• $|X| \le |Y|$ (or $|Y| \ge |X|$) means there is an injection $f: X \to Y$. We read " $|X| \le |Y|$ " as "the cardinality of X is less than or equal to the cardinality of Y".

- $|X| \le |Y|$ (or $|Y| \ge |X|$) means there is an injection $f: X \to Y$. We read " $|X| \le |Y|$ " as "the cardinality of X is less than or equal to the cardinality of Y".
- |X| = |Y| means there is an bijection $f: X \to Y$.

- $|X| \le |Y|$ (or $|Y| \ge |X|$) means there is an injection $f: X \to Y$. We read " $|X| \le |Y|$ " as "the cardinality of X is less than or equal to the cardinality of Y".
- |X| = |Y| means there is an bijection $f: X \to Y$.

- $|X| \leq |Y|$ (or $|Y| \geq |X|$) means there is an injection $f: X \to Y$. We read " $|X| \leq |Y|$ " as "the cardinality of X is less than or equal to the cardinality of Y".
- ② |X| = |Y| means there is an bijection $f: X \to Y$. We say "the cardinality of X equal to the cardinality of Y" or "X is **equipotent with** Y".

- $|X| \le |Y|$ (or $|Y| \ge |X|$) means there is an injection $f: X \to Y$. We read " $|X| \le |Y|$ " as "the cardinality of X is less than or equal to the cardinality of Y".
- ② |X| = |Y| means there is an bijection $f: X \to Y$. We say "the cardinality of X equal to the cardinality of Y" or "X is **equipotent with** Y".

- $|X| \le |Y|$ (or $|Y| \ge |X|$) means there is an injection $f: X \to Y$. We read " $|X| \le |Y|$ " as "the cardinality of X is less than or equal to the cardinality of Y".
- ② |X| = |Y| means there is an bijection $f: X \to Y$. We say "the cardinality of X equal to the cardinality of Y" or "X is **equipotent with** Y".

- $|X| \le |Y|$ (or $|Y| \ge |X|$) means there is an injection $f: X \to Y$. We read " $|X| \le |Y|$ " as "the cardinality of X is less than or equal to the cardinality of Y".
- ② |X| = |Y| means there is an bijection $f: X \to Y$. We say "the cardinality of X equal to the cardinality of Y" or "X is **equipotent with** Y".
- **4** A set X is **finite** if there is a natural number $k \in \mathbb{N}$ such that |X| = |k|.

- $|X| \le |Y|$ (or $|Y| \ge |X|$) means there is an injection $f: X \to Y$. We read " $|X| \le |Y|$ " as "the cardinality of X is less than or equal to the cardinality of Y".
- ② |X| = |Y| means there is an bijection $f: X \to Y$. We say "the cardinality of X equal to the cardinality of Y" or "X is **equipotent with** Y".
- **4** A set X is **finite** if there is a natural number $k \in \mathbb{N}$ such that |X| = |k|.

- $|X| \le |Y|$ (or $|Y| \ge |X|$) means there is an injection $f: X \to Y$. We read " $|X| \le |Y|$ " as "the cardinality of X is less than or equal to the cardinality of Y".
- ② |X| = |Y| means there is an bijection $f: X \to Y$. We say "the cardinality of X equal to the cardinality of Y" or "X is **equipotent with** Y".
- **3** A set X is **finite** if there is a natural number $k \in \mathbb{N}$ such that |X| = |k|. That is,

- $|X| \le |Y|$ (or $|Y| \ge |X|$) means there is an injection $f: X \to Y$. We read " $|X| \le |Y|$ " as "the cardinality of X is less than or equal to the cardinality of Y".
- ② |X| = |Y| means there is an bijection $f: X \to Y$. We say "the cardinality of X equal to the cardinality of Y" or "X is **equipotent with** Y".
- **4** A set X is **finite** if there is a natural number $k \in \mathbb{N}$ such that |X| = |k|. That is, X is finite if there exists a bijection $f: k \to X$ for some $k \in \mathbb{N}$.

- $|X| \leq |Y|$ (or $|Y| \geq |X|$) means there is an injection $f: X \to Y$. We read " $|X| \leq |Y|$ " as "the cardinality of X is less than or equal to the cardinality of Y".
- ② |X| = |Y| means there is an bijection $f: X \to Y$. We say "the cardinality of X equal to the cardinality of Y" or "X is **equipotent with** Y".
- **4** A set X is **finite** if there is a natural number $k \in \mathbb{N}$ such that |X| = |k|. That is, X is finite if there exists a bijection $f: k \to X$ for some $k \in \mathbb{N}$.
- A set X is **infinite** if it is not finite.

