Finite versus Infinite

Cardinality

Cardinality

(1) $|X| \leq|Y|$ (or $|Y| \geq|X|)$ means there is an injection $f: X \rightarrow Y$.

Cardinality

(1) $|X| \leq|Y|$ (or $|Y| \geq|X|)$ means there is an injection $f: X \rightarrow Y$.

Cardinality

(1) $|X| \leq|Y|$ (or $|Y| \geq|X|$) means there is an injection $f: X \rightarrow Y$. We read " $|X| \leq|Y|$ " as "the cardinality of X is less than or equal to the cardinality of Y ".

Cardinality

(1) $|X| \leq|Y|$ (or $|Y| \geq|X|$) means there is an injection $f: X \rightarrow Y$. We read " $|X| \leq|Y|$ " as "the cardinality of X is less than or equal to the cardinality of Y ".
(2) $|X|=|Y|$ means there is an bijection $f: X \rightarrow Y$.

Cardinality

(1) $|X| \leq|Y|$ (or $|Y| \geq|X|$) means there is an injection $f: X \rightarrow Y$. We read " $|X| \leq|Y|$ " as "the cardinality of X is less than or equal to the cardinality of Y ".
(2) $|X|=|Y|$ means there is an bijection $f: X \rightarrow Y$.

Cardinality

(1) $|X| \leq|Y|$ (or $|Y| \geq|X|$) means there is an injection $f: X \rightarrow Y$. We read " $|X| \leq|Y|$ " as "the cardinality of X is less than or equal to the cardinality of Y ".
(2) $|X|=|Y|$ means there is an bijection $f: X \rightarrow Y$. We say "the cardinality of X equal to the cardinality of Y " or " X is equipotent with $Y^{\prime \prime}$.

Cardinality

(1) $|X| \leq|Y|$ (or $|Y| \geq|X|$) means there is an injection $f: X \rightarrow Y$. We read " $|X| \leq|Y|$ " as "the cardinality of X is less than or equal to the cardinality of Y ".
(2) $|X|=|Y|$ means there is an bijection $f: X \rightarrow Y$. We say "the cardinality of X equal to the cardinality of Y " or " X is equipotent with $Y^{\prime \prime}$.
(3) $|X|<|Y|$ (or $|Y|>|X|$) means $|X| \leq|Y|$ holds but $|X|=|Y|$ fails.

Cardinality

(1) $|X| \leq|Y|$ (or $|Y| \geq|X|$) means there is an injection $f: X \rightarrow Y$. We read " $|X| \leq|Y|$ " as "the cardinality of X is less than or equal to the cardinality of Y ".
(2) $|X|=|Y|$ means there is an bijection $f: X \rightarrow Y$. We say "the cardinality of X equal to the cardinality of Y " or " X is equipotent with $Y^{\prime \prime}$.
(3) $|X|<|Y|$ (or $|Y|>|X|$) means $|X| \leq|Y|$ holds but $|X|=|Y|$ fails.

Cardinality

(1) $|X| \leq|Y|$ (or $|Y| \geq|X|$) means there is an injection $f: X \rightarrow Y$. We read " $|X| \leq|Y|$ " as "the cardinality of X is less than or equal to the cardinality of $Y^{\prime \prime}$.
(2) $|X|=|Y|$ means there is an bijection $f: X \rightarrow Y$. We say "the cardinality of X equal to the cardinality of Y " or " X is equipotent with $Y^{\prime \prime}$.
(3) $|X|<|Y|$ (or $|Y|>|X|$) means $|X| \leq|Y|$ holds but $|X|=|Y|$ fails.
(9) A set X is finite if there is a natural number $k \in \mathbb{N}$ such that $|X|=|k|$.

Cardinality

(1) $|X| \leq|Y|$ (or $|Y| \geq|X|$) means there is an injection $f: X \rightarrow Y$. We read " $|X| \leq|Y|$ " as "the cardinality of X is less than or equal to the cardinality of $Y^{\prime \prime}$.
(2) $|X|=|Y|$ means there is an bijection $f: X \rightarrow Y$. We say "the cardinality of X equal to the cardinality of Y " or " X is equipotent with $Y^{\prime \prime}$.
(3) $|X|<|Y|$ (or $|Y|>|X|$) means $|X| \leq|Y|$ holds but $|X|=|Y|$ fails.
(9) A set X is finite if there is a natural number $k \in \mathbb{N}$ such that $|X|=|k|$.

