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Naive set theory

Naive set theory is based on one principle: any unordered collection of
distinct objects is a set.

That is, if you can imagine a collection of elements, then you can put set
braces around the elements and consider that the collection is a set.

This is the principle expressed by unrestricted comprehension:

S={x|ex)} isaset.

We will see today that naive set theory is inconsistent. (Saying that a theory is
inconsistent means that it contains contradictions.)

More precisely, we will show that if we allow the construction principle of
unrestricted comprehension, then some statements of the form “x € y” are
neither true nor false.
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Axiomatic theory is based on the idea that a set is an undefined type of object.
We let letters denote these objects (x,y,z,X,Y,Z,...). There is also an
undefined type of relation between objects, namely €.

“Secretly” we still think of sets as collections, and we secretly think thatx € y
means x is an element of the collection y.

But formally, we just consider x to be “a thing”, like a dot on the page, and

x € y asserts that x and y are related in some way. We may write this relation

x ¥
asx — yore — e Or e—e,

Formal set theory is founded on axioms, which restrict the possible meanings
of “set” (x,y,7,...) and “membership” (€).

The axioms were chosen to reflect our intuition about “unordered collections
of distinct objects”.
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write ¢ — o to indicate that the first dot is related to the second by the relation
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write ¢ — o to indicate that the first dot is related to the second by the relation
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When this happens, call vertex x and “in-neighbor” of y and vertex y an
“out-neighbor” of x. If x € x, we imagine a loop at x (so x is an in-neighbor of
itself).

What do the set theory axioms mean under this interpretation?

Q (Axiom of Empty Set) There is a vertex with no in-neighbors.

Q (Axiom of Extensionality) If x and y have the same in-neighbors, then
x = y. Equivalently, if x # y, then x and y do not have the same
in-neighbors.

© (Axiom of Pairing) Given vertices x and y, there is a vertex whose
in-neighbors include x and y and no other vertices.

Q@ ETC.
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Are sets collections?

It is still legitimate to think of sets as collections in axiomatic set theory, even
if we never say this explicitly. We think of set x as a “name” for the set, and
the “in-neighbors” of x as the “collection” named by x.
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Sets versus classes

Let D denote a directed graph which satisfies all the axioms of set theory. A
class in D is a collection of sets definable by a formula:

C={x]e)}

This is just a collection of some of the vertices in D. Is C a set? For this, we
would need some vertex v in D whose collection of in-neighbors is exactly C.
Then v “names” the collection, and this process of “naming” certifies that C is
a set.
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Russell’s Paradox (June, 1901)

Bertrand Russell suggested the following idea.
Let D denote a directed graph which satisfies all the axioms of set theory. Let
R be the class of “loopless” vertices. That is,

R={x|x¢x}.

Question: Is R a set? That is, is there a vertex v whose set of in-neighbors is
exactly R? (Key issue: If such a v exists, does it have a loop?)
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Russell’s Paradox

Case 1:
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Case 2: v has a loop.
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Case 1: v has no loop.

Case 2: v has a loop.

R=loopless looped
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Russell’s Paradox. The Russell class R = {x | x ¢ x} is not a set.

Proof.
If R is a set, then either R ¢ Ror R € R.

Case1.R ¢ R.
If R ¢ R, then R satisfies the defining formula “x ¢ x”. Since R satisfies the
definition for membership in R, we derive that R € R, a contradiction.

Case 2. R € R.
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Russell’s Paradox. The Russell class R = {x | x ¢ x} is not a set.

Proof.
If R is a set, then either R ¢ Ror R € R.

Case1.R ¢ R.
If R ¢ R, then R satisfies the defining formula “x ¢ x”. Since R satisfies the
definition for membership in R, we derive that R € R, a contradiction.

Case2. R € R.
If R € R, then R fails the defining formula “x ¢ x”.
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Proof.
If R is a set, then either R ¢ Ror R € R.
Case1.R ¢ R.

If R ¢ R, then R satisfies the defining formula “x ¢ x”. Since R satisfies the
definition for membership in R, we derive that R € R, a contradiction.

Case2.R € R.
If R € R, then R fails the defining formula “x ¢ x”. Since R fails the definition
for membership in R, we derive that R ¢ R, a contradiction. O
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Russell’s Paradox. The Russell class R = {x | x ¢ x} is not a set.

Proof.
If R is a set, then either R ¢ Ror R € R.

Case1.R ¢ R.
If R ¢ R, then R satisfies the defining formula “x ¢ x”. Since R satisfies the
definition for membership in R, we derive that R € R, a contradiction.

Case2.R € R.
If R € R, then R fails the defining formula “x ¢ x”. Since R fails the definition
for membership in R, we derive that R ¢ R, a contradiction. O

Corollary.
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Russell’s Paradox in Words

Russell’s Paradox. The Russell class R = {x | x ¢ x} is not a set.

Proof.
If R is a set, then either R ¢ Ror R € R.

Case1.R ¢ R.
If R ¢ R, then R satisfies the defining formula “x ¢ x”. Since R satisfies the
definition for membership in R, we derive that R € R, a contradiction.

Case2.R € R.
If R € R, then R fails the defining formula “x ¢ x”. Since R fails the definition
for membership in R, we derive that R ¢ R, a contradiction. O

Corollary. Naive set theory is inconsistent. O
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Axiom of Separation.
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Proper classes

A class that is not a set is called a proper class. The Russell class is a proper
class. Here is another proper class.

Theorem. The class S of all sets is a proper class.

Proof.
If S were a set, then R = {x € S | x ¢ x} would also be a set according to the
Axiom of Separation. But it is not. O
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Proper classes

A class that is not a set is called a proper class. The Russell class is a proper
class. Here is another proper class.

Theorem. The class S of all sets is a proper class.

Proof.
If S were a set, then R = {x € S | x ¢ x} would also be a set according to the
Axiom of Separation. But it is not. O

On HW 2, you will be asked to show

Theorem. The class of all 1-element sets is a proper class.
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