(A ∪ B), we have (a, b) = {{a}, {a, b}} ∈ PP(A ∪ B).
Hence

A× B = {x ∈ PP(A ∪ B) | ϕA×B(x)}

where ϕA×B(x) is the property that says “x has the form of an ordered pair
with first coordinate in A and second coordinate in B”. 2

We can form Cartesian products of more factors: e.g.1

A× B× C := (A× B)× C.
A3 := A× A× A.∏n

i=1 Ai := A1 × · · · × An.

1(e.g. = exempli gratia = “for example”)
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Relations

Definition. A relation is a subset of a product.

1 A binary relation on A is a subset R ⊆ A× A.
2 A binary relation from A to B is a subset R ⊆ A× B.
3 An n-ary relation on A is a subset R ⊆ An.
4 An n-ary relation among A1, . . . ,An is a subset R ⊆ A1 × · · · × An.

The arity of a relation R ⊆ A1 × · · · × An is n.

Examples.

1 If A is a set, then = is a binary relation on A.
It is the subset {(a, a) ∈ A2 | a ∈ A} of A× A.

2 If A is a set of sets, then ∈ is a binary relation on A.
It is the subset {(u, v) ∈ A2 | u is a member of v}.

3 If A is a set of sets, then ⊆ is a binary relation on A.
It is the subset {(u, v) ∈ A2 | (∀w)((w ∈ u)→ (w ∈ v))}.
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Why do we care about relations?

A typical sentence is composed of a subject and a predicate.
The subject is what the sentence is about and the predicate is what is being
expressed about the subject.

The pizza is hot.

has subject x = “pizza”, and predicate ϕhot(x) = “x is hot”. In general, a

predicate inputs values (= the subject) from a set and outputs values from the
set {>,⊥} of truth values.

In mathematics, relations are used to record the “graph of the predicate”.
Thus, relations are the mathematical tools used to “record ideas”.

For example, if P is the set of all pizzas, then

H = {x ∈ P | ϕhot(x)}

is the subset of all hot pizzas. H ⊆ P, so H is a 1-ary relation on P that
records the idea of “hotness” for pizzas.
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A binary example

Sentences may have a compound subject (consisting of more than one one
thing):

Alice and Bob are siblings.

Subject = (Alice,Bob). Predicate = ϕsibling(x, y) = “x and y are siblings”. If Z

is the set of all people living on earth, then

S = {(x, y) ∈ Z2 | ϕsibling(x, y)}

is a binary relation on Z that records the pairs of siblings. Thus, binary
relations can be used to record the information of concepts depending on two
things.
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A more complicated binary example

Some attribute to Abraham Lincoln the quote

You can fool all the people some of the time and some of the people all the
time, but you cannot fool all the people all the time.

We can formalize this statement using a predicate F(p, t) expressing “Person p can be

fooled at time t”. Here p is a variable allowed to range over a set P of people and t is
a variable allowed to range over a set T of times. Now the statement reads

((∃t)(∀p)F(p, t)) ∧ ((∃p)(∀t)F(p, t)) ∧ ¬((∀p)(∀t)F(p, t)).

The graph G ⊆ P× T of this predicate is the relation between P and T indicated in
this table:

F(p, t) 8am 11am 2pm 5pm
John ∗
Paul ∗ ∗ ∗ ∗

George ∗ ∗ ∗
Ringo ∗ ∗
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Functions

Functions are among the most important relations in mathematics.

Intuition. A function accepts a value from some set, performs some sort of
“calculation”, then returns a value from some set.

Definition. (Function)
A function from A to B is a relation F ⊆ A× B satisfying the “function rule”.
(Notation: We often write F : A→ B to signify that F ⊆ A× B is a function.)

Definition. (The Function Rule)
A binary relation F ⊆ A× B from A to B satisfies the function rule if for
every a ∈ A there is a unique b ∈ B such that (a, b) ∈ F. (Notation: We often
write b = F(a) or F(a) = b to signify that (a, b) ∈ F.)

a = (x, y) b = x + y
x

y
x + yF
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A visual represention a function

Let A and B be sets and let F : A→ B be a function from A to B.
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F̄([z]) = F(z)
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A visual represention a function

Let A and B be sets and let F : A→ B be a function from A to B.
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Terminology for functions

1 The image of F is im(F) = F[A] = {b ∈ B | ∃a ∈ A(F(a) = b)}. The
image of a subset U ⊆ A is F[U] = {b ∈ B | ∃u ∈ U(F(u) = b)}.

2 The preimage or inverse image of a subset V ⊆ B is
F−1[V] = {a ∈ A | F(a) ∈ V}.

3 The preimage of a singleton {b} is written F−1(b) and sometimes called
the fiber of F over b. The fiber containing the element a is sometimes
written [a].

4 The coimage of F is the set coim(f ) = {F−1(b) | b ∈ im(F)} of all
nonempty fibers.

5 The natural map is ν : A→ coim(F) : a 7→ [a].
6 The inclusion map is ι : im(F)→ B : b 7→ b.
7 The induced map is F̄ : coim(F)→ im(F) : [a] 7→ F(a).
8 The canonical factorization of F is F = ι ◦ F̄ ◦ ν.
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