Cardinality

(1) $|X| \leq|Y|$ (or $|Y| \geq|X|$) means there is an injection $f: X \rightarrow Y$. We read " $|X| \leq|Y|$ " as "the cardinality of X is less than or equal to the cardinality of $Y^{\prime \prime}$.
(2) $|X|=|Y|$ means there is an bijection $f: X \rightarrow Y$. We say "the cardinality of X equal to the cardinality of Y " or " X is equipotent with $Y^{\prime \prime}$.
(3) $|X|<|Y|$ (or $|Y|>|X|$) means $|X| \leq|Y|$ holds but $|X|=|Y|$ fails.
(9) A set X is finite if there is a natural number $k \in \mathbb{N}$ such that $|X|=|k|$. That is,

Cardinality

(1) $|X| \leq|Y|$ (or $|Y| \geq|X|$) means there is an injection $f: X \rightarrow Y$. We read " $|X| \leq|Y|$ " as "the cardinality of X is less than or equal to the cardinality of $Y^{\prime \prime}$.
(2) $|X|=|Y|$ means there is an bijection $f: X \rightarrow Y$. We say "the cardinality of X equal to the cardinality of Y " or " X is equipotent with $Y^{\prime \prime}$.
(3) $|X|<|Y|$ (or $|Y|>|X|$) means $|X| \leq|Y|$ holds but $|X|=|Y|$ fails.
(9) A set X is finite if there is a natural number $k \in \mathbb{N}$ such that $|X|=|k|$. That is, X is finite if there exists a bijection $f: k \rightarrow X$ for some $k \in \mathbb{N}$.

Cardinality

(1) $|X| \leq|Y|$ (or $|Y| \geq|X|$) means there is an injection $f: X \rightarrow Y$. We read " $|X| \leq|Y|$ " as "the cardinality of X is less than or equal to the cardinality of Y ".
(2) $|X|=|Y|$ means there is an bijection $f: X \rightarrow Y$. We say "the cardinality of X equal to the cardinality of Y " or " X is equipotent with $Y^{\prime \prime}$.
(3) $|X|<|Y|$ (or $|Y|>|X|$) means $|X| \leq|Y|$ holds but $|X|=|Y|$ fails.
(9) A set X is finite if there is a natural number $k \in \mathbb{N}$ such that $|X|=|k|$. That is, X is finite if there exists a bijection $f: k \rightarrow X$ for some $k \in \mathbb{N}$.
(6) A set X is infinite if it is not finite.

Cardinality

(1) $|X| \leq|Y|$ (or $|Y| \geq|X|$) means there is an injection $f: X \rightarrow Y$. We read " $|X| \leq|Y|$ " as "the cardinality of X is less than or equal to the cardinality of Y ".
(2) $|X|=|Y|$ means there is an bijection $f: X \rightarrow Y$. We say "the cardinality of X equal to the cardinality of Y " or " X is equipotent with $Y^{\prime \prime}$.
(3) $|X|<|Y|$ (or $|Y|>|X|$) means $|X| \leq|Y|$ holds but $|X|=|Y|$ fails.
(9) A set X is finite if there is a natural number $k \in \mathbb{N}$ such that $|X|=|k|$. That is, X is finite if there exists a bijection $f: k \rightarrow X$ for some $k \in \mathbb{N}$.
(6) A set X is infinite if it is not finite.

Cardinality

(1) $|X| \leq|Y|$ (or $|Y| \geq|X|$) means there is an injection $f: X \rightarrow Y$. We read " $|X| \leq|Y|$ " as "the cardinality of X is less than or equal to the cardinality of Y ".
(2) $|X|=|Y|$ means there is an bijection $f: X \rightarrow Y$. We say "the cardinality of X equal to the cardinality of Y " or " X is equipotent with $Y^{\prime \prime}$.
(3) $|X|<|Y|$ (or $|Y|>|X|$) means $|X| \leq|Y|$ holds but $|X|=|Y|$ fails.
(9) A set X is finite if there is a natural number $k \in \mathbb{N}$ such that $|X|=|k|$. That is, X is finite if there exists a bijection $f: k \rightarrow X$ for some $k \in \mathbb{N}$.
(6) A set X is infinite if it is not finite.

\mathbb{N} is infinite

\mathbb{N} is infinite

Lemma.

\mathbb{N} is infinite

Lemma. (Baby "Pigeonhole Principle".)

\mathbb{N} is infinite

Lemma. (Baby "Pigeonhole Principle".) If $n \in \mathbb{N}$, then any injective function $f: n \rightarrow n$ is surjective.

\mathbb{N} is infinite

Lemma. (Baby "Pigeonhole Principle".) If $n \in \mathbb{N}$, then any injective function $f: n \rightarrow n$ is surjective.
Proof.

\mathbb{N} is infinite

Lemma. (Baby "Pigeonhole Principle".) If $n \in \mathbb{N}$, then any injective function $f: n \rightarrow n$ is surjective.
Proof. (Induction on n.)
Basis of Induction:

\mathbb{N} is infinite

Lemma. (Baby "Pigeonhole Principle".) If $n \in \mathbb{N}$, then any injective function $f: n \rightarrow n$ is surjective.
Proof. (Induction on n.)
Basis of Induction: The unique function $f: 0 \rightarrow 0$ is the empty function,

\mathbb{N} is infinite

Lemma. (Baby "Pigeonhole Principle".) If $n \in \mathbb{N}$, then any injective function $f: n \rightarrow n$ is surjective.
Proof. (Induction on n.)
Basis of Induction: The unique function $f: 0 \rightarrow 0$ is the empty function, which is the identity function on the set 0 ,

\mathbb{N} is infinite

Lemma. (Baby "Pigeonhole Principle".) If $n \in \mathbb{N}$, then any injective function $f: n \rightarrow n$ is surjective.
Proof. (Induction on n.)
Basis of Induction: The unique function $f: 0 \rightarrow 0$ is the empty function, which is the identity function on the set 0 , which is both injective and surjective.

