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N

The set N of natural numbers is the intersection of all inductive sets.
We will see that N is totally ordered by the ∈-relation:

m < n ⇔ m ∈ n.

We will also see that N may be equipped with algebraic structure:
Addition

m + 0 := m (IC)
m + S(n) := S(m + n) (RR)

Multiplication

m · 0 := 0 (IC)
m · S(n) := (m · n) + m (RR)

Exponentiation

m0 := 1 (IC)
mS(n) := (mn) · m (RR)
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Induction and Recursion

To develop the structure ⟨N; 0, S(x), x < y, x + y, x · y, xy⟩, we need the tools of
Induction and Recursion.

Induction.

Theorem. (Principle of Induction)
Let φ(x) be a (first-order ZFC-) formula. If

1 φ(0) is true, and
2 φ(k) implies φ(S(k)) is true for all k ∈ N , then

φ(n) is true for all n ∈ N.

Proof. By the Axiom of Separation, I = {x ∈ N |φ(x)} is subset of N. If the
two conditions of the theorem hold, then I is an inductive subset of N. Hence
I = N. (Since I ⊆ N and N ⊆ I .) 2
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Example

Suppose we observe that

1 = 1
1 + 3 = 4

1 + 3 + 5 = 9
1 + 3 + 5 + 7 = 16

and we conjecture that the sum of the first n odd numbers is n2. Suppose we
consider

φ(n) : 1 + 3 + 5 + · · · + (2n + 1) = (n + 1)2

to be a formula that expresses this conjecture. Then we could establish the
conjecture (using the “Principle of Induction”) by proving:

1 (Basis of Induction) φ(0) is true. (Check!)
2 (Inductive Step) φ(k) implies φ(S(k)) is true for all k ∈ N. (Check!)

The Natural Numbers 4 / 4



Example

Suppose we observe that

1 = 1
1 + 3 = 4

1 + 3 + 5 = 9
1 + 3 + 5 + 7 = 16

and we conjecture that the sum of the first n odd numbers is n2. Suppose we
consider

φ(n) : 1 + 3 + 5 + · · · + (2n + 1) = (n + 1)2

to be a formula that expresses this conjecture. Then we could establish the
conjecture (using the “Principle of Induction”) by proving:

1 (Basis of Induction) φ(0) is true. (Check!)
2 (Inductive Step) φ(k) implies φ(S(k)) is true for all k ∈ N. (Check!)

The Natural Numbers 4 / 4



Example

Suppose we observe that

1 = 1

1 + 3 = 4
1 + 3 + 5 = 9

1 + 3 + 5 + 7 = 16

and we conjecture that the sum of the first n odd numbers is n2. Suppose we
consider

φ(n) : 1 + 3 + 5 + · · · + (2n + 1) = (n + 1)2

to be a formula that expresses this conjecture. Then we could establish the
conjecture (using the “Principle of Induction”) by proving:

1 (Basis of Induction) φ(0) is true. (Check!)
2 (Inductive Step) φ(k) implies φ(S(k)) is true for all k ∈ N. (Check!)

The Natural Numbers 4 / 4



Example

Suppose we observe that

1 = 1
1 + 3 = 4

1 + 3 + 5 = 9
1 + 3 + 5 + 7 = 16

and we conjecture that the sum of the first n odd numbers is n2. Suppose we
consider

φ(n) : 1 + 3 + 5 + · · · + (2n + 1) = (n + 1)2

to be a formula that expresses this conjecture. Then we could establish the
conjecture (using the “Principle of Induction”) by proving:

1 (Basis of Induction) φ(0) is true. (Check!)
2 (Inductive Step) φ(k) implies φ(S(k)) is true for all k ∈ N. (Check!)

The Natural Numbers 4 / 4



Example

Suppose we observe that

1 = 1
1 + 3 = 4

1 + 3 + 5 = 9

1 + 3 + 5 + 7 = 16

and we conjecture that the sum of the first n odd numbers is n2. Suppose we
consider

φ(n) : 1 + 3 + 5 + · · · + (2n + 1) = (n + 1)2

to be a formula that expresses this conjecture. Then we could establish the
conjecture (using the “Principle of Induction”) by proving:

1 (Basis of Induction) φ(0) is true. (Check!)
2 (Inductive Step) φ(k) implies φ(S(k)) is true for all k ∈ N. (Check!)

The Natural Numbers 4 / 4



Example

Suppose we observe that

1 = 1
1 + 3 = 4

1 + 3 + 5 = 9
1 + 3 + 5 + 7 = 16

and we conjecture that the sum of the first n odd numbers is n2. Suppose we
consider

φ(n) : 1 + 3 + 5 + · · · + (2n + 1) = (n + 1)2

to be a formula that expresses this conjecture. Then we could establish the
conjecture (using the “Principle of Induction”) by proving:

1 (Basis of Induction) φ(0) is true. (Check!)
2 (Inductive Step) φ(k) implies φ(S(k)) is true for all k ∈ N. (Check!)

