## Ordered Pairs, Relations

## The Kuratowski encoding

## The Kuratowski encoding

Throughout mathematics we use ordered pairs, triples, etc, to construct more complex objects (like functions and relations):

## The Kuratowski encoding

Throughout mathematics we use ordered pairs, triples, etc, to construct more complex objects (like functions and relations):

$$
\begin{array}{cl}
(a, b) & \text { (Ordered pair) } \\
(a, b, c) & \text { (Ordered triple) }
\end{array}
$$

## The Kuratowski encoding

Throughout mathematics we use ordered pairs, triples, etc, to construct more complex objects (like functions and relations):

$$
\begin{array}{cl}
(a, b) & \text { (Ordered pair) } \\
(a, b, c) & \text { (Ordered triple) }
\end{array}
$$

## Definition.

## The Kuratowski encoding

Throughout mathematics we use ordered pairs, triples, etc, to construct more complex objects (like functions and relations):

$$
\begin{array}{cl}
(a, b) & \text { (Ordered pair) } \\
(a, b, c) & \text { (Ordered triple) }
\end{array}
$$

Definition. (Kuratowski encoding)

## The Kuratowski encoding

Throughout mathematics we use ordered pairs, triples, etc, to construct more complex objects (like functions and relations):

$$
\begin{array}{cl}
(a, b) & \text { (Ordered pair) } \\
(a, b, c) & \text { (Ordered triple) }
\end{array}
$$

Definition. (Kuratowski encoding) If $a$ and $b$ are sets, then the set $\{\{a\},\{a, b\}\}$ is denoted $(a, b)$

## The Kuratowski encoding

Throughout mathematics we use ordered pairs, triples, etc, to construct more complex objects (like functions and relations):

$$
\begin{array}{cl}
(a, b) & \text { (Ordered pair) } \\
(a, b, c) & \text { (Ordered triple) }
\end{array}
$$

Definition. (Kuratowski encoding) If $a$ and $b$ are sets, then the set $\{\{a\},\{a, b\}\}$ is denoted $(a, b)$ and it is called the "ordered pair with first coordinate $a$ and second cordinate $b$ ".

## The Kuratowski encoding

Throughout mathematics we use ordered pairs, triples, etc, to construct more complex objects (like functions and relations):

$$
\begin{array}{cl}
(a, b) & \text { (Ordered pair) } \\
(a, b, c) & \text { (Ordered triple) }
\end{array}
$$

Definition. (Kuratowski encoding) If $a$ and $b$ are sets, then the set $\{\{a\},\{a, b\}\}$ is denoted $(a, b)$ and it is called the "ordered pair with first coordinate $a$ and second cordinate $b$ ". (If $a$ and $b$ are sets, then $(a, b)$ is a set.)

Define $(a, b, c)=((a, b), c)$

## The Kuratowski encoding

Throughout mathematics we use ordered pairs, triples, etc, to construct more complex objects (like functions and relations):

$$
\begin{array}{cl}
(a, b) & \text { (Ordered pair) } \\
(a, b, c) & \text { (Ordered triple) }
\end{array}
$$

Definition. (Kuratowski encoding) If $a$ and $b$ are sets, then the set $\{\{a\},\{a, b\}\}$ is denoted $(a, b)$ and it is called the "ordered pair with first coordinate $a$ and second cordinate $b "$. (If $a$ and $b$ are sets, then $(a, b)$ is a set.)

Define $(a, b, c)=((a, b), c)$ and $\left(a_{1}, \ldots, a_{n}, a_{n+1}\right)=\left(\left(a_{1}, \ldots, a_{n}\right), a_{n+1}\right)$.

## The Kuratowski encoding

Throughout mathematics we use ordered pairs, triples, etc, to construct more complex objects (like functions and relations):

$$
\begin{array}{cl}
(a, b) & \text { (Ordered pair) } \\
(a, b, c) & \text { (Ordered triple) }
\end{array}
$$

Definition. (Kuratowski encoding) If $a$ and $b$ are sets, then the set $\{\{a\},\{a, b\}\}$ is denoted $(a, b)$ and it is called the "ordered pair with first coordinate $a$ and second cordinate $b$ ". (If $a$ and $b$ are sets, then $(a, b)$ is a set.)

Define $(a, b, c)=((a, b), c)$ and $\left(a_{1}, \ldots, a_{n}, a_{n+1}\right)=\left(\left(a_{1}, \ldots, a_{n}\right), a_{n+1}\right)$.
Examples.
(1) $(a, a)=\{\{a\},\{a, a\}\}$

## The Kuratowski encoding

Throughout mathematics we use ordered pairs, triples, etc, to construct more complex objects (like functions and relations):

$$
\begin{array}{cl}
(a, b) & \text { (Ordered pair) } \\
(a, b, c) & \text { (Ordered triple) }
\end{array}
$$

Definition. (Kuratowski encoding) If $a$ and $b$ are sets, then the set $\{\{a\},\{a, b\}\}$ is denoted $(a, b)$ and it is called the "ordered pair with first coordinate $a$ and second cordinate $b$ ". (If $a$ and $b$ are sets, then $(a, b)$ is a set.)

Define $(a, b, c)=((a, b), c)$ and $\left(a_{1}, \ldots, a_{n}, a_{n+1}\right)=\left(\left(a_{1}, \ldots, a_{n}\right), a_{n+1}\right)$.
Examples.
(1) $(a, a)=\{\{a\},\{a, a\}\}$

## The Kuratowski encoding

Throughout mathematics we use ordered pairs, triples, etc, to construct more complex objects (like functions and relations):

$$
\begin{array}{cl}
(a, b) & \text { (Ordered pair) } \\
(a, b, c) & \text { (Ordered triple) }
\end{array}
$$

Definition. (Kuratowski encoding) If $a$ and $b$ are sets, then the set $\{\{a\},\{a, b\}\}$ is denoted $(a, b)$ and it is called the "ordered pair with first coordinate $a$ and second cordinate $b$ ". (If $a$ and $b$ are sets, then $(a, b)$ is a set.)

Define $(a, b, c)=((a, b), c)$ and $\left(a_{1}, \ldots, a_{n}, a_{n+1}\right)=\left(\left(a_{1}, \ldots, a_{n}\right), a_{n+1}\right)$.
Examples.
(1) $(a, a)=\{\{a\},\{a, a\}\}=\{\{a\},\{a\}\}$

## The Kuratowski encoding

Throughout mathematics we use ordered pairs, triples, etc, to construct more complex objects (like functions and relations):

$$
\begin{array}{cl}
(a, b) & \text { (Ordered pair) } \\
(a, b, c) & \text { (Ordered triple) }
\end{array}
$$

Definition. (Kuratowski encoding) If $a$ and $b$ are sets, then the set $\{\{a\},\{a, b\}\}$ is denoted $(a, b)$ and it is called the "ordered pair with first coordinate $a$ and second cordinate $b "$. (If $a$ and $b$ are sets, then ( $a, b$ ) is a set.)

Define $(a, b, c)=((a, b), c)$ and $\left(a_{1}, \ldots, a_{n}, a_{n+1}\right)=\left(\left(a_{1}, \ldots, a_{n}\right), a_{n+1}\right)$.

## Examples.

(1) $(a, a)=\{\{a\},\{a, a\}\}=\{\{a\},\{a\}\}=\{\{a\}\}$.
(2) $(a, b, c)=\{\{\{\{a\},\{a, b\}\}\},\{\{\{a\},\{a, b\}\}, c\}\}$.

## Main property of ordered pairs

## Main property of ordered pairs

## Theorem.

## Main property of ordered pairs

Theorem. $(a, b)=(c, d)$ if and only if $a=c$ and $b=d$.

## Main property of ordered pairs

Theorem. $(a, b)=(c, d)$ if and only if $a=c$ and $b=d$.
Proof.