\mathbb{N} is infinite

Lemma. (Baby "Pigeonhole Principle".) If $n \in \mathbb{N}$, then any injective function $f: n \rightarrow n$ is surjective.
Proof. (Induction on n.)
Basis of Induction: The unique function $f: 0 \rightarrow 0$ is the empty function, which is the identity function on the set 0 , which is both injective and surjective.
Inductive step:

\mathbb{N} is infinite

Lemma. (Baby "Pigeonhole Principle".) If $n \in \mathbb{N}$, then any injective function $f: n \rightarrow n$ is surjective.
Proof. (Induction on n.)
Basis of Induction: The unique function $f: 0 \rightarrow 0$ is the empty function, which is the identity function on the set 0 , which is both injective and surjective.
Inductive step: Assume the theorem is true for n and let $f: S(n) \rightarrow S(n)$ be an injective function.

\mathbb{N} is infinite

Lemma. (Baby "Pigeonhole Principle".) If $n \in \mathbb{N}$, then any injective function $f: n \rightarrow n$ is surjective.
Proof. (Induction on n.)
Basis of Induction: The unique function $f: 0 \rightarrow 0$ is the empty function, which is the identity function on the set 0 , which is both injective and surjective.
Inductive step: Assume the theorem is true for n and let $f: S(n) \rightarrow S(n)$ be an injective function. $(S(n)=n \cup\{n\}$.)

\mathbb{N} is infinite

Lemma. (Baby "Pigeonhole Principle".) If $n \in \mathbb{N}$, then any injective function $f: n \rightarrow n$ is surjective.
Proof. (Induction on n.)
Basis of Induction: The unique function $f: 0 \rightarrow 0$ is the empty function, which is the identity function on the set 0 , which is both injective and surjective.
Inductive step: Assume the theorem is true for n and let $f: S(n) \rightarrow S(n)$ be an injective function. $(S(n)=n \cup\{n\}$.)
Case 1.

\mathbb{N} is infinite

Lemma. (Baby "Pigeonhole Principle".) If $n \in \mathbb{N}$, then any injective function $f: n \rightarrow n$ is surjective.
Proof. (Induction on n.)
Basis of Induction: The unique function $f: 0 \rightarrow 0$ is the empty function, which is the identity function on the set 0 , which is both injective and surjective.
Inductive step: Assume the theorem is true for n and let $f: S(n) \rightarrow S(n)$ be an injective function. $(S(n)=n \cup\{n\}$.)
Case 1. (f restricts to a function $\left.f\right|_{n}: n \rightarrow n$.)

\mathbb{N} is infinite

Lemma. (Baby "Pigeonhole Principle".) If $n \in \mathbb{N}$, then any injective function $f: n \rightarrow n$ is surjective.
Proof. (Induction on n.)
Basis of Induction: The unique function $f: 0 \rightarrow 0$ is the empty function, which is the identity function on the set 0 , which is both injective and surjective.
Inductive step: Assume the theorem is true for n and let $f: S(n) \rightarrow S(n)$ be an injective function. $(S(n)=n \cup\{n\}$.)
Case 1. (f restricts to a function $\left.f\right|_{n}: n \rightarrow n$.) In this case, $\left.f\right|_{n}$ is surjective and $f=\left.f\right|_{n} \cup\{(n, n)\}$, so f is surjective.

\mathbb{N} is infinite

Lemma. (Baby "Pigeonhole Principle".) If $n \in \mathbb{N}$, then any injective function $f: n \rightarrow n$ is surjective.
Proof. (Induction on n.)
Basis of Induction: The unique function $f: 0 \rightarrow 0$ is the empty function, which is the identity function on the set 0 , which is both injective and surjective.
Inductive step: Assume the theorem is true for n and let $f: S(n) \rightarrow S(n)$ be an injective function. $(S(n)=n \cup\{n\}$.)
Case 1. (f restricts to a function $\left.f\right|_{n}: n \rightarrow n$.) In this case, $\left.f\right|_{n}$ is surjective and $f=\left.f\right|_{n} \cup\{(n, n)\}$, so f is surjective.
Case 2.

