The Natural Numbers

The set \mathbb{N} of natural numbers is the intersection of all inductive sets.

 $m < n \qquad \Leftrightarrow \qquad m \in n.$

 $m < n \qquad \Leftrightarrow \qquad m \in n.$

We will also see that \mathbb{N} may be equipped with algebraic structure:

 $m < n \qquad \Leftrightarrow \qquad m \in n.$

We will also see that \mathbb{N} may be equipped with algebraic structure: Addition

$$m + 0 := m$$
(IC)
$$m + S(n) := S(m + n)$$
(RR)

 $m < n \qquad \Leftrightarrow \qquad m \in n.$

We will also see that \mathbb{N} may be equipped with algebraic structure: Addition

$$m + 0 := m$$
(IC)
$$m + S(n) := S(m + n)$$
(RR)

Multiplication

$$\begin{array}{ll} m \cdot 0 & := 0 & (\text{IC}) \\ m \cdot S(n) & := (m \cdot n) + m & (\text{RR}) \end{array}$$

 $m < n \qquad \Leftrightarrow \qquad m \in n.$

We will also see that \mathbb{N} may be equipped with algebraic structure: Addition

$$m + 0 := m$$
 (IC)
 $m + S(n) := S(m + n)$ (RR)

Multiplication

$$\begin{array}{ll} m \cdot 0 & := 0 & (\text{IC}) \\ m \cdot S(n) & := (m \cdot n) + m & (\text{RR}) \end{array}$$

Exponentiation

$$\begin{array}{ll} m^0 & := 1 & (\text{IC}) \\ m^{S(n)} & := (m^n) \cdot m & (\text{RR}) \end{array}$$

To develop the structure $\langle \mathbb{N}; 0, S(x), x < y, x + y, x \cdot y, x^y \rangle$, we need the tools of Induction and Recursion.

To develop the structure $\langle \mathbb{N}; 0, S(x), x < y, x + y, x \cdot y, x^y \rangle$, we need the tools of Induction and Recursion.

Induction.

To develop the structure $\langle \mathbb{N}; 0, S(x), x < y, x + y, x \cdot y, x^y \rangle$, we need the tools of Induction and Recursion.

Induction.

Theorem.

To develop the structure $\langle \mathbb{N}; 0, S(x), x < y, x + y, x \cdot y, x^y \rangle$, we need the tools of Induction and Recursion.

Induction.

Theorem. (Principle of Induction)

To develop the structure $\langle \mathbb{N}; 0, S(x), x < y, x + y, x \cdot y, x^y \rangle$, we need the tools of Induction and Recursion.

Induction.

Theorem. (Principle of Induction) Let $\varphi(x)$ be a (first-order ZFC-) formula.

To develop the structure $\langle \mathbb{N}; 0, S(x), x < y, x + y, x \cdot y, x^y \rangle$, we need the tools of Induction and Recursion.

Induction.

Theorem. (Principle of Induction) Let $\varphi(x)$ be a (first-order ZFC-) formula. If

To develop the structure $\langle \mathbb{N}; 0, S(x), x < y, x + y, x \cdot y, x^y \rangle$, we need the tools of Induction and Recursion.

Induction.

Theorem. (Principle of Induction) Let $\varphi(x)$ be a (first-order ZFC-) formula. If $\varphi(0)$ is true, and

To develop the structure $\langle \mathbb{N}; 0, S(x), x < y, x + y, x \cdot y, x^y \rangle$, we need the tools of Induction and Recursion.

Induction.

Theorem. (Principle of Induction) Let $\varphi(x)$ be a (first-order ZFC-) formula. If $\varphi(0)$ is true, and

To develop the structure $\langle \mathbb{N}; 0, S(x), x < y, x + y, x \cdot y, x^y \rangle$, we need the tools of Induction and Recursion.

Induction.

Theorem. (Principle of Induction) Let $\varphi(x)$ be a (first-order ZFC-) formula. If

- $\bullet \ \varphi(0) \text{ is true, and}$

To develop the structure $\langle \mathbb{N}; 0, S(x), x < y, x + y, x \cdot y, x^y \rangle$, we need the tools of Induction and Recursion.

Induction.