## Main property of ordered pairs

Theorem. $(a, b)=(c, d)$ if and only if $a=c$ and $b=d$.
Proof. [ $\Leftarrow]$

## Main property of ordered pairs

Theorem. $(a, b)=(c, d)$ if and only if $a=c$ and $b=d$.
Proof. [ $\Leftarrow]$ If $a=c$ and $b=d$, then $(a, b)$ must equal $(c, d)$, since $(\ldots$ ?)

## Main property of ordered pairs

Theorem. $(a, b)=(c, d)$ if and only if $a=c$ and $b=d$.
Proof. [ $\Leftarrow]$ If $a=c$ and $b=d$, then $(a, b)$ must equal $(c, d)$, since $(\ldots$ ?)
$[\Rightarrow]$

## Main property of ordered pairs

Theorem. $(a, b)=(c, d)$ if and only if $a=c$ and $b=d$.
Proof. [ $\Leftarrow]$ If $a=c$ and $b=d$, then $(a, b)$ must equal $(c, d)$, since $(\ldots$ ?)
$[\Rightarrow]$ Assume that $(a, b)=(c, d)$.

## Main property of ordered pairs

Theorem. $(a, b)=(c, d)$ if and only if $a=c$ and $b=d$.
Proof. [ $\Leftarrow]$ If $a=c$ and $b=d$, then $(a, b)$ must equal $(c, d)$, since $(\ldots$ ?)
$[\Rightarrow$ ] Assume that $(a, b)=(c, d)$.
Then $\{\{a\},\{a, b\}\}=\{\{c\},\{c, d\}\}$.

## Main property of ordered pairs

Theorem. $(a, b)=(c, d)$ if and only if $a=c$ and $b=d$.
Proof. [ $\Leftarrow]$ If $a=c$ and $b=d$, then $(a, b)$ must equal $(c, d)$, since $(\ldots$ ?)
$[\Rightarrow$ ] Assume that $(a, b)=(c, d)$.
Then $\{\{a\},\{a, b\}\}=\{\{c\},\{c, d\}\}$.
If $a=b$, this means $\{\{a\}\}=\{\{c\},\{c, d\}\}$,

## Main property of ordered pairs

Theorem. $(a, b)=(c, d)$ if and only if $a=c$ and $b=d$.
Proof. [ $\Leftarrow]$ If $a=c$ and $b=d$, then $(a, b)$ must equal $(c, d)$, since $(\ldots$ ?)
$[\Rightarrow]$ Assume that $(a, b)=(c, d)$.
Then $\{\{a\},\{a, b\}\}=\{\{c\},\{c, d\}\}$.
If $a=b$, this means $\{\{a\}\}=\{\{c\},\{c, d\}\}$, so $\{c, d\}=\{a\}=\{c\}$, so
$d=c=a=b$.

## Main property of ordered pairs

Theorem. $(a, b)=(c, d)$ if and only if $a=c$ and $b=d$.
Proof. [ $\Leftarrow]$ If $a=c$ and $b=d$, then $(a, b)$ must equal $(c, d)$, since $(\ldots$ ?)
$[\Rightarrow]$ Assume that $(a, b)=(c, d)$.
Then $\{\{a\},\{a, b\}\}=\{\{c\},\{c, d\}\}$.
If $a=b$, this means $\{\{a\}\}=\{\{c\},\{c, d\}\}$, so $\{c, d\}=\{a\}=\{c\}$, so $d=c=a=b$. In this case, we are done.

## Main property of ordered pairs

Theorem. $(a, b)=(c, d)$ if and only if $a=c$ and $b=d$.
Proof. [ $\Leftarrow]$ If $a=c$ and $b=d$, then $(a, b)$ must equal $(c, d)$, since $(\ldots$ ?)
$[\Rightarrow]$ Assume that $(a, b)=(c, d)$.
Then $\{\{a\},\{a, b\}\}=\{\{c\},\{c, d\}\}$.
If $a=b$, this means $\{\{a\}\}=\{\{c\},\{c, d\}\}$, so $\{c, d\}=\{a\}=\{c\}$, so $d=c=a=b$. In this case, we are done.

We may assume that $a \neq b$ and $c \neq d$.

## Main property of ordered pairs

Theorem. $(a, b)=(c, d)$ if and only if $a=c$ and $b=d$.
Proof. [ $\Leftarrow]$ If $a=c$ and $b=d$, then $(a, b)$ must equal $(c, d)$, since $(\ldots$ ?)
$[\Rightarrow]$ Assume that $(a, b)=(c, d)$.
Then $\{\{a\},\{a, b\}\}=\{\{c\},\{c, d\}\}$.
If $a=b$, this means $\{\{a\}\}=\{\{c\},\{c, d\}\}$, so $\{c, d\}=\{a\}=\{c\}$, so $d=c=a=b$. In this case, we are done.

We may assume that $a \neq b$ and $c \neq d$.
Either

## Main property of ordered pairs

Theorem. $(a, b)=(c, d)$ if and only if $a=c$ and $b=d$.
Proof. [ $\Leftarrow]$ If $a=c$ and $b=d$, then $(a, b)$ must equal $(c, d)$, since $(\ldots$ ?)
$[\Rightarrow]$ Assume that $(a, b)=(c, d)$.
Then $\{\{a\},\{a, b\}\}=\{\{c\},\{c, d\}\}$.
If $a=b$, this means $\{\{a\}\}=\{\{c\},\{c, d\}\}$, so $\{c, d\}=\{a\}=\{c\}$, so $d=c=a=b$. In this case, we are done.

We may assume that $a \neq b$ and $c \neq d$.
Either (i) $\{a\}=\{c\}$ and $\{a, b\}=\{c, d\}$ or

## Main property of ordered pairs

Theorem. $(a, b)=(c, d)$ if and only if $a=c$ and $b=d$.
Proof. [ $\Leftarrow]$ If $a=c$ and $b=d$, then $(a, b)$ must equal $(c, d)$, since $(\ldots$ ?)
$[\Rightarrow]$ Assume that $(a, b)=(c, d)$.
Then $\{\{a\},\{a, b\}\}=\{\{c\},\{c, d\}\}$.
If $a=b$, this means $\{\{a\}\}=\{\{c\},\{c, d\}\}$, so $\{c, d\}=\{a\}=\{c\}$, so $d=c=a=b$. In this case, we are done.

We may assume that $a \neq b$ and $c \neq d$.
Either (i) $\{a\}=\{c\}$ and $\{a, b\}=\{c, d\}$ or (ii) $\{a\}=\{c, d\}$ and $\{a, b\}=\{c\}$.

## Main property of ordered pairs

Theorem. $(a, b)=(c, d)$ if and only if $a=c$ and $b=d$.
Proof. [ $\Leftarrow$ ] If $a=c$ and $b=d$, then $(a, b)$ must equal $(c, d)$, since ( $\ldots$ ?)
$[\Rightarrow$ ] Assume that $(a, b)=(c, d)$.
Then $\{\{a\},\{a, b\}\}=\{\{c\},\{c, d\}\}$.
If $a=b$, this means $\{\{a\}\}=\{\{c\},\{c, d\}\}$, so $\{c, d\}=\{a\}=\{c\}$, so $d=c=a=b$. In this case, we are done.

We may assume that $a \neq b$ and $c \neq d$.
Either (i) $\{a\}=\{c\}$ and $\{a, b\}=\{c, d\}$ or (ii) $\{a\}=\{c, d\}$ and $\{a, b\}=\{c\}$.
Case (ii) can't happen, since it leads to $c=a=d$.

## Main property of ordered pairs

Theorem. $(a, b)=(c, d)$ if and only if $a=c$ and $b=d$.
Proof. [ $\Leftarrow$ ] If $a=c$ and $b=d$, then $(a, b)$ must equal $(c, d)$, since $(\ldots$ ?)
$[\Rightarrow$ ] Assume that $(a, b)=(c, d)$.
Then $\{\{a\},\{a, b\}\}=\{\{c\},\{c, d\}\}$.
If $a=b$, this means $\{\{a\}\}=\{\{c\},\{c, d\}\}$, so $\{c, d\}=\{a\}=\{c\}$, so $d=c=a=b$. In this case, we are done.