\mathbb{N} is infinite

Lemma. (Baby "Pigeonhole Principle".) If $n \in \mathbb{N}$, then any injective function $f: n \rightarrow n$ is surjective.
Proof. (Induction on n.)
Basis of Induction: The unique function $f: 0 \rightarrow 0$ is the empty function, which is the identity function on the set 0 , which is both injective and surjective.
Inductive step: Assume the theorem is true for n and let $f: S(n) \rightarrow S(n)$ be an injective function. $(S(n)=n \cup\{n\}$.)
Case 1. (f restricts to a function $\left.f\right|_{n}: n \rightarrow n$.) In this case, $\left.f\right|_{n}$ is surjective and $f=\left.f\right|_{n} \cup\{(n, n)\}$, so f is surjective.
Case 2. (f does not restrict to a function $\left.f\right|_{n}: n \rightarrow n$,

\mathbb{N} is infinite

Lemma. (Baby "Pigeonhole Principle".) If $n \in \mathbb{N}$, then any injective function $f: n \rightarrow n$ is surjective.
Proof. (Induction on n.)
Basis of Induction: The unique function $f: 0 \rightarrow 0$ is the empty function, which is the identity function on the set 0 , which is both injective and surjective.
Inductive step: Assume the theorem is true for n and let $f: S(n) \rightarrow S(n)$ be an injective function. $(S(n)=n \cup\{n\}$.)
Case 1. (f restricts to a function $\left.f\right|_{n}: n \rightarrow n$.) In this case, $\left.f\right|_{n}$ is surjective and $f=\left.f\right|_{n} \cup\{(n, n)\}$, so f is surjective.
Case 2. (f does not restrict to a function $\left.f\right|_{n}: n \rightarrow n$, so $f(m)=n$ for some $m<n$.) Replace f with

$$
f^{\prime}=(f-\{(m, n),(n, f(n))\}) \cup\{(m, f(n)),(n, n)\},
$$

which is also injective and which satisfies $\operatorname{im}\left(f^{\prime}\right)=\operatorname{im}(f)$.

\mathbb{N} is infinite

Lemma. (Baby "Pigeonhole Principle".) If $n \in \mathbb{N}$, then any injective function $f: n \rightarrow n$ is surjective.
Proof. (Induction on n.)
Basis of Induction: The unique function $f: 0 \rightarrow 0$ is the empty function, which is the identity function on the set 0 , which is both injective and surjective.
Inductive step: Assume the theorem is true for n and let $f: S(n) \rightarrow S(n)$ be an injective function. $(S(n)=n \cup\{n\}$.)
Case 1. (f restricts to a function $\left.f\right|_{n}: n \rightarrow n$.) In this case, $\left.f\right|_{n}$ is surjective and $f=\left.f\right|_{n} \cup\{(n, n)\}$, so f is surjective.
Case 2. (f does not restrict to a function $\left.f\right|_{n}: n \rightarrow n$, so $f(m)=n$ for some $m<n$.) Replace f with

$$
f^{\prime}=(f-\{(m, n),(n, f(n))\}) \cup\{(m, f(n)),(n, n)\},
$$

which is also injective and which satisfies $\operatorname{im}\left(f^{\prime}\right)=\operatorname{im}(f) . f^{\prime}$ satisfies the conditions of Case 1,

\mathbb{N} is infinite

Lemma. (Baby "Pigeonhole Principle".) If $n \in \mathbb{N}$, then any injective function $f: n \rightarrow n$ is surjective.
Proof. (Induction on n.)
Basis of Induction: The unique function $f: 0 \rightarrow 0$ is the empty function, which is the identity function on the set 0 , which is both injective and surjective.
Inductive step: Assume the theorem is true for n and let $f: S(n) \rightarrow S(n)$ be an injective function. $(S(n)=n \cup\{n\}$.)
Case 1. (f restricts to a function $\left.f\right|_{n}: n \rightarrow n$.) In this case, $\left.f\right|_{n}$ is surjective and $f=\left.f\right|_{n} \cup\{(n, n)\}$, so f is surjective.
Case 2. (f does not restrict to a function $\left.f\right|_{n}: n \rightarrow n$, so $f(m)=n$ for some $m<n$.) Replace f with

$$
f^{\prime}=(f-\{(m, n),(n, f(n))\}) \cup\{(m, f(n)),(n, n)\}
$$

which is also injective and which satisfies $\operatorname{im}\left(f^{\prime}\right)=\operatorname{im}(f) . f^{\prime}$ satisfies the conditions of Case 1 , so f^{\prime} is surjective,

\mathbb{N} is infinite

Lemma. (Baby "Pigeonhole Principle".) If $n \in \mathbb{N}$, then any injective function $f: n \rightarrow n$ is surjective.
Proof. (Induction on n.)
Basis of Induction: The unique function $f: 0 \rightarrow 0$ is the empty function, which is the identity function on the set 0 , which is both injective and surjective.
Inductive step: Assume the theorem is true for n and let $f: S(n) \rightarrow S(n)$ be an injective function. $(S(n)=n \cup\{n\}$.)
Case 1. (f restricts to a function $\left.f\right|_{n}: n \rightarrow n$.) In this case, $\left.f\right|_{n}$ is surjective and $f=\left.f\right|_{n} \cup\{(n, n)\}$, so f is surjective.
Case 2. (f does not restrict to a function $\left.f\right|_{n}: n \rightarrow n$, so $f(m)=n$ for some $m<n$.) Replace f with

$$
f^{\prime}=(f-\{(m, n),(n, f(n))\}) \cup\{(m, f(n)),(n, n)\}
$$

which is also injective and which satisfies $\operatorname{im}\left(f^{\prime}\right)=\operatorname{im}(f) . f^{\prime}$ satisfies the conditions of Case 1 , so f^{\prime} is surjective, so f is surjective.

