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Naive set theory

Naive set theory is based on one principle: any unordered collection of
distinct objects is a set.
That is, if you can imagine a collection of elements, then you can put set
braces around the elements and consider that the collection is a set.
This is the principle expressed by unrestricted comprehension:

S = {x | ϕ(x)} is a set.

We will see today that naive set theory is inconsistent. (Saying that a theory is
inconsistent means that it contains contradictions.)

More precisely, we will show that if we allow the construction principle of
unrestricted comprehension, then some statements of the form “x ∈ y” are
neither true nor false.
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Axiomatic set theory (Z in 1908, ZFC in 1922)

Axiomatic theory is based on the idea that a set is an undefined type of object.
We let letters denote these objects (x, y, z,X,Y,Z, . . .). There is also an
undefined type of relation between objects, namely ∈.
“Secretly” we still think of sets as collections, and we secretly think that x ∈ y
means x is an element of the collection y.
But formally, we just consider x to be “a thing”, like a dot on the page, and
x ∈ y asserts that x and y are related in some way. We may write this relation
as x→ y or • → • or

x•→
y
•.

Formal set theory is founded on axioms, which restrict the possible meanings
of “set” (x, y, z, . . .) and “membership” (∈).
The axioms were chosen to reflect our intuition about “unordered collections
of distinct objects”.
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The direct graph model of set theory

For today, let’s consider a “set” to be a dot on the page (or a “vertex”), and
write • → • to indicate that the first dot is related to the second by the relation
∈. So, instead of x ∈ y, we will imagine

x•→
y
•

When this happens, call vertex x and “in-neighbor” of y and vertex y an
“out-neighbor” of x. If x ∈ x, we imagine a loop at x (so x is an in-neighbor of
itself).

What do the set theory axioms mean under this interpretation?

1 (Axiom of Empty Set) There is a vertex with no in-neighbors.
2 (Axiom of Extensionality) If x and y have the same in-neighbors, then

x = y. Equivalently, if x 6= y, then x and y do not have the same
in-neighbors.

3 (Axiom of Pairing) Given vertices x and y, there is a vertex whose
in-neighbors include x and y and no other vertices.

4 ETC.
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itself).

What do the set theory axioms mean under this interpretation?
1 (Axiom of Empty Set) There is a vertex with no in-neighbors.
2 (Axiom of Extensionality) If x and y have the same in-neighbors, then

x = y. Equivalently, if x 6= y, then x and y do not have the same
in-neighbors.

3 (Axiom of Pairing)

Given vertices x and y, there is a vertex whose
in-neighbors include x and y and no other vertices.

4 ETC.
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Are sets collections?

It is still legitimate to think of sets as collections in axiomatic set theory, even
if we never say this explicitly. We think of set x as a “name” for the set, and
the “in-neighbors” of x as the “collection” named by x.

• •
•

x•

•
•
•
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Sets versus classes

Let D denote a directed graph which satisfies all the axioms of set theory. A
class in D is a collection of sets definable by a formula:

C = {x | ϕ(x)}

This is just a collection of some of the vertices in D. Is C a set? For this, we
would need some vertex v in D whose collection of in-neighbors is exactly C.
Then v “names” the collection, and this process of “naming” certifies that C is
a set.
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Russell’s Paradox (June, 1901)

Bertrand Russell suggested the following idea.
Let D denote a directed graph which satisfies all the axioms of set theory. Let
R be the class of “loopless” vertices. That is,

R = {x | x /∈ x}.

Question: Is R a set? That is, is there a vertex v whose set of in-neighbors is
exactly R? (Key issue: If such a v exists, does it have a loop?)
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Russell’s Paradox

Case 1: v has no loop.

R=loopless looped

• •
•

v•

•
•

•

Case 2: v has a loop.

R=loopless looped

• •
•

•
•

•

v•
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Russell’s Paradox in Words

Russell’s Paradox. The Russell class R = {x | x /∈ x} is not a set.

Proof.
If R is a set, then either R /∈ R or R ∈ R.

Case 1. R /∈ R.
If R /∈ R, then R satisfies the defining formula “x /∈ x”. Since R satisfies the
definition for membership in R, we derive that R ∈ R, a contradiction.

Case 2. R ∈ R.
If R ∈ R, then R fails the defining formula “x /∈ x”. Since R fails the definition
for membership in R, we derive that R /∈ R, a contradiction. 2

Corollary. Naive set theory is inconsistent. 2

Naive Set Theory versus Axiomatic Set Theory 9 / 10



Russell’s Paradox in Words

Russell’s Paradox.

The Russell class R = {x | x /∈ x} is not a set.

Proof.
If R is a set, then either R /∈ R or R ∈ R.

Case 1. R /∈ R.
If R /∈ R, then R satisfies the defining formula “x /∈ x”. Since R satisfies the
definition for membership in R, we derive that R ∈ R, a contradiction.