We may assume that $a \neq b$ and $c \neq d$.
Either (i) $\{a\}=\{c\}$ and $\{a, b\}=\{c, d\}$ or (ii) $\{a\}=\{c, d\}$ and $\{a, b\}=\{c\}$.
Case (ii) can't happen, since it leads to $c=a=d$.
What remains is Case (i).

## Main property of ordered pairs

Theorem. $(a, b)=(c, d)$ if and only if $a=c$ and $b=d$.
Proof. [ $\Leftarrow$ ] If $a=c$ and $b=d$, then $(a, b)$ must equal $(c, d)$, since $(\ldots$ ?)
$[\Rightarrow]$ Assume that $(a, b)=(c, d)$.
Then $\{\{a\},\{a, b\}\}=\{\{c\},\{c, d\}\}$.
If $a=b$, this means $\{\{a\}\}=\{\{c\},\{c, d\}\}$, so $\{c, d\}=\{a\}=\{c\}$, so $d=c=a=b$. In this case, we are done.

We may assume that $a \neq b$ and $c \neq d$.
Either (i) $\{a\}=\{c\}$ and $\{a, b\}=\{c, d\}$ or (ii) $\{a\}=\{c, d\}$ and $\{a, b\}=\{c\}$.
Case (ii) can't happen, since it leads to $c=a=d$.
What remains is Case (i). Here $\{a\}=\{c\}$ implies $a=c$. Since we also have $b \in\{a, b\}=\{c, d\}$ and $b \neq a=c$ we must have $b=d$.

## Main property of ordered pairs

Theorem. $(a, b)=(c, d)$ if and only if $a=c$ and $b=d$.
Proof. [ $\Leftarrow$ ] If $a=c$ and $b=d$, then $(a, b)$ must equal $(c, d)$, since $(\ldots$ ?)
$[\Rightarrow$ ] Assume that $(a, b)=(c, d)$.
Then $\{\{a\},\{a, b\}\}=\{\{c\},\{c, d\}\}$.
If $a=b$, this means $\{\{a\}\}=\{\{c\},\{c, d\}\}$, so $\{c, d\}=\{a\}=\{c\}$, so $d=c=a=b$. In this case, we are done.

We may assume that $a \neq b$ and $c \neq d$.
Either (i) $\{a\}=\{c\}$ and $\{a, b\}=\{c, d\}$ or (ii) $\{a\}=\{c, d\}$ and $\{a, b\}=\{c\}$.
Case (ii) can't happen, since it leads to $c=a=d$.
What remains is Case (i). Here $\{a\}=\{c\}$ implies $a=c$. Since we also have $b \in\{a, b\}=\{c, d\}$ and $b \neq a=c$ we must have $b=d$. $\square$.

## Cartesian product

## Cartesian product

## Definition.

## Cartesian product

Definition. If $A$ and $B$ are sets,

## Cartesian product

Definition. If $A$ and $B$ are sets, then

$$
A \times B=\{(a, b) \mid a \in A, b \in B\}
$$

## Cartesian product

Definition. If $A$ and $B$ are sets, then

$$
A \times B=\{(a, b) \mid a \in A, b \in B\}
$$

is called "the Cartesian product of $A$ and $B$ ".

## Cartesian product

Definition. If $A$ and $B$ are sets, then

$$
A \times B=\{(a, b) \mid a \in A, b \in B\}
$$

is called "the Cartesian product of $A$ and $B$ ".
( $A \times B$ is the set of all ordered pairs whose first coordinate lies in $A$ and whose second coordinate lies in $B$.)

## Cartesian product

Definition. If $A$ and $B$ are sets, then

$$
A \times B=\{(a, b) \mid a \in A, b \in B\}
$$

is called "the Cartesian product of $A$ and $B$ ".
( $A \times B$ is the set of all ordered pairs whose first coordinate lies in $A$ and whose second coordinate lies in $B$.)


## Cartesian product

${ }^{1}($ e.g. $=$ exempli gratia $=$ "for example" $)$

## Cartesian product

## Theorem.

${ }^{1}(\mathrm{e} . \mathrm{g} .=$ exempli gratia $=$ "for example")

## Cartesian product

Theorem. If $A$ and $B$ are sets, then $A \times B$ is a set.
${ }^{1}($ e.g. $=$ exempli gratia $=$ "for example" $)$

## Cartesian product

Theorem. If $A$ and $B$ are sets, then $A \times B$ is a set.
Proof.
${ }^{1}($ e.g. $=$ exempli gratia $=$ "for example" $)$

## Cartesian product

Theorem. If $A$ and $B$ are sets, then $A \times B$ is a set.
Proof.
Since $\{a\},\{a, b\} \in \mathcal{P}(A \cup B)$,
${ }^{1}($ e.g. $=$ exempli gratia $=$ "for example" $)$

## Cartesian product

Theorem. If $A$ and $B$ are sets, then $A \times B$ is a set.

$$
\begin{aligned}
& \text { Proof. } \\
& \text { Since }\{a\},\{a, b\} \in \mathcal{P}(A \cup B) \text {, we have }(a, b)=\{\{a\},\{a, b\}\} \in \mathcal{P} \mathcal{P}(A \cup B) \text {. }
\end{aligned}
$$

[^0]
## Cartesian product

Theorem. If $A$ and $B$ are sets, then $A \times B$ is a set.
Proof.
Since $\{a\},\{a, b\} \in \mathcal{P}(A \cup B)$, we have $(a, b)=\{\{a\},\{a, b\}\} \in \mathcal{P} \mathcal{P}(A \cup B)$. Hence

$$
A \times B=\left\{x \in \mathcal{P} \mathcal{P}(A \cup B) \mid \varphi_{A \times B}(x)\right\}
$$

[^1]
## Cartesian product

Theorem. If $A$ and $B$ are sets, then $A \times B$ is a set.
Proof.
Since $\{a\},\{a, b\} \in \mathcal{P}(A \cup B)$, we have $(a, b)=\{\{a\},\{a, b\}\} \in \mathcal{P} \mathcal{P}(A \cup B)$. Hence

$$
A \times B=\left\{x \in \mathcal{P} \mathcal{P}(A \cup B) \mid \varphi_{A \times B}(x)\right\}
$$

where $\varphi_{A \times B}(x)$ is the property that says " $x$ has the form of an ordered pair with first coordinate in $A$ and second coordinate in $B$ ".
${ }^{1}($ e.g. $=$ exempli gratia $=$ "for example" $)$

## Cartesian product

Theorem. If $A$ and $B$ are sets, then $A \times B$ is a set.
Proof.
Since $\{a\},\{a, b\} \in \mathcal{P}(A \cup B)$, we have $(a, b)=\{\{a\},\{a, b\}\} \in \mathcal{P} \mathcal{P}(A \cup B)$. Hence

$$
A \times B=\left\{x \in \mathcal{P} \mathcal{P}(A \cup B) \mid \varphi_{A \times B}(x)\right\}
$$

where $\varphi_{A \times B}(x)$ is the property that says " $x$ has the form of an ordered pair with first coordinate in $A$ and second coordinate in $B$ ". $\square$
${ }^{1}($ e.g. $=$ exempli gratia $=$ "for example" $)$

## Cartesian product

Theorem. If $A$ and $B$ are sets, then $A \times B$ is a set.
Proof.
Since $\{a\},\{a, b\} \in \mathcal{P}(A \cup B)$, we have $(a, b)=\{\{a\},\{a, b\}\} \in \mathcal{P} \mathcal{P}(A \cup B)$. Hence

$$
A \times B=\left\{x \in \mathcal{P} \mathcal{P}(A \cup B) \mid \varphi_{A \times B}(x)\right\}
$$

where $\varphi_{A \times B}(x)$ is the property that says " $x$ has the form of an ordered pair with first coordinate in $A$ and second coordinate in $B "$ ". $\square$

We can form Cartesian products of more factors: e.g. ${ }^{1}$
${ }^{1}($ e.g. $=$ exempli gratia $=$ "for example" $)$

## Cartesian product

Theorem. If $A$ and $B$ are sets, then $A \times B$ is a set.
Proof.
Since $\{a\},\{a, b\} \in \mathcal{P}(A \cup B)$, we have $(a, b)=\{\{a\},\{a, b\}\} \in \mathcal{P} \mathcal{P}(A \cup B)$. Hence

$$
A \times B=\left\{x \in \mathcal{P} \mathcal{P}(A \cup B) \mid \varphi_{A \times B}(x)\right\}
$$

where $\varphi_{A \times B}(x)$ is the property that says " $x$ has the form of an ordered pair with first coordinate in $A$ and second coordinate in $B$ ". $\square$

We can form Cartesian products of more factors: e.g. ${ }^{1}$ $A \times B \times C:=(A \times B) \times C$.

