The Natural Numbers

The set \mathbb{N} of natural numbers is the intersection of all inductive sets.

The set \mathbb{N} of natural numbers is the intersection of all inductive sets. We will see that \mathbb{N} is totally ordered by the \in-relation:

$$
m<n \quad \Leftrightarrow \quad m \in n
$$

The set \mathbb{N} of natural numbers is the intersection of all inductive sets. We will see that \mathbb{N} is totally ordered by the \in-relation:

$$
m<n \quad \Leftrightarrow \quad m \in n .
$$

We will also see that \mathbb{N} may be equipped with algebraic structure:

The set \mathbb{N} of natural numbers is the intersection of all inductive sets. We will see that \mathbb{N} is totally ordered by the \in-relation:

$$
m<n \quad \Leftrightarrow \quad m \in n
$$

We will also see that \mathbb{N} may be equipped with algebraic structure: Addition

$$
\begin{array}{cl}
m+0 & :=m \\
m+S(n) & :=S(m+n) \tag{RR}
\end{array}
$$

The set \mathbb{N} of natural numbers is the intersection of all inductive sets. We will see that \mathbb{N} is totally ordered by the \in-relation:

$$
m<n \quad \Leftrightarrow \quad m \in n
$$

We will also see that \mathbb{N} may be equipped with algebraic structure: Addition

$$
\begin{array}{cl}
m+0 & :=m \\
m+S(n) & :=S(m+n) \tag{RR}
\end{array}
$$

Multiplication

$$
\begin{array}{cl}
m \cdot 0 & :=0 \\
m \cdot S(n) & :=(m \cdot n)+m \tag{RR}
\end{array}
$$

The set \mathbb{N} of natural numbers is the intersection of all inductive sets. We will see that \mathbb{N} is totally ordered by the \in-relation:

$$
m<n \quad \Leftrightarrow \quad m \in n
$$

We will also see that \mathbb{N} may be equipped with algebraic structure: Addition

$$
\begin{array}{cl}
m+0 & :=m \\
m+S(n) & :=S(m+n) \tag{RR}
\end{array}
$$

Multiplication

$$
\begin{array}{cl}
m \cdot 0 & :=0 \\
m \cdot S(n) & :=(m \cdot n)+m \tag{RR}
\end{array}
$$

Exponentiation

$$
\begin{array}{cl}
m^{0} & :=1 \\
m^{S(n)} & :=\left(m^{n}\right) \cdot m \tag{RR}
\end{array}
$$

Induction and Recursion

Induction and Recursion

To develop the structure $\left\langle\mathbb{N} ; 0, S(x), x<y, x+y, x \cdot y, x^{y}\right\rangle$, we need the tools of Induction and Recursion.

Induction and Recursion

To develop the structure $\left\langle\mathbb{N} ; 0, S(x), x<y, x+y, x \cdot y, x^{y}\right\rangle$, we need the tools of Induction and Recursion.

Induction.

Induction and Recursion

To develop the structure $\left\langle\mathbb{N} ; 0, S(x), x<y, x+y, x \cdot y, x^{y}\right\rangle$, we need the tools of Induction and Recursion.

Induction.

Theorem.

Induction and Recursion

To develop the structure $\left\langle\mathbb{N} ; 0, S(x), x<y, x+y, x \cdot y, x^{y}\right\rangle$, we need the tools of Induction and Recursion.

Induction.

Theorem. (Principle of Induction)

Induction and Recursion

To develop the structure $\left\langle\mathbb{N} ; 0, S(x), x<y, x+y, x \cdot y, x^{y}\right\rangle$, we need the tools of Induction and Recursion.

Induction.

Theorem. (Principle of Induction)
Let $\varphi(x)$ be a (first-order ZFC-) formula.

Induction and Recursion

To develop the structure $\left\langle\mathbb{N} ; 0, S(x), x<y, x+y, x \cdot y, x^{y}\right\rangle$, we need the tools of Induction and Recursion.

Induction.

Theorem. (Principle of Induction)
Let $\varphi(x)$ be a (first-order ZFC-) formula. If

Induction and Recursion

To develop the structure $\left\langle\mathbb{N} ; 0, S(x), x<y, x+y, x \cdot y, x^{y}\right\rangle$, we need the tools of Induction and Recursion.