Case 2. R ∈ R.
If R ∈ R, then R fails the defining formula “x /∈ x”. Since R fails the definition
for membership in R, we derive that R /∈ R, a contradiction. 2

Corollary. Naive set theory is inconsistent. 2

Naive Set Theory versus Axiomatic Set Theory 9 / 10



Russell’s Paradox in Words

Russell’s Paradox. The Russell class R = {x | x /∈ x} is not a set.

Proof.
If R is a set, then either R /∈ R or R ∈ R.

Case 1. R /∈ R.
If R /∈ R, then R satisfies the defining formula “x /∈ x”. Since R satisfies the
definition for membership in R, we derive that R ∈ R, a contradiction.

Case 2. R ∈ R.
If R ∈ R, then R fails the defining formula “x /∈ x”. Since R fails the definition
for membership in R, we derive that R /∈ R, a contradiction. 2

Corollary. Naive set theory is inconsistent. 2

Naive Set Theory versus Axiomatic Set Theory 9 / 10



Russell’s Paradox in Words

Russell’s Paradox. The Russell class R = {x | x /∈ x} is not a set.

Proof.

If R is a set, then either R /∈ R or R ∈ R.

Case 1. R /∈ R.
If R /∈ R, then R satisfies the defining formula “x /∈ x”. Since R satisfies the
definition for membership in R, we derive that R ∈ R, a contradiction.

Case 2. R ∈ R.
If R ∈ R, then R fails the defining formula “x /∈ x”. Since R fails the definition
for membership in R, we derive that R /∈ R, a contradiction. 2

Corollary. Naive set theory is inconsistent. 2

Naive Set Theory versus Axiomatic Set Theory 9 / 10



Russell’s Paradox in Words

Russell’s Paradox. The Russell class R = {x | x /∈ x} is not a set.

Proof.
If R is a set, then either R /∈ R or R ∈ R.

Case 1. R /∈ R.
If R /∈ R, then R satisfies the defining formula “x /∈ x”. Since R satisfies the
definition for membership in R, we derive that R ∈ R, a contradiction.

Case 2. R ∈ R.
If R ∈ R, then R fails the defining formula “x /∈ x”. Since R fails the definition
for membership in R, we derive that R /∈ R, a contradiction. 2

Corollary. Naive set theory is inconsistent. 2

Naive Set Theory versus Axiomatic Set Theory 9 / 10



Russell’s Paradox in Words

Russell’s Paradox. The Russell class R = {x | x /∈ x} is not a set.

Proof.
If R is a set, then either R /∈ R or R ∈ R.

Case 1.

R /∈ R.
If R /∈ R, then R satisfies the defining formula “x /∈ x”. Since R satisfies the
definition for membership in R, we derive that R ∈ R, a contradiction.

Case 2. R ∈ R.
If R ∈ R, then R fails the defining formula “x /∈ x”. Since R fails the definition
for membership in R, we derive that R /∈ R, a contradiction. 2

Corollary. Naive set theory is inconsistent. 2

Naive Set Theory versus Axiomatic Set Theory 9 / 10



Russell’s Paradox in Words

Russell’s Paradox. The Russell class R = {x | x /∈ x} is not a set.

Proof.
If R is a set, then either R /∈ R or R ∈ R.

Case 1. R /∈ R.

If R /∈ R, then R satisfies the defining formula “x /∈ x”. Since R satisfies the
definition for membership in R, we derive that R ∈ R, a contradiction.

Case 2. R ∈ R.
If R ∈ R, then R fails the defining formula “x /∈ x”. Since R fails the definition
for membership in R, we derive that R /∈ R, a contradiction. 2

Corollary. Naive set theory is inconsistent. 2

Naive Set Theory versus Axiomatic Set Theory 9 / 10



Russell’s Paradox in Words

Russell’s Paradox. The Russell class R = {x | x /∈ x} is not a set.

Proof.
If R is a set, then either R /∈ R or R ∈ R.

Case 1. R /∈ R.
If R /∈ R, then R satisfies the defining formula “x /∈ x”.

Since R satisfies the
definition for membership in R, we derive that R ∈ R, a contradiction.

Case 2. R ∈ R.
If R ∈ R, then R fails the defining formula “x /∈ x”. Since R fails the definition
for membership in R, we derive that R /∈ R, a contradiction. 2

Corollary. Naive set theory is inconsistent. 2

Naive Set Theory versus Axiomatic Set Theory 9 / 10



Russell’s Paradox in Words

Russell’s Paradox. The Russell class R = {x | x /∈ x} is not a set.

Proof.
If R is a set, then either R /∈ R or R ∈ R.

Case 1. R /∈ R.
If R /∈ R, then R satisfies the defining formula “x /∈ x”. Since R satisfies the
definition for membership in R, we derive that R ∈ R, a contradiction.

Case 2. R ∈ R.
If R ∈ R, then R fails the defining formula “x /∈ x”. Since R fails the definition
for membership in R, we derive that R /∈ R, a contradiction. 2

Corollary. Naive set theory is inconsistent. 2

Naive Set Theory versus Axiomatic Set Theory 9 / 10



Russell’s Paradox in Words

Russell’s Paradox. The Russell class R = {x | x /∈ x} is not a set.