- $|X| \leq |Y|$ (or $|Y| \geq |X|$) means there is an injection $f: X \to Y$. We read " $|X| \leq |Y|$ " as "the cardinality of X is less than or equal to the cardinality of Y".
- ② |X| = |Y| means there is an bijection $f: X \to Y$. We say "the cardinality of X equal to the cardinality of Y" or "X is **equipotent with** Y".
- **4** A set X is **finite** if there is a natural number $k \in \mathbb{N}$ such that |X| = |k|. That is, X is finite if there exists a bijection $f: k \to X$ for some $k \in \mathbb{N}$.
- A set X is **infinite** if it is not finite.

- $|X| \leq |Y|$ (or $|Y| \geq |X|$) means there is an injection $f: X \to Y$. We read " $|X| \leq |Y|$ " as "the cardinality of X is less than or equal to the cardinality of Y".
- ② |X| = |Y| means there is an bijection $f: X \to Y$. We say "the cardinality of X equal to the cardinality of Y" or "X is **equipotent with** Y".
- **4** A set X is **finite** if there is a natural number $k \in \mathbb{N}$ such that |X| = |k|. That is, X is finite if there exists a bijection $f: k \to X$ for some $k \in \mathbb{N}$.
- A set X is **infinite** if it is not finite.

Lemma.

\mathbb{N} is infinite

Lemma. (Baby "Pigeonhole Principle".)

\mathbb{N} is infinite

Lemma. (Baby "Pigeonhole Principle".) If $n \in \mathbb{N}$, then any injective function $f : n \to n$ is surjective.

\mathbb{N} is infinite

Lemma. (Baby "Pigeonhole Principle".) If $n\in\mathbb{N}$, then any injective function $f\colon n\to n$ is surjective.

Proof.

Lemma. (Baby "Pigeonhole Principle".) If $n \in \mathbb{N}$, then any injective function $f \colon n \to n$ is surjective.

Proof. (Induction on n.) Basis of Induction:

Lemma. (Baby "Pigeonhole Principle".) If $n \in \mathbb{N}$, then any injective function $f \colon n \to n$ is surjective.

Proof. (Induction on n.)

Basis of Induction: The unique function $f: 0 \to 0$ is the empty function,

Lemma. (Baby "Pigeonhole Principle".) If $n \in \mathbb{N}$, then any injective function $f \colon n \to n$ is surjective.

Proof. (Induction on n.)

Basis of Induction: The unique function $f: 0 \to 0$ is the empty function, which is the identity function on the set 0,

Lemma. (Baby "Pigeonhole Principle".) If $n \in \mathbb{N}$, then any injective function $f : n \to n$ is surjective.

Proof. (Induction on n.)

Basis of Induction: The unique function $f: 0 \to 0$ is the empty function, which is the identity function on the set 0, which is both injective and surjective.

Lemma. (Baby "Pigeonhole Principle".) If $n \in \mathbb{N}$, then any injective function $f \colon n \to n$ is surjective.

Proof. (Induction on n.)

Basis of Induction: The unique function $f: 0 \to 0$ is the empty function, which is the identity function on the set 0, which is both injective and surjective.

Inductive step:

Lemma. (Baby "Pigeonhole Principle".) If $n \in \mathbb{N}$, then any injective function $f : n \to n$ is surjective.

Proof. (Induction on n.)

Basis of Induction: The unique function $f: 0 \to 0$ is the empty function, which is the identity function on the set 0, which is both injective and surjective.

Inductive step: Assume the theorem is true for n and let $f \colon S(n) \to S(n)$ be an injective function.

Lemma. (Baby "Pigeonhole Principle".) If $n \in \mathbb{N}$, then any injective function $f : n \to n$ is surjective.

Proof. (Induction on n.)

Basis of Induction: The unique function $f: 0 \to 0$ is the empty function, which is the identity function on the set 0, which is both injective and surjective.

Inductive step: Assume the theorem is true for n and let $f \colon S(n) \to S(n)$ be an injective function. $(S(n) = n \cup \{n\}.)$

Lemma. (Baby "Pigeonhole Principle".) If $n \in \mathbb{N}$, then any injective function $f : n \to n$ is surjective.

Proof. (Induction on n.)

Basis of Induction: The unique function $f: 0 \to 0$ is the empty function, which is the identity function on the set 0, which is both injective and surjective.