Induction.

Theorem. (Principle of Induction)
Let $\varphi(x)$ be a (first-order ZFC-) formula. If
(1) $\varphi(0)$ is true, and

Induction and Recursion

To develop the structure $\left\langle\mathbb{N} ; 0, S(x), x<y, x+y, x \cdot y, x^{y}\right\rangle$, we need the tools of Induction and Recursion.

Induction.

Theorem. (Principle of Induction)
Let $\varphi(x)$ be a (first-order ZFC-) formula. If
(1) $\varphi(0)$ is true, and

Induction and Recursion

To develop the structure $\left\langle\mathbb{N} ; 0, S(x), x<y, x+y, x \cdot y, x^{y}\right\rangle$, we need the tools of Induction and Recursion.

Induction.

Theorem. (Principle of Induction)
Let $\varphi(x)$ be a (first-order ZFC-) formula. If
(1) $\varphi(0)$ is true, and
(2) $\varphi(k)$ implies $\varphi(S(k))$ is true for all $k \in N$, then

Induction and Recursion

To develop the structure $\left\langle\mathbb{N} ; 0, S(x), x<y, x+y, x \cdot y, x^{y}\right\rangle$, we need the tools of Induction and Recursion.

Induction.

Theorem. (Principle of Induction)
Let $\varphi(x)$ be a (first-order ZFC-) formula. If
(1) $\varphi(0)$ is true, and
(2) $\varphi(k)$ implies $\varphi(S(k))$ is true for all $k \in N$, then

Induction and Recursion

To develop the structure $\left\langle\mathbb{N} ; 0, S(x), x<y, x+y, x \cdot y, x^{y}\right\rangle$, we need the tools of Induction and Recursion.

Induction.

Theorem. (Principle of Induction)
Let $\varphi(x)$ be a (first-order ZFC-) formula. If
(1) $\varphi(0)$ is true, and
(2) $\varphi(k)$ implies $\varphi(S(k))$ is true for all $k \in N$, then
$\varphi(n)$ is true for all $n \in \mathbb{N}$.

Induction and Recursion

To develop the structure $\left\langle\mathbb{N} ; 0, S(x), x<y, x+y, x \cdot y, x^{y}\right\rangle$, we need the tools of Induction and Recursion.

Induction.

Theorem. (Principle of Induction)
Let $\varphi(x)$ be a (first-order ZFC-) formula. If
(1) $\varphi(0)$ is true, and
(2) $\varphi(k)$ implies $\varphi(S(k))$ is true for all $k \in N$, then
$\varphi(n)$ is true for all $n \in \mathbb{N}$.
Proof.

Induction and Recursion

To develop the structure $\left\langle\mathbb{N} ; 0, S(x), x<y, x+y, x \cdot y, x^{y}\right\rangle$, we need the tools of Induction and Recursion.

Induction.

Theorem. (Principle of Induction)
Let $\varphi(x)$ be a (first-order ZFC-) formula. If
(1) $\varphi(0)$ is true, and
(2) $\varphi(k)$ implies $\varphi(S(k))$ is true for all $k \in N$, then
$\varphi(n)$ is true for all $n \in \mathbb{N}$.
Proof. By the Axiom of Separation, $I=\{x \in \mathbb{N} \mid \varphi(x)\}$ is subset of \mathbb{N}.

Induction and Recursion

To develop the structure $\left\langle\mathbb{N} ; 0, S(x), x<y, x+y, x \cdot y, x^{y}\right\rangle$, we need the tools of Induction and Recursion.

Induction.

Theorem. (Principle of Induction)
Let $\varphi(x)$ be a (first-order ZFC-) formula. If
(1) $\varphi(0)$ is true, and
(2) $\varphi(k)$ implies $\varphi(S(k))$ is true for all $k \in N$, then
$\varphi(n)$ is true for all $n \in \mathbb{N}$.
Proof. By the Axiom of Separation, $I=\{x \in \mathbb{N} \mid \varphi(x)\}$ is subset of \mathbb{N}. If the two conditions of the theorem hold,

Induction and Recursion

To develop the structure $\left\langle\mathbb{N} ; 0, S(x), x<y, x+y, x \cdot y, x^{y}\right\rangle$, we need the tools of Induction and Recursion.