\mathbb{N} is infinite

Lemma. (Baby "Pigeonhole Principle".) If $n \in \mathbb{N}$, then any injective function $f: n \rightarrow n$ is surjective.
Proof. (Induction on n.)
Basis of Induction: The unique function $f: 0 \rightarrow 0$ is the empty function, which is the identity function on the set 0 , which is both injective and surjective.
Inductive step: Assume the theorem is true for n and let $f: S(n) \rightarrow S(n)$ be an injective function. $(S(n)=n \cup\{n\}$.)
Case 1. (f restricts to a function $\left.f\right|_{n}: n \rightarrow n$.) In this case, $\left.f\right|_{n}$ is surjective and $f=\left.f\right|_{n} \cup\{(n, n)\}$, so f is surjective.
Case 2. (f does not restrict to a function $\left.f\right|_{n}: n \rightarrow n$, so $f(m)=n$ for some $m<n$.) Replace f with

$$
f^{\prime}=(f-\{(m, n),(n, f(n))\}) \cup\{(m, f(n)),(n, n)\}
$$

which is also injective and which satisfies $\operatorname{im}\left(f^{\prime}\right)=\operatorname{im}(f) . f^{\prime}$ satisfies the conditions of Case 1 , so f^{\prime} is surjective, so f is surjective.

Consequences of the Baby Pigeonhole Principle

Consequences of the Baby Pigeonhole Principle

(1) (Pigeonhole Principle)

Consequences of the Baby Pigeonhole Principle

(1) (Pigeonhole Principle)

Consequences of the Baby Pigeonhole Principle

(1) (Pigeonhole Principle) If $n>m$, then there is no injective function $f: n \rightarrow m$.

Consequences of the Baby Pigeonhole Principle

(1) (Pigeonhole Principle) If $n>m$, then there is no injective function $f: n \rightarrow m$. (Otherwise,

Consequences of the Baby Pigeonhole Principle

(1) (Pigeonhole Principle) If $n>m$, then there is no injective function $f: n \rightarrow m$. (Otherwise, $f: n \rightarrow n$ is injective and not surjective.)

Consequences of the Baby Pigeonhole Principle

(1) (Pigeonhole Principle) If $n>m$, then there is no injective function $f: n \rightarrow m$. (Otherwise, $f: n \rightarrow n$ is injective and not surjective.)
(2) If $m, n \in \mathbb{N}$, then $|m|=|n|$ holds iff $m=n$ holds.

Consequences of the Baby Pigeonhole Principle

(1) (Pigeonhole Principle) If $n>m$, then there is no injective function $f: n \rightarrow m$. (Otherwise, $f: n \rightarrow n$ is injective and not surjective.)
(2) If $m, n \in \mathbb{N}$, then $|m|=|n|$ holds iff $m=n$ holds.

Consequences of the Baby Pigeonhole Principle

(1) (Pigeonhole Principle) If $n>m$, then there is no injective function $f: n \rightarrow m$. (Otherwise, $f: n \rightarrow n$ is injective and not surjective.)
(2) If $m, n \in \mathbb{N}$, then $|m|=|n|$ holds iff $m=n$ holds.
(3) \mathbb{N} is infinite.

Consequences of the Baby Pigeonhole Principle

(1) (Pigeonhole Principle) If $n>m$, then there is no injective function $f: n \rightarrow m$. (Otherwise, $f: n \rightarrow n$ is injective and not surjective.)
(2) If $m, n \in \mathbb{N}$, then $|m|=|n|$ holds iff $m=n$ holds.
(3) \mathbb{N} is infinite.

Consequences of the Baby Pigeonhole Principle

(1) (Pigeonhole Principle) If $n>m$, then there is no injective function $f: n \rightarrow m$. (Otherwise, $f: n \rightarrow n$ is injective and not surjective.)
(2) If $m, n \in \mathbb{N}$, then $|m|=|n|$ holds iff $m=n$ holds.
(3) \mathbb{N} is infinite.

Assume otherwise that there is a bijection between \mathbb{N} and some $m \in \mathbb{N}$,

Consequences of the Baby Pigeonhole Principle

(1) (Pigeonhole Principle) If $n>m$, then there is no injective function $f: n \rightarrow m$. (Otherwise, $f: n \rightarrow n$ is injective and not surjective.)
(2) If $m, n \in \mathbb{N}$, then $|m|=|n|$ holds iff $m=n$ holds.
(3) \mathbb{N} is infinite.

Assume otherwise that there is a bijection between \mathbb{N} and some $m \in \mathbb{N}$, If $f: \mathbb{N} \rightarrow m$ is a bijection

Consequences of the Baby Pigeonhole Principle

(1) (Pigeonhole Principle) If $n>m$, then there is no injective function $f: n \rightarrow m$. (Otherwise, $f: n \rightarrow n$ is injective and not surjective.)
(2) If $m, n \in \mathbb{N}$, then $|m|=|n|$ holds iff $m=n$ holds.
(3) \mathbb{N} is infinite.