Proof.
If R is a set, then either R /∈ R or R ∈ R.

Case 1. R /∈ R.
If R /∈ R, then R satisfies the defining formula “x /∈ x”. Since R satisfies the
definition for membership in R, we derive that R ∈ R, a contradiction.

Case 2.

R ∈ R.
If R ∈ R, then R fails the defining formula “x /∈ x”. Since R fails the definition
for membership in R, we derive that R /∈ R, a contradiction. 2

Corollary. Naive set theory is inconsistent. 2

Naive Set Theory versus Axiomatic Set Theory 9 / 10



Russell’s Paradox in Words

Russell’s Paradox. The Russell class R = {x | x /∈ x} is not a set.

Proof.
If R is a set, then either R /∈ R or R ∈ R.

Case 1. R /∈ R.
If R /∈ R, then R satisfies the defining formula “x /∈ x”. Since R satisfies the
definition for membership in R, we derive that R ∈ R, a contradiction.

Case 2. R ∈ R.

If R ∈ R, then R fails the defining formula “x /∈ x”. Since R fails the definition
for membership in R, we derive that R /∈ R, a contradiction. 2

Corollary. Naive set theory is inconsistent. 2

Naive Set Theory versus Axiomatic Set Theory 9 / 10



Russell’s Paradox in Words

Russell’s Paradox. The Russell class R = {x | x /∈ x} is not a set.

Proof.
If R is a set, then either R /∈ R or R ∈ R.

Case 1. R /∈ R.
If R /∈ R, then R satisfies the defining formula “x /∈ x”. Since R satisfies the
definition for membership in R, we derive that R ∈ R, a contradiction.

Case 2. R ∈ R.
If R ∈ R, then R fails the defining formula “x /∈ x”.

Since R fails the definition
for membership in R, we derive that R /∈ R, a contradiction. 2

Corollary. Naive set theory is inconsistent. 2

Naive Set Theory versus Axiomatic Set Theory 9 / 10



Russell’s Paradox in Words

Russell’s Paradox. The Russell class R = {x | x /∈ x} is not a set.

Proof.
If R is a set, then either R /∈ R or R ∈ R.

Case 1. R /∈ R.
If R /∈ R, then R satisfies the defining formula “x /∈ x”. Since R satisfies the
definition for membership in R, we derive that R ∈ R, a contradiction.

Case 2. R ∈ R.
If R ∈ R, then R fails the defining formula “x /∈ x”. Since R fails the definition
for membership in R, we derive that R /∈ R, a contradiction.

2

Corollary. Naive set theory is inconsistent. 2

Naive Set Theory versus Axiomatic Set Theory 9 / 10



Russell’s Paradox in Words

Russell’s Paradox. The Russell class R = {x | x /∈ x} is not a set.

Proof.
If R is a set, then either R /∈ R or R ∈ R.

Case 1. R /∈ R.
If R /∈ R, then R satisfies the defining formula “x /∈ x”. Since R satisfies the
definition for membership in R, we derive that R ∈ R, a contradiction.

Case 2. R ∈ R.
If R ∈ R, then R fails the defining formula “x /∈ x”. Since R fails the definition
for membership in R, we derive that R /∈ R, a contradiction. 2

Corollary. Naive set theory is inconsistent. 2

Naive Set Theory versus Axiomatic Set Theory 9 / 10



Russell’s Paradox in Words

Russell’s Paradox. The Russell class R = {x | x /∈ x} is not a set.

Proof.
If R is a set, then either R /∈ R or R ∈ R.

Case 1. R /∈ R.
If R /∈ R, then R satisfies the defining formula “x /∈ x”. Since R satisfies the
definition for membership in R, we derive that R ∈ R, a contradiction.

Case 2. R ∈ R.
If R ∈ R, then R fails the defining formula “x /∈ x”. Since R fails the definition
for membership in R, we derive that R /∈ R, a contradiction. 2

Corollary.

Naive set theory is inconsistent. 2

Naive Set Theory versus Axiomatic Set Theory 9 / 10



Russell’s Paradox in Words

Russell’s Paradox. The Russell class R = {x | x /∈ x} is not a set.

Proof.
If R is a set, then either R /∈ R or R ∈ R.

Case 1. R /∈ R.
If R /∈ R, then R satisfies the defining formula “x /∈ x”. Since R satisfies the
definition for membership in R, we derive that R ∈ R, a contradiction.

Case 2. R ∈ R.
If R ∈ R, then R fails the defining formula “x /∈ x”. Since R fails the definition
for membership in R, we derive that R /∈ R, a contradiction. 2

Corollary. Naive set theory is inconsistent. 2

Naive Set Theory versus Axiomatic Set Theory 9 / 10



Proper classes

A class that is not a set is called a proper class. The Russell class is a proper
class. Here is another proper class.

Theorem. The class S of all sets is a proper class.

Proof.
If S were a set, then R = {x ∈ S | x /∈ x} would also be a set according to the
Axiom of Separation. But it is not. 2

On HW 2, you will be asked to show

Theorem. The class of all 1-element sets is a proper class.
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