Induction.

Theorem. (Principle of Induction)
Let $\varphi(x)$ be a (first-order ZFC-) formula. If
(1) $\varphi(0)$ is true, and
(2) $\varphi(k)$ implies $\varphi(S(k))$ is true for all $k \in N$, then
$\varphi(n)$ is true for all $n \in \mathbb{N}$.
Proof. By the Axiom of Separation, $I=\{x \in \mathbb{N} \mid \varphi(x)\}$ is subset of \mathbb{N}. If the two conditions of the theorem hold, then I is an inductive subset of \mathbb{N}.

Induction and Recursion

To develop the structure $\left\langle\mathbb{N} ; 0, S(x), x<y, x+y, x \cdot y, x^{y}\right\rangle$, we need the tools of Induction and Recursion.

Induction.

Theorem. (Principle of Induction)
Let $\varphi(x)$ be a (first-order ZFC-) formula. If
(1) $\varphi(0)$ is true, and
(2) $\varphi(k)$ implies $\varphi(S(k))$ is true for all $k \in N$, then
$\varphi(n)$ is true for all $n \in \mathbb{N}$.
Proof. By the Axiom of Separation, $I=\{x \in \mathbb{N} \mid \varphi(x)\}$ is subset of \mathbb{N}. If the two conditions of the theorem hold, then I is an inductive subset of \mathbb{N}. Hence $I=\mathbb{N}$.

Induction and Recursion

To develop the structure $\left\langle\mathbb{N} ; 0, S(x), x<y, x+y, x \cdot y, x^{y}\right\rangle$, we need the tools of Induction and Recursion.

Induction.

Theorem. (Principle of Induction)
Let $\varphi(x)$ be a (first-order ZFC-) formula. If
(1) $\varphi(0)$ is true, and
(2) $\varphi(k)$ implies $\varphi(S(k))$ is true for all $k \in N$, then
$\varphi(n)$ is true for all $n \in \mathbb{N}$.
Proof. By the Axiom of Separation, $I=\{x \in \mathbb{N} \mid \varphi(x)\}$ is subset of \mathbb{N}. If the two conditions of the theorem hold, then I is an inductive subset of \mathbb{N}. Hence $I=\mathbb{N}$. $($ Since $I \subseteq \mathbb{N}$ and $\mathbb{N} \subseteq I$.)

Induction and Recursion

To develop the structure $\left\langle\mathbb{N} ; 0, S(x), x<y, x+y, x \cdot y, x^{y}\right\rangle$, we need the tools of Induction and Recursion.

Induction.

Theorem. (Principle of Induction)
Let $\varphi(x)$ be a (first-order ZFC-) formula. If
(1) $\varphi(0)$ is true, and
(2) $\varphi(k)$ implies $\varphi(S(k))$ is true for all $k \in N$, then
$\varphi(n)$ is true for all $n \in \mathbb{N}$.
Proof. By the Axiom of Separation, $I=\{x \in \mathbb{N} \mid \varphi(x)\}$ is subset of \mathbb{N}. If the two conditions of the theorem hold, then I is an inductive subset of \mathbb{N}. Hence $I=\mathbb{N}$. $($ Since $I \subseteq \mathbb{N}$ and $\mathbb{N} \subseteq I$.)

Induction and Recursion

To develop the structure $\left\langle\mathbb{N} ; 0, S(x), x<y, x+y, x \cdot y, x^{y}\right\rangle$, we need the tools of Induction and Recursion.

Induction.

Theorem. (Principle of Induction)
Let $\varphi(x)$ be a (first-order ZFC-) formula. If
(1) $\varphi(0)$ is true, and
(2) $\varphi(k)$ implies $\varphi(S(k))$ is true for all $k \in N$, then
$\varphi(n)$ is true for all $n \in \mathbb{N}$.
Proof. By the Axiom of Separation, $I=\{x \in \mathbb{N} \mid \varphi(x)\}$ is subset of \mathbb{N}. If the two conditions of the theorem hold, then I is an inductive subset of \mathbb{N}. Hence $I=\mathbb{N}$. $($ Since $I \subseteq \mathbb{N}$ and $\mathbb{N} \subseteq I$.)