The Natural Numbers 4 / 4



Example

Suppose we observe that

1 = 1
1 + 3 = 4

1 + 3 + 5 = 9
1 + 3 + 5 + 7 = 16

and we conjecture that the sum of the first n odd numbers is n2.

Suppose we
consider

φ(n) : 1 + 3 + 5 + · · · + (2n + 1) = (n + 1)2

to be a formula that expresses this conjecture. Then we could establish the
conjecture (using the “Principle of Induction”) by proving:

1 (Basis of Induction) φ(0) is true. (Check!)
2 (Inductive Step) φ(k) implies φ(S(k)) is true for all k ∈ N. (Check!)

The Natural Numbers 4 / 4



Example

Suppose we observe that

1 = 1
1 + 3 = 4

1 + 3 + 5 = 9
1 + 3 + 5 + 7 = 16

and we conjecture that the sum of the first n odd numbers is n2. Suppose we
consider

φ(n) : 1 + 3 + 5 + · · · + (2n + 1) = (n + 1)2

to be a formula that expresses this conjecture. Then we could establish the
conjecture (using the “Principle of Induction”) by proving:

1 (Basis of Induction) φ(0) is true. (Check!)
2 (Inductive Step) φ(k) implies φ(S(k)) is true for all k ∈ N. (Check!)

The Natural Numbers 4 / 4



Example

Suppose we observe that

1 = 1
1 + 3 = 4

1 + 3 + 5 = 9
1 + 3 + 5 + 7 = 16

and we conjecture that the sum of the first n odd numbers is n2. Suppose we
consider

φ(n) : 1 + 3 + 5 + · · · + (2n + 1) = (n + 1)2

to be a formula that expresses this conjecture. Then we could establish the
conjecture (using the “Principle of Induction”) by proving:

1 (Basis of Induction) φ(0) is true. (Check!)
2 (Inductive Step) φ(k) implies φ(S(k)) is true for all k ∈ N. (Check!)

The Natural Numbers 4 / 4



Example

Suppose we observe that

1 = 1
1 + 3 = 4

1 + 3 + 5 = 9
1 + 3 + 5 + 7 = 16

and we conjecture that the sum of the first n odd numbers is n2. Suppose we
consider

φ(n) : 1 + 3 + 5 + · · · + (2n + 1) = (n + 1)2

to be a formula that expresses this conjecture.

Then we could establish the
conjecture (using the “Principle of Induction”) by proving:

1 (Basis of Induction) φ(0) is true. (Check!)
2 (Inductive Step) φ(k) implies φ(S(k)) is true for all k ∈ N. (Check!)

The Natural Numbers 4 / 4



Example

Suppose we observe that

1 = 1
1 + 3 = 4

1 + 3 + 5 = 9
1 + 3 + 5 + 7 = 16

and we conjecture that the sum of the first n odd numbers is n2. Suppose we
consider

φ(n) : 1 + 3 + 5 + · · · + (2n + 1) = (n + 1)2

to be a formula that expresses this conjecture. Then we could establish the
conjecture

(using the “Principle of Induction”) by proving:

1 (Basis of Induction) φ(0) is true. (Check!)
2 (Inductive Step) φ(k) implies φ(S(k)) is true for all k ∈ N. (Check!)

The Natural Numbers 4 / 4



Example

Suppose we observe that

1 = 1
1 + 3 = 4

1 + 3 + 5 = 9
1 + 3 + 5 + 7 = 16

and we conjecture that the sum of the first n odd numbers is n2. Suppose we
consider

φ(n) : 1 + 3 + 5 + · · · + (2n + 1) = (n + 1)2

to be a formula that expresses this conjecture. Then we could establish the
conjecture (using the “Principle of Induction”)

by proving:

1 (Basis of Induction) φ(0) is true. (Check!)
2 (Inductive Step) φ(k) implies φ(S(k)) is true for all k ∈ N. (Check!)

The Natural Numbers 4 / 4



Example

Suppose we observe that

1 = 1
1 + 3 = 4

1 + 3 + 5 = 9
1 + 3 + 5 + 7 = 16

and we conjecture that the sum of the first n odd numbers is n2. Suppose we
consider

φ(n) : 1 + 3 + 5 + · · · + (2n + 1) = (n + 1)2

to be a formula that expresses this conjecture. Then we could establish the
conjecture (using the “Principle of Induction”) by proving:

1 (Basis of Induction) φ(0) is true. (Check!)
2 (Inductive Step) φ(k) implies φ(S(k)) is true for all k ∈ N. (Check!)