Inductive step: Assume the theorem is true for n and let $f \colon S(n) \to S(n)$ be an injective function. $(S(n) = n \cup \{n\}.)$

Case 1.

Lemma. (Baby "Pigeonhole Principle".) If $n \in \mathbb{N}$, then any injective function $f : n \to n$ is surjective.

Proof. (Induction on n.)

Basis of Induction: The unique function $f: 0 \to 0$ is the empty function, which is the identity function on the set 0, which is both injective and surjective.

Inductive step: Assume the theorem is true for n and let $f \colon S(n) \to S(n)$ be an injective function. $(S(n) = n \cup \{n\}.)$

Case 1. (f restricts to a function $f|_n: n \to n$.)

Lemma. (Baby "Pigeonhole Principle".) If $n \in \mathbb{N}$, then any injective function $f \colon n \to n$ is surjective.

Proof. (Induction on n.)

Basis of Induction: The unique function $f: 0 \to 0$ is the empty function, which is the identity function on the set 0, which is both injective and surjective.

Inductive step: Assume the theorem is true for n and let $f \colon S(n) \to S(n)$ be an injective function. $(S(n) = n \cup \{n\}.)$

Case 1. (f restricts to a function $f|_n \colon n \to n$.) In this case, $f|_n$ is surjective and $f = f|_n \cup \{(n,n)\}$, so f is surjective.

Lemma. (Baby "Pigeonhole Principle".) If $n \in \mathbb{N}$, then any injective function $f : n \to n$ is surjective.

Proof. (Induction on n.)

Basis of Induction: The unique function $f: 0 \to 0$ is the empty function, which is the identity function on the set 0, which is both injective and surjective.

Inductive step: Assume the theorem is true for n and let $f \colon S(n) \to S(n)$ be an injective function. $(S(n) = n \cup \{n\}.)$

Case 1. (f restricts to a function $f|_n : n \to n$.) In this case, $f|_n$ is surjective and $f = f|_n \cup \{(n,n)\}$, so f is surjective.

Case 2.

Lemma. (Baby "Pigeonhole Principle".) If $n \in \mathbb{N}$, then any injective function $f \colon n \to n$ is surjective.

Proof. (Induction on n.)

Basis of Induction: The unique function $f: 0 \to 0$ is the empty function, which is the identity function on the set 0, which is both injective and surjective.

Inductive step: Assume the theorem is true for n and let $f \colon S(n) \to S(n)$ be an injective function. $(S(n) = n \cup \{n\}.)$

Case 1. (f restricts to a function $f|_n : n \to n$.) In this case, $f|_n$ is surjective and $f = f|_n \cup \{(n,n)\}$, so f is surjective.

Case 2. (f does not restrict to a function $f|_n: n \to n$,

Lemma. (Baby "Pigeonhole Principle".) If $n \in \mathbb{N}$, then any injective function $f : n \to n$ is surjective.

Proof. (Induction on n.)

Basis of Induction: The unique function $f: 0 \to 0$ is the empty function, which is the identity function on the set 0, which is both injective and surjective.

Inductive step: Assume the theorem is true for n and let $f: S(n) \to S(n)$ be an injective function. $(S(n) = n \cup \{n\}.)$

Case 1. (f restricts to a function $f|_n : n \to n$.) In this case, $f|_n$ is surjective and $f = f|_n \cup \{(n,n)\}$, so f is surjective.

Case 2. (f does not restrict to a function $f|_n \colon n \to n$, so f(m) = n for some m < n.) Replace f with

$$f' = (f - \{(m, n), (n, f(n))\}) \cup \{(m, f(n)), (n, n)\},\$$

which is also injective and which satisfies im(f') = im(f).

Lemma. (Baby "Pigeonhole Principle".) If $n \in \mathbb{N}$, then any injective function $f : n \to n$ is surjective.

Proof. (Induction on n.)

Basis of Induction: The unique function $f: 0 \to 0$ is the empty function, which is the identity function on the set 0, which is both injective and surjective.

Inductive step: Assume the theorem is true for n and let $f : S(n) \to S(n)$ be an injective function. $(S(n) = n \cup \{n\}.)$

Case 1. (f restricts to a function $f|_n : n \to n$.) In this case, $f|_n$ is surjective and $f = f|_n \cup \{(n,n)\}$, so f is surjective.

