Notes about functions.

Let A and B be sets and let $f: A \to B$ be a function from A to B. There are sets and functions related to A, B and f that have special names.

- (1) The *image* of f is $im(f) = f[A] = \{b \in B : \exists a \in A(f(a) = b)\}$. The image of a subset $U \subseteq A$ is $f[U] = \{b \in B : \exists u \in U(f(u) = b)\}$.
- (2) The preimage or inverse image of a subset $V \subseteq B$ is $f^{-1}[V] = \{a \in A : f(a) \in V\}$.
- (3) The preimage of a singleton $\{b\}$ is written $f^{-1}(b)$ and sometimes called the *fiber* of f over b. The fiber containing the element a is sometimes written [a].
- (4) The coimage of f is the set $\operatorname{coim}(f) = \{f^{-1}(b) : b \in \operatorname{im}(f)\}$ of all fibers.
- (5) The natural map is $\nu: A \to \operatorname{coim}(f): a \mapsto [a]$. (This says $\nu(a) = [a]$.)
- (6) The inclusion map is $\iota: \operatorname{im}(f) \to B: b \mapsto b$. (This says $\iota(b) = b$.)
- (7) The induced map is \overline{f} : $\operatorname{coim}(f) \to \operatorname{im}(f)$: $[a] \mapsto f(a)$. (This says $\overline{f}([a]) = f(a)$.)

Some facts:

- (1) The natural map is *surjective*.
- (2) The inclusion map is *injective*.
- (3) The induced map is *bijective*.
- (4) $f = \iota \circ \overline{f} \circ \nu$. (This is the canonical factorization of f.)

More Terminology about Functions

(1) $F \subseteq A \times B$, $F: A \to B$, $A \stackrel{F}{\to} B$.

The first notation expresses only that F is a binary relation from A to B. The second and third notation express that F is a function from A to B, so it is a binary realtion from A to B that satisfies the function rule.

(2) F assigns y to x, y = F(x).

This is to remind us that if F(x) = y, then F is assigning to x the value y, not the other way around. (F does not assign x to y, rather it assigns y to x.)

(3) $F: A \to B: x \mapsto (\text{value assigned to } x).$ (E.g., $F: \mathbb{R} \to \mathbb{R}: x \mapsto x^2)$

This is a description of the "mapsto" symbol, \mapsto . This is not simply another type of arrow that can be used interchangeably with \rightarrow . Rather, the notation

 $F \colon \mathbb{R} \to [-1, 1] \colon x \mapsto \sin(x)$

is expressing that F is a function from the domain \mathbb{R} to the codomain [-1, 1] which assigns the value $\sin(x)$ to x. The \mapsto symbol is used to indicate the "formula" or "rule" that defines F.

(4) F is injective: (Equivalently, F is 1-1.)

F is injective if

F(a) = F(b) implies a = b.

In the contrapositive (hence equivalent) form, this reads

 $a \neq b$ implies $F(a) \neq F(b)$.

(5) F is surjective: (Equivalently, F is onto.)

F is surjective if im(F) = cod(F). If we refer to the directed graph representation of F, it says that each element of the codomain "receives an arrow head". More formally, in symbols,

$$(\forall b)(\exists a)(b = F(a)).$$

Here b is a variable representing values in the codomain of F and a is a variable representing values in the domain of F.

(6) F is bijective: (Equivalently, F is 1-1 and onto.)

bijective = injective + surjective.

(7) F is the identity function on A:

The identity function on A, written id_A , is the function $id_A \colon A \to A \colon x \mapsto x$. As a relation, it is

$$\mathrm{id}_A = \{(a, a) \in A^2 \mid a \in A\}.$$

(8) F is invertible:

 $F: A \to B$ is invertible if there is a function $G: B \to A$ such that $G \circ F = id_A$ and $F \circ G = id_B$.

(9) F is constant:

 $F: A \to B$ is constant if it assigns all elements of the domain the same value, i.e., it "assumes only one value". More precisely, F is constant if $F \subseteq A \times B$ and $F = A \times \{b\}$ for some $b \in B$. IN symbols, we indicate F is constant by writing

$$(\forall x_1)(\forall x_2)(F(x_1) = F(x_2)).$$

(10) F is the inclusion map for a subset $A \subseteq B$:

If A is a subset of B, then the inclusion map from A to B is

$$\iota \colon A \to B \colon a \mapsto a.$$

As a set, $\iota = \mathrm{id}_A$.

(11) F is the natural map for a partition P on A:

If P is a partition of A, then the natural map from A to P is

$$\nu \colon A \to P \colon a \mapsto [a].$$

This is the function that maps $a \in A$ to the cell of P containing a.

(12) $A \xrightarrow{F} B \xrightarrow{G} C$, or $G \circ F \colon A \to C$.

Here we are writing notation for the composition of F and G. The composite function $G \circ F$ is the function $(G \circ F)(a) = G(F(a))$. We read " $G \circ F$ " as "G of F" (sometimes just "G circle F"). The composition is defined by the formula

$$G \circ f = \{(a, c) \in A \times C \mid (\exists b \in B)(((a, b) \in F) \land ((b, c) \in G))\}.$$

Example. If $F(x) = x^2$ and $G(x) = \sin(x)$, then $G \circ F(x) = G(F(x)) = \sin(x^2)$.

Practice problems.

- (1) Draw a figure like the one on the first page of these notes illustrating $f : \mathbb{R} \to \mathbb{R} : x \mapsto x^2$. Identify all the "named" sets and functions.
- (2) Repeat the previous exercise for the function $g: \mathbb{R}^2 \to \mathbb{R}: (x, y) \mapsto x + y$.
- (3) Repeat for the *identity function* $id: A \to A: a \mapsto a$.
- (4) Repeat for the second coordinate projection $\pi: X \times Y \to Y: (x, y) \mapsto y$.
- (5) Show that
 - (a) the composition of two injective functions is injective,
 - (b) the composition of two surjective functions is surjective, and
 - (c) the composition of two bijective functions is bijective.
- (6) Show that injective functions are *left cancellable*: if f is injective, then $f \circ g = f \circ h$ implies g = h.
- (7) Show that surjective functions are *right cancellable*: if f is surjective, then $g \circ f = h \circ f$ implies g = h.
- (8) Show that if $f: A \to B$ is a function, then $f^{-1}: \mathcal{P}(B) \to \mathcal{P}(A)$ is also a function. Show that f is injective iff f^{-1} is surjective, and f is surjective iff f^{-1} is injective.