Theorem. (Principle of Induction) Let $\varphi(x)$ be a (first-order ZFC-) formula. If

- $\bullet \ \varphi(0) \text{ is true, and}$

To develop the structure $\langle \mathbb{N}; 0, S(x), x < y, x + y, x \cdot y, x^y \rangle$, we need the tools of Induction and Recursion.

Induction.

Theorem. (Principle of Induction) Let $\varphi(x)$ be a (first-order ZFC-) formula. If

- $\varphi(0)$ is true, and
- **2** $\varphi(k)$ implies $\varphi(S(k))$ is true for all $k \in N$, then

 $\varphi(n)$ is true for all $n \in \mathbb{N}$.

To develop the structure $\langle \mathbb{N}; 0, S(x), x < y, x + y, x \cdot y, x^y \rangle$, we need the tools of Induction and Recursion.

Induction.

Theorem. (Principle of Induction) Let $\varphi(x)$ be a (first-order ZFC-) formula. If

- $\varphi(0)$ is true, and
- **2** $\varphi(k)$ implies $\varphi(S(k))$ is true for all $k \in N$, then

 $\varphi(n)$ is true for all $n \in \mathbb{N}$.

Proof.

To develop the structure $\langle \mathbb{N}; 0, S(x), x < y, x + y, x \cdot y, x^y \rangle$, we need the tools of Induction and Recursion.

Induction.

Theorem. (Principle of Induction) Let $\varphi(x)$ be a (first-order ZFC-) formula. If

- $\varphi(0)$ is true, and
- **2** $\varphi(k)$ implies $\varphi(S(k))$ is true for all $k \in N$, then
- $\varphi(n)$ is true for all $n \in \mathbb{N}$.

Proof. By the Axiom of Separation, $I = \{x \in \mathbb{N} | \varphi(x)\}$ is subset of \mathbb{N} .

To develop the structure $\langle \mathbb{N}; 0, S(x), x < y, x + y, x \cdot y, x^y \rangle$, we need the tools of Induction and Recursion.

Induction.

Theorem. (Principle of Induction) Let $\varphi(x)$ be a (first-order ZFC-) formula. If

- $\varphi(0)$ is true, and
- **2** $\varphi(k)$ implies $\varphi(S(k))$ is true for all $k \in N$, then
- $\varphi(n)$ is true for all $n \in \mathbb{N}$.

Proof. By the Axiom of Separation, $I = \{x \in \mathbb{N} | \varphi(x)\}$ is subset of \mathbb{N} . If the two conditions of the theorem hold,

To develop the structure $\langle \mathbb{N}; 0, S(x), x < y, x + y, x \cdot y, x^y \rangle$, we need the tools of Induction and Recursion.

Induction.

Theorem. (Principle of Induction) Let $\varphi(x)$ be a (first-order ZFC-) formula. If

- $\varphi(0)$ is true, and
- **2** $\varphi(k)$ implies $\varphi(S(k))$ is true for all $k \in N$, then
- $\varphi(n)$ is true for all $n \in \mathbb{N}$.

Proof. By the Axiom of Separation, $I = \{x \in \mathbb{N} | \varphi(x)\}$ is subset of \mathbb{N} . If the two conditions of the theorem hold, then I is an inductive subset of \mathbb{N} .

To develop the structure $\langle \mathbb{N}; 0, S(x), x < y, x + y, x \cdot y, x^y \rangle$, we need the tools of Induction and Recursion.

Induction.

Theorem. (Principle of Induction) Let $\varphi(x)$ be a (first-order ZFC-) formula. If

- $\varphi(0)$ is true, and
- **2** $\varphi(k)$ implies $\varphi(S(k))$ is true for all $k \in N$, then
- $\varphi(n)$ is true for all $n \in \mathbb{N}$.

Proof. By the Axiom of Separation, $I = \{x \in \mathbb{N} | \varphi(x)\}$ is subset of \mathbb{N} . If the two conditions of the theorem hold, then I is an inductive subset of \mathbb{N} . Hence $I = \mathbb{N}$.

To develop the structure $\langle \mathbb{N}; 0, S(x), x < y, x + y, x \cdot y, x^y \rangle$, we need the tools of Induction and Recursion.

Induction.

Theorem. (Principle of Induction) Let $\varphi(x)$ be a (first-order ZFC-) formula. If

- $\varphi(0)$ is true, and
- **2** $\varphi(k)$ implies $\varphi(S(k))$ is true for all $k \in N$, then
- $\varphi(n)$ is true for all $n \in \mathbb{N}$.