Case 2. (f does not restrict to a function $f|_n \colon n \to n$, so f(m) = n for some m < n.) Replace f with

$$f' = (f - \{(m, n), (n, f(n))\}) \cup \{(m, f(n)), (n, n)\},\$$

which is also injective and which satisfies im(f') = im(f). f' satisfies the conditions of Case 1,

N is infinite

Lemma. (Baby "Pigeonhole Principle".) If $n \in \mathbb{N}$, then any injective function $f : n \to n$ is surjective.

Proof. (Induction on n.)

Basis of Induction: The unique function $f: 0 \to 0$ is the empty function, which is the identity function on the set 0, which is both injective and surjective.

Inductive step: Assume the theorem is true for n and let $f: S(n) \to S(n)$ be an injective function. $(S(n) = n \cup \{n\}.)$

Case 1. (f restricts to a function $f|_n \colon n \to n$.) In this case, $f|_n$ is surjective and $f = f|_n \cup \{(n,n)\}$, so f is surjective.

Case 2. (f does not restrict to a function $f|_n \colon n \to n$, so f(m) = n for some m < n.) Replace f with

$$f' = (f - \{(m, n), (n, f(n))\}) \cup \{(m, f(n)), (n, n)\},\$$

which is also injective and which satisfies im(f') = im(f). f' satisfies the conditions of Case 1, so f' is surjective,

N is infinite

Lemma. (Baby "Pigeonhole Principle".) If $n \in \mathbb{N}$, then any injective function $f : n \to n$ is surjective.

Proof. (Induction on n.)

Basis of Induction: The unique function $f: 0 \to 0$ is the empty function, which is the identity function on the set 0, which is both injective and surjective.

Inductive step: Assume the theorem is true for n and let $f : S(n) \to S(n)$ be an injective function. $(S(n) = n \cup \{n\}.)$

Case 1. (f restricts to a function $f|_n : n \to n$.) In this case, $f|_n$ is surjective and $f = f|_n \cup \{(n,n)\}$, so f is surjective.

Case 2. (f does not restrict to a function $f|_n \colon n \to n$, so f(m) = n for some m < n.) Replace f with

$$f' = (f - \{(m, n), (n, f(n))\}) \cup \{(m, f(n)), (n, n)\},\$$

which is also injective and which satisfies im(f') = im(f). f' satisfies the conditions of Case 1, so f' is surjective, so f is surjective.

N is infinite

Lemma. (Baby "Pigeonhole Principle".) If $n \in \mathbb{N}$, then any injective function $f : n \to n$ is surjective.

Proof. (Induction on n.)

Basis of Induction: The unique function $f: 0 \to 0$ is the empty function, which is the identity function on the set 0, which is both injective and surjective.

Inductive step: Assume the theorem is true for n and let $f : S(n) \to S(n)$ be an injective function. $(S(n) = n \cup \{n\}.)$

Case 1. (f restricts to a function $f|_n : n \to n$.) In this case, $f|_n$ is surjective and $f = f|_n \cup \{(n,n)\}$, so f is surjective.

Case 2. (f does not restrict to a function $f|_n \colon n \to n$, so f(m) = n for some m < n.) Replace f with

$$f' = (f - \{(m, n), (n, f(n))\}) \cup \{(m, f(n)), (n, n)\},\$$

which is also injective and which satisfies $\operatorname{im}(f') = \operatorname{im}(f)$. f' satisfies the conditions of Case 1, so f' is surjective, so f is surjective. \square

• (Pigeonhole Principle)

• (Pigeonhole Principle)

• (Pigeonhole Principle) If n > m, then there is no injective function $f: n \to m$.

• (Pigeonhole Principle) If n > m, then there is no injective function $f: n \to m$. (Otherwise,

• (Pigeonhole Principle) If n > m, then there is no injective function $f: n \to m$. (Otherwise, $f: n \to n$ is injective and not surjective.)

- (Pigeonhole Principle) If n > m, then there is no injective function $f: n \to m$. (Otherwise, $f: n \to n$ is injective and not surjective.)
- If $m, n \in \mathbb{N}$, then |m| = |n| holds iff m = n holds.

- (Pigeonhole Principle) If n > m, then there is no injective function $f: n \to m$. (Otherwise, $f: n \to n$ is injective and not surjective.)
- If $m, n \in \mathbb{N}$, then |m| = |n| holds iff m = n holds.

- (Pigeonhole Principle) If n > m, then there is no injective function $f: n \to m$. (Otherwise, $f: n \to n$ is injective and not surjective.)
- ② If $m, n \in \mathbb{N}$, then |m| = |n| holds iff m = n holds.