Assume otherwise that there is a bijection between \mathbb{N} and some $m \in \mathbb{N}$, If $f: \mathbb{N} \rightarrow m$ is a bijection (or even an injection),

Consequences of the Baby Pigeonhole Principle

(1) (Pigeonhole Principle) If $n>m$, then there is no injective function $f: n \rightarrow m$. (Otherwise, $f: n \rightarrow n$ is injective and not surjective.)
(2) If $m, n \in \mathbb{N}$, then $|m|=|n|$ holds iff $m=n$ holds.
(3) \mathbb{N} is infinite.

Assume otherwise that there is a bijection between \mathbb{N} and some $m \in \mathbb{N}$, If $f: \mathbb{N} \rightarrow m$ is a bijection (or even an injection), then for any $n>m$

Consequences of the Baby Pigeonhole Principle

(1) (Pigeonhole Principle) If $n>m$, then there is no injective function $f: n \rightarrow m$. (Otherwise, $f: n \rightarrow n$ is injective and not surjective.)
(2) If $m, n \in \mathbb{N}$, then $|m|=|n|$ holds iff $m=n$ holds.
(3) \mathbb{N} is infinite.

Assume otherwise that there is a bijection between \mathbb{N} and some $m \in \mathbb{N}$, If $f: \mathbb{N} \rightarrow m$ is a bijection (or even an injection), then for any $n>m$ we have that $\left.f\right|_{n}: n \rightarrow m$ is injective.

Consequences of the Baby Pigeonhole Principle

(1) (Pigeonhole Principle) If $n>m$, then there is no injective function $f: n \rightarrow m$. (Otherwise, $f: n \rightarrow n$ is injective and not surjective.)
(2) If $m, n \in \mathbb{N}$, then $|m|=|n|$ holds iff $m=n$ holds.
(3) \mathbb{N} is infinite.

Assume otherwise that there is a bijection between \mathbb{N} and some $m \in \mathbb{N}$, If $f: \mathbb{N} \rightarrow m$ is a bijection (or even an injection), then for any $n>m$ we have that $\left.f\right|_{n}: n \rightarrow m$ is injective. This contradicts the Pigeonhole Principle.

Consequences of the Baby Pigeonhole Principle

(1) (Pigeonhole Principle) If $n>m$, then there is no injective function $f: n \rightarrow m$. (Otherwise, $f: n \rightarrow n$ is injective and not surjective.)
(2) If $m, n \in \mathbb{N}$, then $|m|=|n|$ holds iff $m=n$ holds.
(3) \mathbb{N} is infinite.

Assume otherwise that there is a bijection between \mathbb{N} and some $m \in \mathbb{N}$, If $f: \mathbb{N} \rightarrow m$ is a bijection (or even an injection), then for any $n>m$ we have that $\left.f\right|_{n}: n \rightarrow m$ is injective. This contradicts the Pigeonhole Principle.
(9) If $|\mathbb{N}| \leq|X|$, then X is infinite.

Consequences of the Baby Pigeonhole Principle

(1) (Pigeonhole Principle) If $n>m$, then there is no injective function $f: n \rightarrow m$. (Otherwise, $f: n \rightarrow n$ is injective and not surjective.)
(2) If $m, n \in \mathbb{N}$, then $|m|=|n|$ holds iff $m=n$ holds.
(3) \mathbb{N} is infinite.

Assume otherwise that there is a bijection between \mathbb{N} and some $m \in \mathbb{N}$, If $f: \mathbb{N} \rightarrow m$ is a bijection (or even an injection), then for any $n>m$ we have that $\left.f\right|_{n}: n \rightarrow m$ is injective. This contradicts the Pigeonhole Principle.
(9) If $|\mathbb{N}| \leq|X|$, then X is infinite.

Consequences of the Baby Pigeonhole Principle

(1) (Pigeonhole Principle) If $n>m$, then there is no injective function $f: n \rightarrow m$. (Otherwise, $f: n \rightarrow n$ is injective and not surjective.)
(2) If $m, n \in \mathbb{N}$, then $|m|=|n|$ holds iff $m=n$ holds.
(3) \mathbb{N} is infinite.

Assume otherwise that there is a bijection between \mathbb{N} and some $m \in \mathbb{N}$, If $f: \mathbb{N} \rightarrow m$ is a bijection (or even an injection), then for any $n>m$ we have that $\left.f\right|_{n}: n \rightarrow m$ is injective. This contradicts the Pigeonhole Principle.
(9) If $|\mathbb{N}| \leq|X|$, then X is infinite.

Assume otherwise that there is an injection $f: \mathbb{N} \rightarrow X$

Consequences of the Baby Pigeonhole Principle

(1) (Pigeonhole Principle) If $n>m$, then there is no injective function $f: n \rightarrow m$. (Otherwise, $f: n \rightarrow n$ is injective and not surjective.)
(2) If $m, n \in \mathbb{N}$, then $|m|=|n|$ holds iff $m=n$ holds.
(3) \mathbb{N} is infinite.