Example

Example

Suppose we observe that

Example

Suppose we observe that
$1=1$

Example

Suppose we observe that

$$
\begin{array}{r}
1=1 \\
1+3=4
\end{array}
$$

Example

Suppose we observe that

$$
\begin{array}{r}
1=1 \\
1+3=4 \\
1+3+5=9
\end{array}
$$

Example

Suppose we observe that

$$
\begin{aligned}
1 & =1 \\
1+3 & =4 \\
1+3+5 & =9 \\
1+3+5+7 & =16
\end{aligned}
$$

Example

Suppose we observe that

$$
\begin{aligned}
1 & =1 \\
1+3 & =4 \\
1+3+5 & =9 \\
1+3+5+7 & =16
\end{aligned}
$$

and we conjecture that the sum of the first n odd numbers is n^{2}.

Example

Suppose we observe that

$$
\begin{aligned}
1 & =1 \\
1+3 & =4 \\
1+3+5 & =9 \\
1+3+5+7 & =16
\end{aligned}
$$

and we conjecture that the sum of the first n odd numbers is n^{2}. Suppose we consider

Example

Suppose we observe that

$$
\begin{aligned}
1 & =1 \\
1+3 & =4 \\
1+3+5 & =9 \\
1+3+5+7 & =16
\end{aligned}
$$

and we conjecture that the sum of the first n odd numbers is n^{2}. Suppose we consider

$$
\varphi(n): 1+3+5+\cdots+(2 n+1)=(n+1)^{2}
$$

Example

Suppose we observe that

$$
\begin{aligned}
1 & =1 \\
1+3 & =4 \\
1+3+5 & =9 \\
1+3+5+7 & =16
\end{aligned}
$$

and we conjecture that the sum of the first n odd numbers is n^{2}. Suppose we consider

$$
\varphi(n): 1+3+5+\cdots+(2 n+1)=(n+1)^{2}
$$

to be a formula that expresses this conjecture.

Example

Suppose we observe that

$$
\begin{aligned}
1 & =1 \\
1+3 & =4 \\
1+3+5 & =9 \\
1+3+5+7 & =16
\end{aligned}
$$

and we conjecture that the sum of the first n odd numbers is n^{2}. Suppose we consider

$$
\varphi(n): 1+3+5+\cdots+(2 n+1)=(n+1)^{2}
$$

to be a formula that expresses this conjecture. Then we could establish the conjecture

Example

Suppose we observe that

$$
\begin{aligned}
1 & =1 \\
1+3 & =4 \\
1+3+5 & =9 \\
1+3+5+7 & =16
\end{aligned}
$$

and we conjecture that the sum of the first n odd numbers is n^{2}. Suppose we consider

$$
\varphi(n): 1+3+5+\cdots+(2 n+1)=(n+1)^{2}
$$

to be a formula that expresses this conjecture. Then we could establish the conjecture (using the "Principle of Induction")

Example

Suppose we observe that

$$
\begin{aligned}
1 & =1 \\
1+3 & =4 \\
1+3+5 & =9 \\
1+3+5+7 & =16
\end{aligned}
$$

and we conjecture that the sum of the first n odd numbers is n^{2}. Suppose we consider

$$
\varphi(n): 1+3+5+\cdots+(2 n+1)=(n+1)^{2}
$$

to be a formula that expresses this conjecture. Then we could establish the conjecture (using the "Principle of Induction") by proving:

Example

Suppose we observe that

$$
\begin{aligned}
1 & =1 \\
1+3 & =4 \\
1+3+5 & =9 \\
1+3+5+7 & =16
\end{aligned}
$$

and we conjecture that the sum of the first n odd numbers is n^{2}. Suppose we consider

$$
\varphi(n): 1+3+5+\cdots+(2 n+1)=(n+1)^{2}
$$

to be a formula that expresses this conjecture. Then we could establish the conjecture (using the "Principle of Induction") by proving:
(1) (Basis of Induction) $\varphi(0)$ is true.