Proof. By the Axiom of Separation, $I = \{x \in \mathbb{N} | \varphi(x)\}$ is subset of \mathbb{N} . If the two conditions of the theorem hold, then I is an inductive subset of \mathbb{N} . Hence $I = \mathbb{N}$. (Since $I \subseteq \mathbb{N}$ and $\mathbb{N} \subseteq I$.)

To develop the structure $\langle \mathbb{N}; 0, S(x), x < y, x + y, x \cdot y, x^y \rangle$, we need the tools of Induction and Recursion.

Induction.

Theorem. (Principle of Induction) Let $\varphi(x)$ be a (first-order ZFC-) formula. If

- $\varphi(0)$ is true, and
- **2** $\varphi(k)$ implies $\varphi(S(k))$ is true for all $k \in N$, then
- $\varphi(n)$ is true for all $n \in \mathbb{N}$.

Proof. By the Axiom of Separation, $I = \{x \in \mathbb{N} | \varphi(x)\}$ is subset of \mathbb{N} . If the two conditions of the theorem hold, then I is an inductive subset of \mathbb{N} . Hence $I = \mathbb{N}$. (Since $I \subseteq \mathbb{N}$ and $\mathbb{N} \subseteq I$.) \square

To develop the structure $\langle \mathbb{N}; 0, S(x), x < y, x + y, x \cdot y, x^y \rangle$, we need the tools of Induction and Recursion.

Induction.

Theorem. (Principle of Induction) Let $\varphi(x)$ be a (first-order ZFC-) formula. If

- $\varphi(0)$ is true, and
- **2** $\varphi(k)$ implies $\varphi(S(k))$ is true for all $k \in N$, then
- $\varphi(n)$ is true for all $n \in \mathbb{N}$.

Proof. By the Axiom of Separation, $I = \{x \in \mathbb{N} | \varphi(x)\}$ is subset of \mathbb{N} . If the two conditions of the theorem hold, then I is an inductive subset of \mathbb{N} . Hence $I = \mathbb{N}$. (Since $I \subseteq \mathbb{N}$ and $\mathbb{N} \subseteq I$.) \square

Suppose we observe that

1 = 1

$$1 = 1$$

 $1 + 3 = 4$

$$1 = 1$$

$$1 + 3 = 4$$

$$1 + 3 + 5 = 9$$

$$1 + 3 + 5 + 7 = 16$$

Suppose we observe that

$$1 = 1$$

$$1 + 3 = 4$$

$$1 + 3 + 5 = 9$$

$$1 + 3 + 5 + 7 = 16$$

and we conjecture that the sum of the first n odd numbers is n^2 .

Suppose we observe that

$$1 = 1$$

$$1 + 3 = 4$$

$$1 + 3 + 5 = 9$$

$$1 + 3 + 5 + 7 = 16$$

and we conjecture that the sum of the first n odd numbers is n^2 . Suppose we consider

Suppose we observe that

$$1 = 1$$

$$1 + 3 = 4$$

$$1 + 3 + 5 = 9$$

$$1 + 3 + 5 + 7 = 16$$

and we conjecture that the sum of the first n odd numbers is n^2 . Suppose we consider

$$\varphi(n): 1+3+5+\dots+(2n+1)=(n+1)^2$$

Suppose we observe that

$$1 = 1
1 + 3 = 4
1 + 3 + 5 = 9
1 + 3 + 5 + 7 = 16$$

and we conjecture that the sum of the first n odd numbers is n^2 . Suppose we consider

$$\varphi(n): 1+3+5+\dots+(2n+1) = (n+1)^2$$

to be a formula that expresses this conjecture.