- (Pigeonhole Principle) If n > m, then there is no injective function $f: n \to m$. (Otherwise, $f: n \to n$ is injective and not surjective.)
- ② If $m, n \in \mathbb{N}$, then |m| = |n| holds iff m = n holds.
- \odot N is infinite.

- (Pigeonhole Principle) If n > m, then there is no injective function $f: n \to m$. (Otherwise, $f: n \to n$ is injective and not surjective.)
- ② If $m, n \in \mathbb{N}$, then |m| = |n| holds iff m = n holds.

Assume otherwise that there is a bijection between $\mathbb N$ and some $m\in\mathbb N$,

- (Pigeonhole Principle) If n > m, then there is no injective function $f: n \to m$. (Otherwise, $f: n \to n$ is injective and not surjective.)
- ② If $m, n \in \mathbb{N}$, then |m| = |n| holds iff m = n holds.

Assume otherwise that there is a bijection between \mathbb{N} and some $m \in \mathbb{N}$, If $f : \mathbb{N} \to m$ is a bijection

- (Pigeonhole Principle) If n > m, then there is no injective function $f: n \to m$. (Otherwise, $f: n \to n$ is injective and not surjective.)
- ② If $m, n \in \mathbb{N}$, then |m| = |n| holds iff m = n holds.

Assume otherwise that there is a bijection between \mathbb{N} and some $m \in \mathbb{N}$, If $f : \mathbb{N} \to m$ is a bijection (or even an injection),

- (Pigeonhole Principle) If n > m, then there is no injective function $f: n \to m$. (Otherwise, $f: n \to n$ is injective and not surjective.)
- ② If $m, n \in \mathbb{N}$, then |m| = |n| holds iff m = n holds.

Assume otherwise that there is a bijection between \mathbb{N} and some $m \in \mathbb{N}$, If $f : \mathbb{N} \to m$ is a bijection (or even an injection), then for any n > m

- (Pigeonhole Principle) If n > m, then there is no injective function $f: n \to m$. (Otherwise, $f: n \to n$ is injective and not surjective.)
- ② If $m, n \in \mathbb{N}$, then |m| = |n| holds iff m = n holds.

Assume otherwise that there is a bijection between \mathbb{N} and some $m \in \mathbb{N}$, If $f : \mathbb{N} \to m$ is a bijection (or even an injection), then for any n > m we have that $f|_n : n \to m$ is injective.

- (Pigeonhole Principle) If n > m, then there is no injective function $f: n \to m$. (Otherwise, $f: n \to n$ is injective and not surjective.)
- ② If $m, n \in \mathbb{N}$, then |m| = |n| holds iff m = n holds.

Assume otherwise that there is a bijection between \mathbb{N} and some $m \in \mathbb{N}$, If $f : \mathbb{N} \to m$ is a bijection (or even an injection), then for any n > m we have that $f|_n : n \to m$ is injective. This contradicts the Pigeonhole Principle.

- (Pigeonhole Principle) If n > m, then there is no injective function $f: n \to m$. (Otherwise, $f: n \to n$ is injective and not surjective.)
- ② If $m, n \in \mathbb{N}$, then |m| = |n| holds iff m = n holds.
- N is infinite.

Assume otherwise that there is a bijection between \mathbb{N} and some $m \in \mathbb{N}$, If $f : \mathbb{N} \to m$ is a bijection (or even an injection), then for any n > m we have that $f|_n : n \to m$ is injective. This contradicts the Pigeonhole Principle.

• If $|\mathbb{N}| \leq |X|$, then X is infinite.

- (Pigeonhole Principle) If n > m, then there is no injective function $f: n \to m$. (Otherwise, $f: n \to n$ is injective and not surjective.)
- ② If $m, n \in \mathbb{N}$, then |m| = |n| holds iff m = n holds.
- N is infinite.

Assume otherwise that there is a bijection between \mathbb{N} and some $m \in \mathbb{N}$, If $f : \mathbb{N} \to m$ is a bijection (or even an injection), then for any n > m we have that $f|_n : n \to m$ is injective. This contradicts the Pigeonhole Principle.

• If $|\mathbb{N}| \leq |X|$, then X is infinite.

- (Pigeonhole Principle) If n > m, then there is no injective function $f: n \to m$. (Otherwise, $f: n \to n$ is injective and not surjective.)
- ② If $m, n \in \mathbb{N}$, then |m| = |n| holds iff m = n holds.
- N is infinite.