## Cartesian product

Theorem. If $A$ and $B$ are sets, then $A \times B$ is a set.
Proof.
Since $\{a\},\{a, b\} \in \mathcal{P}(A \cup B)$, we have $(a, b)=\{\{a\},\{a, b\}\} \in \mathcal{P} \mathcal{P}(A \cup B)$. Hence

$$
A \times B=\left\{x \in \mathcal{P P}(A \cup B) \mid \varphi_{A \times B}(x)\right\}
$$

where $\varphi_{A \times B}(x)$ is the property that says " $x$ has the form of an ordered pair with first coordinate in $A$ and second coordinate in $B$ ". $\square$

We can form Cartesian products of more factors: e.g. ${ }^{1}$
$A \times B \times C:=(A \times B) \times C$.
$A^{3}:=A \times A \times A$.
${ }^{1}($ e.g. $=$ exempli gratia $=$ "for example" $)$

## Cartesian product

Theorem. If $A$ and $B$ are sets, then $A \times B$ is a set.
Proof.
Since $\{a\},\{a, b\} \in \mathcal{P}(A \cup B)$, we have $(a, b)=\{\{a\},\{a, b\}\} \in \mathcal{P} \mathcal{P}(A \cup B)$. Hence

$$
A \times B=\left\{x \in \mathcal{P P}(A \cup B) \mid \varphi_{A \times B}(x)\right\}
$$

where $\varphi_{A \times B}(x)$ is the property that says " $x$ has the form of an ordered pair with first coordinate in $A$ and second coordinate in $B$ ". $\square$

We can form Cartesian products of more factors: e.g. ${ }^{1}$
$A \times B \times C:=(A \times B) \times C$.
$A^{3}:=A \times A \times A$.
$\prod_{i=1}^{n} A_{i}:=A_{1} \times \cdots \times A_{n}$.

[^2]
## Relations

## Relations

## Definition.

## Relations

Definition. A relation is a subset of a product.

## Relations

Definition. A relation is a subset of a product.
(1) A binary relation on $A$ is a subset $R \subseteq A \times A$.

## Relations

Definition. A relation is a subset of a product.
(1) A binary relation on $A$ is a subset $R \subseteq A \times A$.

## Relations

Definition. A relation is a subset of a product.
(1) A binary relation on $A$ is a subset $R \subseteq A \times A$.
(2) A binary relation from $A$ to $B$ is a subset $R \subseteq A \times B$.

## Relations

Definition. A relation is a subset of a product.
(1) A binary relation on $A$ is a subset $R \subseteq A \times A$.
(2) A binary relation from $A$ to $B$ is a subset $R \subseteq A \times B$.

## Relations

Definition. A relation is a subset of a product.
(1) A binary relation on $A$ is a subset $R \subseteq A \times A$.
(2) A binary relation from $A$ to $B$ is a subset $R \subseteq A \times B$.
(3) An $n$-ary relation on $A$ is a subset $R \subseteq A^{n}$.

## Relations

Definition. A relation is a subset of a product.
(1) A binary relation on $A$ is a subset $R \subseteq A \times A$.
(2) A binary relation from $A$ to $B$ is a subset $R \subseteq A \times B$.
(3) An $n$-ary relation on $A$ is a subset $R \subseteq A^{n}$.

## Relations

Definition. A relation is a subset of a product.
(1) A binary relation on $A$ is a subset $R \subseteq A \times A$.
(2) A binary relation from $A$ to $B$ is a subset $R \subseteq A \times B$.
(3) An $n$-ary relation on $A$ is a subset $R \subseteq A^{n}$.
(9) An $n$-ary relation among $A_{1}, \ldots, A_{n}$ is a subset $R \subseteq A_{1} \times \cdots \times A_{n}$.

## Relations

Definition. A relation is a subset of a product.
(1) A binary relation on $A$ is a subset $R \subseteq A \times A$.
(2) A binary relation from $A$ to $B$ is a subset $R \subseteq A \times B$.
(3) An $n$-ary relation on $A$ is a subset $R \subseteq A^{n}$.
(9) An $n$-ary relation among $A_{1}, \ldots, A_{n}$ is a subset $R \subseteq A_{1} \times \cdots \times A_{n}$.

## Relations

Definition. A relation is a subset of a product.
(1) A binary relation on $A$ is a subset $R \subseteq A \times A$.
(2) A binary relation from $A$ to $B$ is a subset $R \subseteq A \times B$.
(3) An $n$-ary relation on $A$ is a subset $R \subseteq A^{n}$.
(9) An $n$-ary relation among $A_{1}, \ldots, A_{n}$ is a subset $R \subseteq A_{1} \times \cdots \times A_{n}$. The arity of a relation $R \subseteq A_{1} \times \cdots \times A_{n}$ is $n$.

## Relations

Definition. A relation is a subset of a product.
(1) A binary relation on $A$ is a subset $R \subseteq A \times A$.
(2) A binary relation from $A$ to $B$ is a subset $R \subseteq A \times B$.
(3) An $n$-ary relation on $A$ is a subset $R \subseteq A^{n}$.
(9) An $n$-ary relation among $A_{1}, \ldots, A_{n}$ is a subset $R \subseteq A_{1} \times \cdots \times A_{n}$.

The arity of a relation $R \subseteq A_{1} \times \cdots \times A_{n}$ is $n$.
Examples.

## Relations

Definition. A relation is a subset of a product.
(1) A binary relation on $A$ is a subset $R \subseteq A \times A$.
(2) A binary relation from $A$ to $B$ is a subset $R \subseteq A \times B$.
(3) An $n$-ary relation on $A$ is a subset $R \subseteq A^{n}$.
(9) An $n$-ary relation among $A_{1}, \ldots, A_{n}$ is a subset $R \subseteq A_{1} \times \cdots \times A_{n}$.

The arity of a relation $R \subseteq A_{1} \times \cdots \times A_{n}$ is $n$.

## Examples.

(1) If $A$ is a set, then $=$ is a binary relation on $A$.

## Relations

Definition. A relation is a subset of a product.
(1) A binary relation on $A$ is a subset $R \subseteq A \times A$.
(2) A binary relation from $A$ to $B$ is a subset $R \subseteq A \times B$.
(3) An $n$-ary relation on $A$ is a subset $R \subseteq A^{n}$.
(9) An $n$-ary relation among $A_{1}, \ldots, A_{n}$ is a subset $R \subseteq A_{1} \times \cdots \times A_{n}$.

The arity of a relation $R \subseteq A_{1} \times \cdots \times A_{n}$ is $n$.

## Examples.

(1) If $A$ is a set, then $=$ is a binary relation on $A$.

## Relations

Definition. A relation is a subset of a product.
(1) A binary relation on $A$ is a subset $R \subseteq A \times A$.
(2) A binary relation from $A$ to $B$ is a subset $R \subseteq A \times B$.
(3) An $n$-ary relation on $A$ is a subset $R \subseteq A^{n}$.
(9) An $n$-ary relation among $A_{1}, \ldots, A_{n}$ is a subset $R \subseteq A_{1} \times \cdots \times A_{n}$.