Assume otherwise that there is a bijection between \mathbb{N} and some $m \in \mathbb{N}$, If $f: \mathbb{N} \rightarrow m$ is a bijection (or even an injection), then for any $n>m$ we have that $\left.f\right|_{n}: n \rightarrow m$ is injective. This contradicts the Pigeonhole Principle.
(9) If $|\mathbb{N}| \leq|X|$, then X is infinite.

Assume otherwise that there is an injection $f: \mathbb{N} \rightarrow X$ and a bijection $g: X \rightarrow m, m \in \mathbb{N}$.

Consequences of the Baby Pigeonhole Principle

(1) (Pigeonhole Principle) If $n>m$, then there is no injective function $f: n \rightarrow m$. (Otherwise, $f: n \rightarrow n$ is injective and not surjective.)
(2) If $m, n \in \mathbb{N}$, then $|m|=|n|$ holds iff $m=n$ holds.
(3) \mathbb{N} is infinite.

Assume otherwise that there is a bijection between \mathbb{N} and some $m \in \mathbb{N}$, If $f: \mathbb{N} \rightarrow m$ is a bijection (or even an injection), then for any $n>m$ we have that $\left.f\right|_{n}: n \rightarrow m$ is injective. This contradicts the Pigeonhole Principle.
(9) If $|\mathbb{N}| \leq|X|$, then X is infinite.

Assume otherwise that there is an injection $f: \mathbb{N} \rightarrow X$ and a bijection $g: X \rightarrow m, m \in \mathbb{N}$. Then $g \circ f: \mathbb{N} \rightarrow m$ is an injection, and we get a contradiction as above.

Infinite sets

Infinite sets

(1) A set X is countably infinite if there is bijection $f: \mathbb{N} \rightarrow X$.

Infinite sets

(1) A set X is countably infinite if there is bijection $f: \mathbb{N} \rightarrow X$.

Infinite sets

(1) A set X is countably infinite if there is bijection $f: \mathbb{N} \rightarrow X$.
(2) A set X is countable if it is finite or countably infinite.

Infinite sets

(1) A set X is countably infinite if there is bijection $f: \mathbb{N} \rightarrow X$.
(2) A set X is countable if it is finite or countably infinite.

Infinite sets

(1) A set X is countably infinite if there is bijection $f: \mathbb{N} \rightarrow X$.
(2) A set X is countable if it is finite or countably infinite.
(3) A set X is uncountable if it is not countable.

Infinite sets

(1) A set X is countably infinite if there is bijection $f: \mathbb{N} \rightarrow X$.
(2) A set X is countable if it is finite or countably infinite.
(3) A set X is uncountable if it is not countable.

Infinite sets

(1) A set X is countably infinite if there is bijection $f: \mathbb{N} \rightarrow X$.
(2) A set X is countable if it is finite or countably infinite.
(3) A set X is uncountable if it is not countable.

Infinite sets

(1) A set X is countably infinite if there is bijection $f: \mathbb{N} \rightarrow X$.
(2) A set X is countable if it is finite or countably infinite.
(3) A set X is uncountable if it is not countable.

Examples.

Infinite sets

(1) A set X is countably infinite if there is bijection $f: \mathbb{N} \rightarrow X$.
(2) A set X is countable if it is finite or countably infinite.
(3) A set X is uncountable if it is not countable.

Examples.

(1) The following sets are countable:

Infinite sets

(1) A set X is countably infinite if there is bijection $f: \mathbb{N} \rightarrow X$.
(2) A set X is countable if it is finite or countably infinite.
(3) A set X is uncountable if it is not countable.

Examples.

(1) The following sets are countable:

Infinite sets

(1) A set X is countably infinite if there is bijection $f: \mathbb{N} \rightarrow X$.
(2) A set X is countable if it is finite or countably infinite.
(3) A set X is uncountable if it is not countable.

Examples.

(1) The following sets are countable:

$$
\mathbb{N}
$$

Infinite sets

(1) A set X is countably infinite if there is bijection $f: \mathbb{N} \rightarrow X$.
(2) A set X is countable if it is finite or countably infinite.
(3) A set X is uncountable if it is not countable.

Examples.

(1) The following sets are countable:

$$
\mathbb{N}, \quad \mathbb{Z}
$$

Infinite sets

(1) A set X is countably infinite if there is bijection $f: \mathbb{N} \rightarrow X$.
(2) A set X is countable if it is finite or countably infinite.
(3) A set X is uncountable if it is not countable.

Examples.

(1) The following sets are countable:

$$
\mathbb{N}, \quad \mathbb{Z}, \quad \mathbb{Q}
$$

Infinite sets

(1) A set X is countably infinite if there is bijection $f: \mathbb{N} \rightarrow X$.
(2) A set X is countable if it is finite or countably infinite.
(3) A set X is uncountable if it is not countable.

Examples.

(1) The following sets are countable:

$$
\mathbb{N}, \quad \mathbb{Z}, \quad \mathbb{Q}, \quad \text { and }
$$

Infinite sets

(1) A set X is countably infinite if there is bijection $f: \mathbb{N} \rightarrow X$.
(2) A set X is countable if it is finite or countably infinite.
(3) A set X is uncountable if it is not countable.