Suppose we observe that

$$1 = 1
1 + 3 = 4
1 + 3 + 5 = 9
1 + 3 + 5 + 7 = 16$$

and we conjecture that the sum of the first n odd numbers is n^2 . Suppose we consider

$$\varphi(n): 1+3+5+\dots+(2n+1)=(n+1)^2$$

to be a formula that expresses this conjecture. Then we could establish the conjecture

Suppose we observe that

$$1 = 1
1 + 3 = 4
1 + 3 + 5 = 9
1 + 3 + 5 + 7 = 16$$

and we conjecture that the sum of the first n odd numbers is n^2 . Suppose we consider

$$\varphi(n): 1+3+5+\dots+(2n+1)=(n+1)^2$$

Suppose we observe that

$$1 = 1$$

$$1 + 3 = 4$$

$$1 + 3 + 5 = 9$$

$$1 + 3 + 5 + 7 = 16$$

and we conjecture that the sum of the first n odd numbers is n^2 . Suppose we consider

$$\varphi(n): 1+3+5+\dots+(2n+1)=(n+1)^2$$

Suppose we observe that

$$1 = 1
1 + 3 = 4
1 + 3 + 5 = 9
1 + 3 + 5 + 7 = 16$$

and we conjecture that the sum of the first n odd numbers is n^2 . Suppose we consider

$$\varphi(n): 1+3+5+\dots+(2n+1)=(n+1)^2$$

to be a formula that expresses this conjecture. Then we could establish the conjecture (using the "Principle of Induction") by proving:

(Basis of Induction) $\varphi(0)$ is true.

Suppose we observe that

$$1 = 1$$

$$1 + 3 = 4$$

$$1 + 3 + 5 = 9$$

$$1 + 3 + 5 + 7 = 16$$

and we conjecture that the sum of the first n odd numbers is n^2 . Suppose we consider

$$\varphi(n): 1+3+5+\dots+(2n+1)=(n+1)^2$$

to be a formula that expresses this conjecture. Then we could establish the conjecture (using the "Principle of Induction") by proving:

(Basis of Induction) $\varphi(0)$ is true.

Suppose we observe that

$$1 = 1$$

$$1 + 3 = 4$$

$$1 + 3 + 5 = 9$$

$$1 + 3 + 5 + 7 = 16$$

and we conjecture that the sum of the first n odd numbers is n^2 . Suppose we consider

$$\varphi(n): 1+3+5+\dots+(2n+1)=(n+1)^2$$

to be a formula that expresses this conjecture. Then we could establish the conjecture (using the "Principle of Induction") by proving:

(Basis of Induction) $\varphi(0)$ is true. (Check!)

Suppose we observe that

$$1 = 1$$

$$1 + 3 = 4$$

$$1 + 3 + 5 = 9$$

$$1 + 3 + 5 + 7 = 16$$

and we conjecture that the sum of the first n odd numbers is n^2 . Suppose we consider

$$\varphi(n): 1+3+5+\dots+(2n+1)=(n+1)^2$$

- **(**Basis of Induction) $\varphi(0)$ is true. (Check!)
- (Inductive Step) $\varphi(k)$ implies $\varphi(S(k))$ is true for all $k \in \mathbb{N}$.

Suppose we observe that

$$1 = 1$$

$$1 + 3 = 4$$

$$1 + 3 + 5 = 9$$

$$1 + 3 + 5 + 7 = 16$$

and we conjecture that the sum of the first n odd numbers is n^2 . Suppose we consider

$$\varphi(n): 1+3+5+\dots+(2n+1)=(n+1)^2$$

- **(**Basis of Induction) $\varphi(0)$ is true. (Check!)
- (Inductive Step) $\varphi(k)$ implies $\varphi(S(k))$ is true for all $k \in \mathbb{N}$.

Suppose we observe that

$$1 = 1$$

$$1 + 3 = 4$$

$$1 + 3 + 5 = 9$$

$$1 + 3 + 5 + 7 = 16$$

and we conjecture that the sum of the first n odd numbers is n^2 . Suppose we consider

$$\varphi(n): 1+3+5+\dots+(2n+1)=(n+1)^2$$

- **(**Basis of Induction) $\varphi(0)$ is true. (Check!)
- (Inductive Step) $\varphi(k)$ implies $\varphi(S(k))$ is true for all $k \in \mathbb{N}$. (Check!)

Suppose we observe that

$$1 = 1
1 + 3 = 4
1 + 3 + 5 = 9
1 + 3 + 5 + 7 = 16$$

and we conjecture that the sum of the first n odd numbers is n^2 . Suppose we consider

$$\varphi(n): 1+3+5+\dots+(2n+1)=(n+1)^2$$

- **(**Basis of Induction) $\varphi(0)$ is true. (Check!)
- (Inductive Step) $\varphi(k)$ implies $\varphi(S(k))$ is true for all $k \in \mathbb{N}$. (Check!)