The arity of a relation $R \subseteq A_{1} \times \cdots \times A_{n}$ is $n$.

## Examples.

(1) If $A$ is a set, then $=$ is a binary relation on $A$.

It is the subset $\left\{(a, a) \in A^{2} \mid a \in A\right\}$ of $A \times A$.

## Relations

Definition. A relation is a subset of a product.
(1) A binary relation on $A$ is a subset $R \subseteq A \times A$.
(2) A binary relation from $A$ to $B$ is a subset $R \subseteq A \times B$.
(3) An $n$-ary relation on $A$ is a subset $R \subseteq A^{n}$.
(9) An $n$-ary relation among $A_{1}, \ldots, A_{n}$ is a subset $R \subseteq A_{1} \times \cdots \times A_{n}$.

The arity of a relation $R \subseteq A_{1} \times \cdots \times A_{n}$ is $n$.

## Examples.

(1) If $A$ is a set, then $=$ is a binary relation on $A$.

It is the subset $\left\{(a, a) \in A^{2} \mid a \in A\right\}$ of $A \times A$.
(2) If $A$ is a set of sets, then $\in$ is a binary relation on $A$.

## Relations

Definition. A relation is a subset of a product.
(1) A binary relation on $A$ is a subset $R \subseteq A \times A$.
(2) A binary relation from $A$ to $B$ is a subset $R \subseteq A \times B$.
(3) An $n$-ary relation on $A$ is a subset $R \subseteq A^{n}$.
(9) An $n$-ary relation among $A_{1}, \ldots, A_{n}$ is a subset $R \subseteq A_{1} \times \cdots \times A_{n}$.

The arity of a relation $R \subseteq A_{1} \times \cdots \times A_{n}$ is $n$.

## Examples.

(1) If $A$ is a set, then $=$ is a binary relation on $A$.

It is the subset $\left\{(a, a) \in A^{2} \mid a \in A\right\}$ of $A \times A$.
(2) If $A$ is a set of sets, then $\in$ is a binary relation on $A$.

## Relations

Definition. A relation is a subset of a product.
(1) A binary relation on $A$ is a subset $R \subseteq A \times A$.
(2) A binary relation from $A$ to $B$ is a subset $R \subseteq A \times B$.
(3) An $n$-ary relation on $A$ is a subset $R \subseteq A^{n}$.
(9) An $n$-ary relation among $A_{1}, \ldots, A_{n}$ is a subset $R \subseteq A_{1} \times \cdots \times A_{n}$.

The arity of a relation $R \subseteq A_{1} \times \cdots \times A_{n}$ is $n$.

## Examples.

(1) If $A$ is a set, then $=$ is a binary relation on $A$.

It is the subset $\left\{(a, a) \in A^{2} \mid a \in A\right\}$ of $A \times A$.
(2) If $A$ is a set of sets, then $\in$ is a binary relation on $A$.

It is the subset $\left\{(u, v) \in A^{2} \mid u\right.$ is a member of $\left.v\right\}$.

## Relations

Definition. A relation is a subset of a product.
(1) A binary relation on $A$ is a subset $R \subseteq A \times A$.
(2) A binary relation from $A$ to $B$ is a subset $R \subseteq A \times B$.
(3) An $n$-ary relation on $A$ is a subset $R \subseteq A^{n}$.
(9) An $n$-ary relation among $A_{1}, \ldots, A_{n}$ is a subset $R \subseteq A_{1} \times \cdots \times A_{n}$.

The arity of a relation $R \subseteq A_{1} \times \cdots \times A_{n}$ is $n$.

## Examples.

(1) If $A$ is a set, then $=$ is a binary relation on $A$.

It is the subset $\left\{(a, a) \in A^{2} \mid a \in A\right\}$ of $A \times A$.
(2) If $A$ is a set of sets, then $\in$ is a binary relation on $A$.

It is the subset $\left\{(u, v) \in A^{2} \mid u\right.$ is a member of $\left.v\right\}$.
(3) If $A$ is a set of sets, then $\subseteq$ is a binary relation on $A$.

## Relations

Definition. A relation is a subset of a product.
(1) A binary relation on $A$ is a subset $R \subseteq A \times A$.
(2) A binary relation from $A$ to $B$ is a subset $R \subseteq A \times B$.
(3) An $n$-ary relation on $A$ is a subset $R \subseteq A^{n}$.
(9) An $n$-ary relation among $A_{1}, \ldots, A_{n}$ is a subset $R \subseteq A_{1} \times \cdots \times A_{n}$.

The arity of a relation $R \subseteq A_{1} \times \cdots \times A_{n}$ is $n$.

## Examples.

(1) If $A$ is a set, then $=$ is a binary relation on $A$.

It is the subset $\left\{(a, a) \in A^{2} \mid a \in A\right\}$ of $A \times A$.
(2) If $A$ is a set of sets, then $\in$ is a binary relation on $A$.

It is the subset $\left\{(u, v) \in A^{2} \mid u\right.$ is a member of $\left.v\right\}$.
(3) If $A$ is a set of sets, then $\subseteq$ is a binary relation on $A$.

## Relations

Definition. A relation is a subset of a product.
(1) A binary relation on $A$ is a subset $R \subseteq A \times A$.
(2) A binary relation from $A$ to $B$ is a subset $R \subseteq A \times B$.
(3) An $n$-ary relation on $A$ is a subset $R \subseteq A^{n}$.
(9) An $n$-ary relation among $A_{1}, \ldots, A_{n}$ is a subset $R \subseteq A_{1} \times \cdots \times A_{n}$.

The arity of a relation $R \subseteq A_{1} \times \cdots \times A_{n}$ is $n$.

## Examples.

(1) If $A$ is a set, then $=$ is a binary relation on $A$.

It is the subset $\left\{(a, a) \in A^{2} \mid a \in A\right\}$ of $A \times A$.
(2) If $A$ is a set of sets, then $\in$ is a binary relation on $A$.

It is the subset $\left\{(u, v) \in A^{2} \mid u\right.$ is a member of $\left.v\right\}$.
(3) If $A$ is a set of sets, then $\subseteq$ is a binary relation on $A$. It is the subset $\left\{(u, v) \in A^{2} \mid(\forall w)((w \in u) \rightarrow(w \in v))\right\}$.

## Why do we care about relations?

## Why do we care about relations?

A typical sentence is composed of a subject and a predicate.

## Why do we care about relations?

A typical sentence is composed of a subject and a predicate. The subject is what the sentence is about and the predicate is what is being expressed about the subject.

## Why do we care about relations?

A typical sentence is composed of a subject and a predicate. The subject is what the sentence is about and the predicate is what is being expressed about the subject.

The pizza is hot.

## Why do we care about relations?

A typical sentence is composed of a subject and a predicate. The subject is what the sentence is about and the predicate is what is being expressed about the subject.

The pizza is hot.
has subject $x=$ "pizza", and predicate $\varphi_{\text {hot }}(x)=" x$ is hot".

## Why do we care about relations?

A typical sentence is composed of a subject and a predicate. The subject is what the sentence is about and the predicate is what is being expressed about the subject.

The pizza is hot.
has subject $x=$ "pizza", and predicate $\varphi_{\text {hot }}(x)=" x$ is hot". In general, a predicate inputs values (= the subject) from a set

## Why do we care about relations?

A typical sentence is composed of a subject and a predicate. The subject is what the sentence is about and the predicate is what is being expressed about the subject.

The pizza is hot.
has subject $x=$ "pizza", and predicate $\varphi_{\text {hot }}(x)=" x$ is hot". In general, a predicate inputs values (= the subject) from a set

## Why do we care about relations?

A typical sentence is composed of a subject and a predicate. The subject is what the sentence is about and the predicate is what is being expressed about the subject.