Example

Suppose we observe that

$$
\begin{aligned}
1 & =1 \\
1+3 & =4 \\
1+3+5 & =9 \\
1+3+5+7 & =16
\end{aligned}
$$

and we conjecture that the sum of the first n odd numbers is n^{2}. Suppose we consider

$$
\varphi(n): 1+3+5+\cdots+(2 n+1)=(n+1)^{2}
$$

to be a formula that expresses this conjecture. Then we could establish the conjecture (using the "Principle of Induction") by proving:
(1) (Basis of Induction) $\varphi(0)$ is true.

Example

Suppose we observe that

$$
\begin{aligned}
1 & =1 \\
1+3 & =4 \\
1+3+5 & =9 \\
1+3+5+7 & =16
\end{aligned}
$$

and we conjecture that the sum of the first n odd numbers is n^{2}. Suppose we consider

$$
\varphi(n): 1+3+5+\cdots+(2 n+1)=(n+1)^{2}
$$

to be a formula that expresses this conjecture. Then we could establish the conjecture (using the "Principle of Induction") by proving:
(1) (Basis of Induction) $\varphi(0)$ is true. (Check!)

Example

Suppose we observe that

$$
\begin{aligned}
1 & =1 \\
1+3 & =4 \\
1+3+5 & =9 \\
1+3+5+7 & =16
\end{aligned}
$$

and we conjecture that the sum of the first n odd numbers is n^{2}. Suppose we consider

$$
\varphi(n): 1+3+5+\cdots+(2 n+1)=(n+1)^{2}
$$

to be a formula that expresses this conjecture. Then we could establish the conjecture (using the "Principle of Induction") by proving:
(1) (Basis of Induction) $\varphi(0)$ is true. (Check!)
(2) (Inductive Step) $\varphi(k)$ implies $\varphi(S(k))$ is true for all $k \in \mathbb{N}$.

Example

Suppose we observe that

$$
\begin{aligned}
1 & =1 \\
1+3 & =4 \\
1+3+5 & =9 \\
1+3+5+7 & =16
\end{aligned}
$$

and we conjecture that the sum of the first n odd numbers is n^{2}. Suppose we consider

$$
\varphi(n): 1+3+5+\cdots+(2 n+1)=(n+1)^{2}
$$

to be a formula that expresses this conjecture. Then we could establish the conjecture (using the "Principle of Induction") by proving:
(1) (Basis of Induction) $\varphi(0)$ is true. (Check!)
(2) (Inductive Step) $\varphi(k)$ implies $\varphi(S(k))$ is true for all $k \in \mathbb{N}$.

Example

Suppose we observe that

$$
\begin{aligned}
1 & =1 \\
1+3 & =4 \\
1+3+5 & =9 \\
1+3+5+7 & =16
\end{aligned}
$$

and we conjecture that the sum of the first n odd numbers is n^{2}. Suppose we consider

$$
\varphi(n): 1+3+5+\cdots+(2 n+1)=(n+1)^{2}
$$

to be a formula that expresses this conjecture. Then we could establish the conjecture (using the "Principle of Induction") by proving:
(1) (Basis of Induction) $\varphi(0)$ is true. (Check!)
(2) (Inductive Step) $\varphi(k)$ implies $\varphi(S(k))$ is true for all $k \in \mathbb{N}$. (Check!)

Example

Suppose we observe that

$$
\begin{aligned}
1 & =1 \\
1+3 & =4 \\
1+3+5 & =9 \\
1+3+5+7 & =16
\end{aligned}
$$

and we conjecture that the sum of the first n odd numbers is n^{2}. Suppose we consider

$$
\varphi(n): 1+3+5+\cdots+(2 n+1)=(n+1)^{2}
$$

to be a formula that expresses this conjecture. Then we could establish the conjecture (using the "Principle of Induction") by proving:
(1) (Basis of Induction) $\varphi(0)$ is true. (Check!)
(2) (Inductive Step) $\varphi(k)$ implies $\varphi(S(k))$ is true for all $k \in \mathbb{N}$. (Check!)