The Natural Numbers 4 / 4



Example

Suppose we observe that

1 = 1
1 + 3 = 4

1 + 3 + 5 = 9
1 + 3 + 5 + 7 = 16

and we conjecture that the sum of the first n odd numbers is n2. Suppose we
consider

φ(n) : 1 + 3 + 5 + · · · + (2n + 1) = (n + 1)2

to be a formula that expresses this conjecture. Then we could establish the
conjecture (using the “Principle of Induction”) by proving:

1 (Basis of Induction) φ(0) is true.

(Check!)

2 (Inductive Step) φ(k) implies φ(S(k)) is true for all k ∈ N. (Check!)

The Natural Numbers 4 / 4



Example

Suppose we observe that

1 = 1
1 + 3 = 4

1 + 3 + 5 = 9
1 + 3 + 5 + 7 = 16

and we conjecture that the sum of the first n odd numbers is n2. Suppose we
consider

φ(n) : 1 + 3 + 5 + · · · + (2n + 1) = (n + 1)2

to be a formula that expresses this conjecture. Then we could establish the
conjecture (using the “Principle of Induction”) by proving:

1 (Basis of Induction) φ(0) is true.

(Check!)

2 (Inductive Step) φ(k) implies φ(S(k)) is true for all k ∈ N. (Check!)

The Natural Numbers 4 / 4



Example

Suppose we observe that

1 = 1
1 + 3 = 4

1 + 3 + 5 = 9
1 + 3 + 5 + 7 = 16

and we conjecture that the sum of the first n odd numbers is n2. Suppose we
consider

φ(n) : 1 + 3 + 5 + · · · + (2n + 1) = (n + 1)2

to be a formula that expresses this conjecture. Then we could establish the
conjecture (using the “Principle of Induction”) by proving:

1 (Basis of Induction) φ(0) is true. (Check!)

2 (Inductive Step) φ(k) implies φ(S(k)) is true for all k ∈ N. (Check!)

The Natural Numbers 4 / 4



Example

Suppose we observe that

1 = 1
1 + 3 = 4

1 + 3 + 5 = 9
1 + 3 + 5 + 7 = 16

and we conjecture that the sum of the first n odd numbers is n2. Suppose we
consider

φ(n) : 1 + 3 + 5 + · · · + (2n + 1) = (n + 1)2

to be a formula that expresses this conjecture. Then we could establish the
conjecture (using the “Principle of Induction”) by proving:

1 (Basis of Induction) φ(0) is true. (Check!)
2 (Inductive Step) φ(k) implies φ(S(k)) is true for all k ∈ N.

(Check!)

The Natural Numbers 4 / 4



Example

Suppose we observe that

1 = 1
1 + 3 = 4

1 + 3 + 5 = 9
1 + 3 + 5 + 7 = 16

and we conjecture that the sum of the first n odd numbers is n2. Suppose we
consider

φ(n) : 1 + 3 + 5 + · · · + (2n + 1) = (n + 1)2

to be a formula that expresses this conjecture. Then we could establish the
conjecture (using the “Principle of Induction”) by proving:

1 (Basis of Induction) φ(0) is true. (Check!)
2 (Inductive Step) φ(k) implies φ(S(k)) is true for all k ∈ N.

(Check!)

The Natural Numbers 4 / 4



Example

Suppose we observe that

1 = 1
1 + 3 = 4

1 + 3 + 5 = 9
1 + 3 + 5 + 7 = 16

and we conjecture that the sum of the first n odd numbers is n2. Suppose we
consider

φ(n) : 1 + 3 + 5 + · · · + (2n + 1) = (n + 1)2

to be a formula that expresses this conjecture. Then we could establish the
conjecture (using the “Principle of Induction”) by proving:

1 (Basis of Induction) φ(0) is true. (Check!)
2 (Inductive Step) φ(k) implies φ(S(k)) is true for all k ∈ N. (Check!)

The Natural Numbers 4 / 4



Example

Suppose we observe that

1 = 1
1 + 3 = 4

1 + 3 + 5 = 9
1 + 3 + 5 + 7 = 16

and we conjecture that the sum of the first n odd numbers is n2. Suppose we
consider

φ(n) : 1 + 3 + 5 + · · · + (2n + 1) = (n + 1)2

to be a formula that expresses this conjecture. Then we could establish the
conjecture (using the “Principle of Induction”) by proving:

1 (Basis of Induction) φ(0) is true. (Check!)
2 (Inductive Step) φ(k) implies φ(S(k)) is true for all k ∈ N. (Check!)

The Natural Numbers 4 / 4