The pizza is hot.
has subject $x=$ "pizza", and predicate $\varphi_{\text {hot }}(x)=$ " $x$ is hot". In general, a predicate inputs values (= the subject) from a set and outputs values from the set $\{T, \perp\}$ of truth values.

## Why do we care about relations?

A typical sentence is composed of a subject and a predicate. The subject is what the sentence is about and the predicate is what is being expressed about the subject.

The pizza is hot.
has subject $x=$ "pizza", and predicate $\varphi_{\text {hot }}(x)=$ " $x$ is hot". In general, a predicate inputs values (= the subject) from a set and outputs values from the set $\{T, \perp\}$ of truth values.

In mathematics, relations are used to record the "graph of the predicate".

## Why do we care about relations?

A typical sentence is composed of a subject and a predicate. The subject is what the sentence is about and the predicate is what is being expressed about the subject.

The pizza is hot.
has subject $x=$ "pizza", and predicate $\varphi_{\text {hot }}(x)=" x$ is hot". In general, a predicate inputs values (= the subject) from a set and outputs values from the set $\{T, \perp\}$ of truth values.

In mathematics, relations are used to record the "graph of the predicate". Thus, relations are the mathematical tools used to "record ideas".

## Why do we care about relations?

A typical sentence is composed of a subject and a predicate. The subject is what the sentence is about and the predicate is what is being expressed about the subject.

The pizza is hot.
has subject $x=$ "pizza", and predicate $\varphi_{\text {hot }}(x)=" x$ is hot". In general, a predicate inputs values (= the subject) from a set and outputs values from the set $\{T, \perp\}$ of truth values.

In mathematics, relations are used to record the "graph of the predicate". Thus, relations are the mathematical tools used to "record ideas".

For example, if $P$ is the set of all pizzas, then

## Why do we care about relations?

A typical sentence is composed of a subject and a predicate.
The subject is what the sentence is about and the predicate is what is being expressed about the subject.

The pizza is hot.
has subject $x=$ "pizza", and predicate $\varphi_{\text {hot }}(x)=" x$ is hot". In general, a predicate inputs values (= the subject) from a set and outputs values from the set $\{\top, \perp\}$ of truth values.

In mathematics, relations are used to record the "graph of the predicate". Thus, relations are the mathematical tools used to "record ideas".

For example, if $P$ is the set of all pizzas, then

$$
H=\left\{x \in P \mid \varphi_{\mathrm{hot}}(x)\right\}
$$

## Why do we care about relations?

A typical sentence is composed of a subject and a predicate.
The subject is what the sentence is about and the predicate is what is being expressed about the subject.

The pizza is hot.
has subject $x=$ "pizza", and predicate $\varphi_{\text {hot }}(x)=$ " $x$ is hot". In general, a predicate inputs values (= the subject) from a set and outputs values from the set $\{\top, \perp\}$ of truth values.

In mathematics, relations are used to record the "graph of the predicate". Thus, relations are the mathematical tools used to "record ideas".

For example, if $P$ is the set of all pizzas, then

$$
H=\left\{x \in P \mid \varphi_{\mathrm{hot}}(x)\right\}
$$

is the subset of all hot pizzas.

## Why do we care about relations?

A typical sentence is composed of a subject and a predicate. The subject is what the sentence is about and the predicate is what is being expressed about the subject.

The pizza is hot.
has subject $x=$ "pizza", and predicate $\varphi_{\text {hot }}(x)=" x$ is hot". In general, a predicate inputs values (= the subject) from a set and outputs values from the set $\{T, \perp\}$ of truth values.

In mathematics, relations are used to record the "graph of the predicate". Thus, relations are the mathematical tools used to "record ideas".

For example, if $P$ is the set of all pizzas, then

$$
H=\left\{x \in P \mid \varphi_{\mathrm{hot}}(x)\right\}
$$

is the subset of all hot pizzas. $H \subseteq P$, so $H$ is a 1-ary relation on $P$

## Why do we care about relations?

A typical sentence is composed of a subject and a predicate. The subject is what the sentence is about and the predicate is what is being expressed about the subject.

The pizza is hot.
has subject $x=$ "pizza", and predicate $\varphi_{\text {hot }}(x)=" x$ is hot". In general, a predicate inputs values (= the subject) from a set and outputs values from the set $\{\top, \perp\}$ of truth values.

In mathematics, relations are used to record the "graph of the predicate". Thus, relations are the mathematical tools used to "record ideas".

For example, if $P$ is the set of all pizzas, then

$$
H=\left\{x \in P \mid \varphi_{\mathrm{hot}}(x)\right\}
$$

is the subset of all hot pizzas. $H \subseteq P$, so $H$ is a 1-ary relation on $P$ that records the idea of "hotness" for pizzas.

## A binary example

## A binary example

Sentences may have a compound subject (consisting of more than one one thing):

## A binary example

Sentences may have a compound subject (consisting of more than one one thing):

Alice and Bob are siblings.

## A binary example

Sentences may have a compound subject (consisting of more than one one thing):

Alice and Bob are siblings.
Subject $=($ Alice, Bob $)$.

## A binary example

Sentences may have a compound subject (consisting of more than one one thing):

Alice and Bob are siblings.
Subject $=($ Alice, Bob $)$. Predicate $=\varphi_{\text {sibling }}(x, y)=" x$ and $y$ are siblings".

## A binary example

Sentences may have a compound subject (consisting of more than one one thing):

Alice and Bob are siblings.
Subject $=($ Alice, Bob $)$. Predicate $=\varphi_{\text {sibling }}(x, y)=" x$ and $y$ are siblings". If $Z$ is the set of all people living on earth, then

## A binary example

Sentences may have a compound subject (consisting of more than one one thing):

Alice and Bob are siblings.
Subject $=($ Alice, Bob $)$. Predicate $=\varphi_{\text {sibling }}(x, y)=" x$ and $y$ are siblings". If $Z$ is the set of all people living on earth, then

$$
S=\left\{(x, y) \in Z^{2} \mid \varphi_{\text {sibling }}(x, y)\right\}
$$

## A binary example

Sentences may have a compound subject (consisting of more than one one thing):

Alice and Bob are siblings.
Subject $=($ Alice, Bob $)$. Predicate $=\varphi_{\text {sibling }}(x, y)=" x$ and $y$ are siblings". If $Z$ is the set of all people living on earth, then

$$
S=\left\{(x, y) \in Z^{2} \mid \varphi_{\text {sibling }}(x, y)\right\}
$$

is a binary relation on $Z$ that records the pairs of siblings.

## A binary example

Sentences may have a compound subject (consisting of more than one one thing):

Alice and Bob are siblings.
Subject $=($ Alice, Bob $)$. Predicate $=\varphi_{\text {sibling }}(x, y)=" x$ and $y$ are siblings". If $Z$ is the set of all people living on earth, then

$$
S=\left\{(x, y) \in Z^{2} \mid \varphi_{\text {sibling }}(x, y)\right\}
$$

is a binary relation on $Z$ that records the pairs of siblings. Thus, binary relations can be used to record the information of concepts depending on two things.

## A more complicated binary example

## A more complicated binary example

Some attribute to Abraham Lincoln the quote

## A more complicated binary example

Some attribute to Abraham Lincoln the quote
You can fool all the people some of the time

## A more complicated binary example

Some attribute to Abraham Lincoln the quote
You can fool all the people some of the time

## A more complicated binary example

Some attribute to Abraham Lincoln the quote
You can fool all the people some of the time and some of the people all the time,

## A more complicated binary example

Some attribute to Abraham Lincoln the quote
You can fool all the people some of the time and some of the people all the time, but you cannot fool all the people all the time.

## A more complicated binary example

Some attribute to Abraham Lincoln the quote
You can fool all the people some of the time and some of the people all the time, but you cannot fool all the people all the time.

We can formalize this statement using a predicate $F(p, t)$ expressing "Person $p$ can be fooled at time $t^{\prime \prime}$.

## A more complicated binary example

Some attribute to Abraham Lincoln the quote
You can fool all the people some of the time and some of the people all the time, but you cannot fool all the people all the time.