Examples.

(1) The following sets are countable:

$$
\mathbb{N}, \quad \mathbb{Z}, \quad \mathbb{Q}, \quad \text { and } \quad \mathbb{W}
$$

Infinite sets

(1) A set X is countably infinite if there is bijection $f: \mathbb{N} \rightarrow X$.
(2) A set X is countable if it is finite or countably infinite.
(3) A set X is uncountable if it is not countable.

Examples.

(1) The following sets are countable:

$$
\mathbb{N}, \quad \mathbb{Z}, \quad \mathbb{Q}, \quad \text { and } \quad \mathbb{W}
$$

where \mathbb{W} is the set of all finite-length strings of symbols from some countable alphabet.

Infinite sets

(1) A set X is countably infinite if there is bijection $f: \mathbb{N} \rightarrow X$.
(2) A set X is countable if it is finite or countably infinite.
(3) A set X is uncountable if it is not countable.

Examples.

(1) The following sets are countable:

$$
\mathbb{N}, \quad \mathbb{Z}, \quad \mathbb{Q}, \quad \text { and } \quad \mathbb{W}
$$

where \mathbb{W} is the set of all finite-length strings of symbols from some countable alphabet.
(2) The following sets are uncountable:

Infinite sets

(1) A set X is countably infinite if there is bijection $f: \mathbb{N} \rightarrow X$.
(2) A set X is countable if it is finite or countably infinite.
(3) A set X is uncountable if it is not countable.

Examples.

(1) The following sets are countable:

$$
\mathbb{N}, \quad \mathbb{Z}, \quad \mathbb{Q}, \quad \text { and } \quad \mathbb{W}
$$

where \mathbb{W} is the set of all finite-length strings of symbols from some countable alphabet.
(2) The following sets are uncountable:

Infinite sets

(1) A set X is countably infinite if there is bijection $f: \mathbb{N} \rightarrow X$.
(2) A set X is countable if it is finite or countably infinite.
(3) A set X is uncountable if it is not countable.

Examples.

(1) The following sets are countable:

$$
\mathbb{N}, \quad \mathbb{Z}, \quad \mathbb{Q}, \quad \text { and } \quad \mathbb{W}
$$

where \mathbb{W} is the set of all finite-length strings of symbols from some countable alphabet.
(2) The following sets are uncountable:

$$
\mathbb{R}
$$

Infinite sets

(1) A set X is countably infinite if there is bijection $f: \mathbb{N} \rightarrow X$.
(2) A set X is countable if it is finite or countably infinite.
(3) A set X is uncountable if it is not countable.

Examples.

(1) The following sets are countable:

$$
\mathbb{N}, \quad \mathbb{Z}, \quad \mathbb{Q}, \quad \text { and } \quad \mathbb{W}
$$

where \mathbb{W} is the set of all finite-length strings of symbols from some countable alphabet.
(2) The following sets are uncountable:

$$
\mathbb{R}, \quad \mathbb{R}^{n}
$$

Infinite sets

(1) A set X is countably infinite if there is bijection $f: \mathbb{N} \rightarrow X$.
(2) A set X is countable if it is finite or countably infinite.
(3) A set X is uncountable if it is not countable.

Examples.

(1) The following sets are countable:

$$
\mathbb{N}, \quad \mathbb{Z}, \quad \mathbb{Q}, \quad \text { and } \quad \mathbb{W}
$$

where \mathbb{W} is the set of all finite-length strings of symbols from some countable alphabet.
(2) The following sets are uncountable:

$$
\mathbb{R}, \quad \mathbb{R}^{n}(n>0)
$$

Infinite sets

(1) A set X is countably infinite if there is bijection $f: \mathbb{N} \rightarrow X$.
(2) A set X is countable if it is finite or countably infinite.
(3) A set X is uncountable if it is not countable.

Examples.

(1) The following sets are countable:

$$
\mathbb{N}, \quad \mathbb{Z}, \quad \mathbb{Q}, \quad \text { and } \quad \mathbb{W}
$$

where \mathbb{W} is the set of all finite-length strings of symbols from some countable alphabet.
(2) The following sets are uncountable:

$$
\mathbb{R}, \quad \mathbb{R}^{n}(n>0), \quad \mathbb{C}
$$

Infinite sets

(1) A set X is countably infinite if there is bijection $f: \mathbb{N} \rightarrow X$.
(2) A set X is countable if it is finite or countably infinite.
(3) A set X is uncountable if it is not countable.

Examples.

(1) The following sets are countable:

$$
\mathbb{N}, \quad \mathbb{Z}, \quad \mathbb{Q}, \quad \text { and } \quad \mathbb{W}
$$

where \mathbb{W} is the set of all finite-length strings of symbols from some countable alphabet.
(2) The following sets are uncountable:

$$
\mathbb{R}, \quad \mathbb{R}^{n}(n>0), \quad \mathbb{C}, \quad \mathcal{P}(\mathbb{N})
$$