We can formalize this statement using a predicate $F(p, t)$ expressing "Person $p$ can be fooled at time $t$ ". Here $p$ is a variable allowed to range over a set $P$ of people and $t$ is a variable allowed to range over a set $T$ of times.

## A more complicated binary example

Some attribute to Abraham Lincoln the quote
You can fool all the people some of the time and some of the people all the time, but you cannot fool all the people all the time.

We can formalize this statement using a predicate $F(p, t)$ expressing "Person $p$ can be fooled at time $t "$. Here $p$ is a variable allowed to range over a set $P$ of people and $t$ is a variable allowed to range over a set $T$ of times. Now the statement reads

## A more complicated binary example

Some attribute to Abraham Lincoln the quote
You can fool all the people some of the time and some of the people all the time, but you cannot fool all the people all the time.

We can formalize this statement using a predicate $F(p, t)$ expressing "Person $p$ can be fooled at time $t "$. Here $p$ is a variable allowed to range over a set $P$ of people and $t$ is a variable allowed to range over a set $T$ of times. Now the statement reads

$$
((\exists t)(\forall p) F(p, t)) \wedge((\exists p)(\forall t) F(p, t)) \wedge \neg((\forall p)(\forall t) F(p, t))
$$

## A more complicated binary example

Some attribute to Abraham Lincoln the quote
You can fool all the people some of the time and some of the people all the time, but you cannot fool all the people all the time.

We can formalize this statement using a predicate $F(p, t)$ expressing "Person $p$ can be fooled at time $t "$. Here $p$ is a variable allowed to range over a set $P$ of people and $t$ is a variable allowed to range over a set $T$ of times. Now the statement reads

$$
((\exists t)(\forall p) F(p, t)) \wedge((\exists p)(\forall t) F(p, t)) \wedge \neg((\forall p)(\forall t) F(p, t))
$$

The graph $G \subseteq P \times T$ of this predicate is the relation between $P$ and $T$ indicated in this table:

## A more complicated binary example

Some attribute to Abraham Lincoln the quote
You can fool all the people some of the time and some of the people all the time, but you cannot fool all the people all the time.

We can formalize this statement using a predicate $F(p, t)$ expressing "Person $p$ can be fooled at time $t "$. Here $p$ is a variable allowed to range over a set $P$ of people and $t$ is a variable allowed to range over a set $T$ of times. Now the statement reads

$$
((\exists t)(\forall p) F(p, t)) \wedge((\exists p)(\forall t) F(p, t)) \wedge \neg((\forall p)(\forall t) F(p, t)) .
$$

The graph $G \subseteq P \times T$ of this predicate is the relation between $P$ and $T$ indicated in this table:

| $F(p, t)$ | $8 a m$ | $11 a m$ | $2 p m$ | $5 p m$ |
| :---: | :---: | :---: | :---: | :---: |
| John |  |  | $*$ |  |
| Paul | $*$ | $*$ | $*$ | $*$ |
| George | $*$ | $*$ | $*$ |  |
| Ringo |  |  | $*$ | $*$ |

## Functions

## Functions

Functions are among the most important relations in mathematics.

## Functions

Functions are among the most important relations in mathematics.

## Functions

Functions are among the most important relations in mathematics.
Intuition. A function accepts a value from some set,

## Functions

Functions are among the most important relations in mathematics.
Intuition. A function accepts a value from some set, performs some sort of "calculation",

## Functions

Functions are among the most important relations in mathematics.
Intuition. A function accepts a value from some set, performs some sort of "calculation", then returns a value from some set.

## Functions

Functions are among the most important relations in mathematics.
Intuition. A function accepts a value from some set, performs some sort of "calculation", then returns a value from some set.

## Definition.

## Functions

Functions are among the most important relations in mathematics.
Intuition. A function accepts a value from some set, performs some sort of "calculation", then returns a value from some set.

Definition. (Function)

## Functions

Functions are among the most important relations in mathematics.
Intuition. A function accepts a value from some set, performs some sort of "calculation", then returns a value from some set.

Definition. (Function)
A function from $A$ to $B$ is a relation $F \subseteq A \times B$ satisfying the "function rule".

## Functions

Functions are among the most important relations in mathematics.
Intuition. A function accepts a value from some set, performs some sort of "calculation", then returns a value from some set.

Definition. (Function)
A function from $A$ to $B$ is a relation $F \subseteq A \times B$ satisfying the "function rule".
(Notation:

## Functions

Functions are among the most important relations in mathematics.
Intuition. A function accepts a value from some set, performs some sort of "calculation", then returns a value from some set.

Definition. (Function)
A function from $A$ to $B$ is a relation $F \subseteq A \times B$ satisfying the "function rule".
(Notation: We often write $F: A \rightarrow B$ to signify that $F \subseteq A \times B$ is a function.)

## Functions

Functions are among the most important relations in mathematics.
Intuition. A function accepts a value from some set, performs some sort of "calculation", then returns a value from some set.

Definition. (Function)
A function from $A$ to $B$ is a relation $F \subseteq A \times B$ satisfying the "function rule". (Notation: We often write $F: A \rightarrow B$ to signify that $F \subseteq A \times B$ is a function.)

## Definition.

## Functions

Functions are among the most important relations in mathematics.
Intuition. A function accepts a value from some set, performs some sort of "calculation", then returns a value from some set.

Definition. (Function)
A function from $A$ to $B$ is a relation $F \subseteq A \times B$ satisfying the "function rule". (Notation: We often write $F: A \rightarrow B$ to signify that $F \subseteq A \times B$ is a function.)

Definition. (The Function Rule)

## Functions

Functions are among the most important relations in mathematics.
Intuition. A function accepts a value from some set, performs some sort of "calculation", then returns a value from some set.

Definition. (Function)
A function from $A$ to $B$ is a relation $F \subseteq A \times B$ satisfying the "function rule".
(Notation: We often write $F: A \rightarrow B$ to signify that $F \subseteq A \times B$ is a function.)
Definition. (The Function Rule)
A binary relation $F \subseteq A \times B$ from $A$ to $B$ satisfies the function rule if

## Functions

Functions are among the most important relations in mathematics.
Intuition. A function accepts a value from some set, performs some sort of "calculation", then returns a value from some set.

Definition. (Function)
A function from $A$ to $B$ is a relation $F \subseteq A \times B$ satisfying the "function rule". (Notation: We often write $F: A \rightarrow B$ to signify that $F \subseteq A \times B$ is a function.)

Definition. (The Function Rule)
A binary relation $F \subseteq A \times B$ from $A$ to $B$ satisfies the function rule if for every $a \in A$ there is a unique $b \in B$ such that $(a, b) \in F$.

## Functions

Functions are among the most important relations in mathematics.
Intuition. A function accepts a value from some set, performs some sort of "calculation", then returns a value from some set.

Definition. (Function)
A function from $A$ to $B$ is a relation $F \subseteq A \times B$ satisfying the "function rule". (Notation: We often write $F: A \rightarrow B$ to signify that $F \subseteq A \times B$ is a function.)

Definition. (The Function Rule)
A binary relation $F \subseteq A \times B$ from $A$ to $B$ satisfies the function rule if for every $a \in A$ there is a unique $b \in B$ such that $(a, b) \in F$. (Notation:

## Functions

Functions are among the most important relations in mathematics.
Intuition. A function accepts a value from some set, performs some sort of "calculation", then returns a value from some set.

Definition. (Function)
A function from $A$ to $B$ is a relation $F \subseteq A \times B$ satisfying the "function rule". (Notation: We often write $F: A \rightarrow B$ to signify that $F \subseteq A \times B$ is a function.)

Definition. (The Function Rule)
A binary relation $F \subseteq A \times B$ from $A$ to $B$ satisfies the function rule if for every $a \in A$ there is a unique $b \in B$ such that $(a, b) \in F$. (Notation: We often write $b=F(a)$ or $F(a)=b$ to signify that $(a, b) \in F$.)

## Functions

Functions are among the most important relations in mathematics.
Intuition. A function accepts a value from some set, performs some sort of "calculation", then returns a value from some set.

Definition. (Function)
A function from $A$ to $B$ is a relation $F \subseteq A \times B$ satisfying the "function rule". (Notation: We often write $F: A \rightarrow B$ to signify that $F \subseteq A \times B$ is a function.)

Definition. (The Function Rule)
A binary relation $F \subseteq A \times B$ from $A$ to $B$ satisfies the function rule if for every $a \in A$ there is a unique $b \in B$ such that $(a, b) \in F$. (Notation: We often write $b=F(a)$ or $F(a)=b$ to signify that $(a, b) \in F$.)

$$
a=(x, y)
$$



## A visual represention a function

## A visual represention a function

Let $A$ and $B$ be sets and let $F: A \rightarrow B$ be a function from $A$ to $B$.


## Terminology for functions

## Terminology for functions

(1) The image of $F$ is $\operatorname{im}(F)=F[A]=\{b \in B \mid \exists a \in A(F(a)=b)\}$. The image of a subset $U \subseteq A$ is $F[U]=\{b \in B \mid \exists u \in U(F(u)=b)\}$.

## Terminology for functions

(1) The image of $F$ is $\operatorname{im}(F)=F[A]=\{b \in B \mid \exists a \in A(F(a)=b)\}$. The image of a subset $U \subseteq A$ is $F[U]=\{b \in B \mid \exists u \in U(F(u)=b)\}$.
(2) The preimage or inverse image of a subset $V \subseteq B$ is $F^{-1}[V]=\{a \in A \mid F(a) \in V\}$.

## Terminology for functions

(1) The image of $F$ is $\operatorname{im}(F)=F[A]=\{b \in B \mid \exists a \in A(F(a)=b)\}$. The image of a subset $U \subseteq A$ is $F[U]=\{b \in B \mid \exists u \in U(F(u)=b)\}$.
(2) The preimage or inverse image of a subset $V \subseteq B$ is $F^{-1}[V]=\{a \in A \mid F(a) \in V\}$.
(3) The preimage of a singleton $\{b\}$ is written $F^{-1}(b)$ and sometimes called the fiber of $F$ over $b$. The fiber containing the element $a$ is sometimes written $[a]$.

## Terminology for functions

(1) The image of $F$ is $\operatorname{im}(F)=F[A]=\{b \in B \mid \exists a \in A(F(a)=b)\}$. The image of a subset $U \subseteq A$ is $F[U]=\{b \in B \mid \exists u \in U(F(u)=b)\}$.
(2) The preimage or inverse image of a subset $V \subseteq B$ is $F^{-1}[V]=\{a \in A \mid F(a) \in V\}$.
(3) The preimage of a singleton $\{b\}$ is written $F^{-1}(b)$ and sometimes called the fiber of $F$ over $b$. The fiber containing the element $a$ is sometimes written $[a]$.
(9) The coimage of $F$ is the set $\operatorname{coim}(f)=\left\{F^{-1}(b) \mid b \in \operatorname{im}(F)\right\}$ of all nonempty fibers.

## Terminology for functions

(1) The image of $F$ is $\operatorname{im}(F)=F[A]=\{b \in B \mid \exists a \in A(F(a)=b)\}$. The image of a subset $U \subseteq A$ is $F[U]=\{b \in B \mid \exists u \in U(F(u)=b)\}$.
(2) The preimage or inverse image of a subset $V \subseteq B$ is $F^{-1}[V]=\{a \in A \mid F(a) \in V\}$.
(3) The preimage of a singleton $\{b\}$ is written $F^{-1}(b)$ and sometimes called the fiber of $F$ over $b$. The fiber containing the element $a$ is sometimes written $[a]$.
(9) The coimage of $F$ is the set $\operatorname{coim}(f)=\left\{F^{-1}(b) \mid b \in \operatorname{im}(F)\right\}$ of all nonempty fibers.
(c) The natural map is $\nu: A \rightarrow \operatorname{coim}(F): a \mapsto[a]$.

## Terminology for functions

(1) The image of $F$ is $\operatorname{im}(F)=F[A]=\{b \in B \mid \exists a \in A(F(a)=b)\}$. The image of a subset $U \subseteq A$ is $F[U]=\{b \in B \mid \exists u \in U(F(u)=b)\}$.
(2) The preimage or inverse image of a subset $V \subseteq B$ is $F^{-1}[V]=\{a \in A \mid F(a) \in V\}$.
(3) The preimage of a singleton $\{b\}$ is written $F^{-1}(b)$ and sometimes called the fiber of $F$ over $b$. The fiber containing the element $a$ is sometimes written $[a]$.
(9) The coimage of $F$ is the set $\operatorname{coim}(f)=\left\{F^{-1}(b) \mid b \in \operatorname{im}(F)\right\}$ of all nonempty fibers.
(0) The natural map is $\nu: A \rightarrow \operatorname{coim}(F): a \mapsto[a]$.
(0) The inclusion map is $\iota: \operatorname{im}(F) \rightarrow B: b \mapsto b$.

## Terminology for functions

(1) The image of $F$ is $\operatorname{im}(F)=F[A]=\{b \in B \mid \exists a \in A(F(a)=b)\}$. The image of a subset $U \subseteq A$ is $F[U]=\{b \in B \mid \exists u \in U(F(u)=b)\}$.
(2) The preimage or inverse image of a subset $V \subseteq B$ is $F^{-1}[V]=\{a \in A \mid F(a) \in V\}$.
(3) The preimage of a singleton $\{b\}$ is written $F^{-1}(b)$ and sometimes called the fiber of $F$ over $b$. The fiber containing the element $a$ is sometimes written $[a]$.
(9) The coimage of $F$ is the set $\operatorname{coim}(f)=\left\{F^{-1}(b) \mid b \in \operatorname{im}(F)\right\}$ of all nonempty fibers.
(0) The natural map is $\nu: A \rightarrow \operatorname{coim}(F): a \mapsto[a]$.
(0) The inclusion map is $\iota: \operatorname{im}(F) \rightarrow B: b \mapsto b$.
(- The induced map is $\bar{F}: \operatorname{coim}(F) \rightarrow \operatorname{im}(F):[a] \mapsto F(a)$.

## Terminology for functions

(1) The image of $F$ is $\operatorname{im}(F)=F[A]=\{b \in B \mid \exists a \in A(F(a)=b)\}$. The image of a subset $U \subseteq A$ is $F[U]=\{b \in B \mid \exists u \in U(F(u)=b)\}$.
(2) The preimage or inverse image of a subset $V \subseteq B$ is $F^{-1}[V]=\{a \in A \mid F(a) \in V\}$.
(3) The preimage of a singleton $\{b\}$ is written $F^{-1}(b)$ and sometimes called the fiber of $F$ over $b$. The fiber containing the element $a$ is sometimes written $[a]$.
(9) The coimage of $F$ is the set $\operatorname{coim}(f)=\left\{F^{-1}(b) \mid b \in \operatorname{im}(F)\right\}$ of all nonempty fibers.
(0) The natural map is $\nu: A \rightarrow \operatorname{coim}(F): a \mapsto[a]$.
(0) The inclusion map is $\iota: \operatorname{im}(F) \rightarrow B: b \mapsto b$.
(0) The induced map is $\bar{F}: \operatorname{coim}(F) \rightarrow \operatorname{im}(F):[a] \mapsto F(a)$.
(8) The canonical factorization of $F$ is $F=\iota \circ \bar{F} \circ \nu$.


[^0]:    ${ }^{1}($ e.g. $=$ exempli gratia $=$ "for example" $)$

[^1]:    ${ }^{1}($ e.g. $=$ exempli gratia $=$ "for example" $)$

[^2]:    ${ }^{1}($ e.g. $=$ exempli gratia $=$ "for example" $)$