Assume otherwise that there is a bijection between \mathbb{N} and some $m \in \mathbb{N}$, If $f \colon \mathbb{N} \to m$ is a bijection (or even an injection), then for any n > m we have that $f|_n \colon n \to m$ is injective. This contradicts the Pigeonhole Principle.

• If $|\mathbb{N}| \leq |X|$, then X is infinite.

Assume otherwise that there is an injection $f : \mathbb{N} \to X$

- (Pigeonhole Principle) If n > m, then there is no injective function $f: n \to m$. (Otherwise, $f: n \to n$ is injective and not surjective.)
- ② If $m, n \in \mathbb{N}$, then |m| = |n| holds iff m = n holds.
- N is infinite.

Assume otherwise that there is a bijection between \mathbb{N} and some $m \in \mathbb{N}$, If $f : \mathbb{N} \to m$ is a bijection (or even an injection), then for any n > m we have that $f|_n : n \to m$ is injective. This contradicts the Pigeonhole Principle.

• If $|\mathbb{N}| \leq |X|$, then X is infinite.

Assume otherwise that there is an injection $f : \mathbb{N} \to X$ and a bijection $g : X \to m, m \in \mathbb{N}$.

- (Pigeonhole Principle) If n > m, then there is no injective function $f: n \to m$. (Otherwise, $f: n \to n$ is injective and not surjective.)
- ② If $m, n \in \mathbb{N}$, then |m| = |n| holds iff m = n holds.

Assume otherwise that there is a bijection between \mathbb{N} and some $m \in \mathbb{N}$, If $f : \mathbb{N} \to m$ is a bijection (or even an injection), then for any n > m we have that $f|_n : n \to m$ is injective. This contradicts the Pigeonhole Principle.

• If $|\mathbb{N}| \leq |X|$, then X is infinite.

Assume otherwise that there is an injection $f: \mathbb{N} \to X$ and a bijection $g: X \to m, m \in \mathbb{N}$. Then $g \circ f: \mathbb{N} \to m$ is an injection, and we get a contradiction as above.

① A set X is **countably infinite** if there is bijection $f : \mathbb{N} \to X$.

① A set X is **countably infinite** if there is bijection $f : \mathbb{N} \to X$.

- **①** A set X is **countably infinite** if there is bijection $f : \mathbb{N} \to X$.
- $oldsymbol{0}$ A set X is **countable** if it is finite or countably infinite.

- **①** A set X is **countably infinite** if there is bijection $f : \mathbb{N} \to X$.
- $oldsymbol{0}$ A set X is **countable** if it is finite or countably infinite.

- **①** A set X is **countably infinite** if there is bijection $f : \mathbb{N} \to X$.
- $oldsymbol{0}$ A set X is **countable** if it is finite or countably infinite.
- **3** A set *X* is **uncountable** if it is not countable.

- **①** A set X is **countably infinite** if there is bijection $f : \mathbb{N} \to X$.
- $oldsymbol{2}$ A set X is **countable** if it is finite or countably infinite.
- **3** A set *X* is **uncountable** if it is not countable.

- **①** A set X is **countably infinite** if there is bijection $f : \mathbb{N} \to X$.
- $oldsymbol{2}$ A set X is **countable** if it is finite or countably infinite.
- **3** A set *X* is **uncountable** if it is not countable.

- **①** A set X is **countably infinite** if there is bijection $f : \mathbb{N} \to X$.
- ② A set X is **countable** if it is finite or countably infinite.
- **3** A set *X* is **uncountable** if it is not countable.

Examples.

- **①** A set X is **countably infinite** if there is bijection $f: \mathbb{N} \to X$.
- ② A set X is **countable** if it is finite or countably infinite.
- **3** A set *X* is **uncountable** if it is not countable.

Examples.

• The following sets are countable:

- **①** A set X is **countably infinite** if there is bijection $f: \mathbb{N} \to X$.
- ② A set X is **countable** if it is finite or countably infinite.
- **3** A set *X* is **uncountable** if it is not countable.

Examples.

• The following sets are countable:

Finite versus Infinite

- **①** A set X is **countably infinite** if there is bijection $f: \mathbb{N} \to X$.
- ② A set X is **countable** if it is finite or countably infinite.
- **3** A set *X* is **uncountable** if it is not countable.

Examples.

• The following sets are countable:

 $\mathbb{N},$

- **①** A set X is **countably infinite** if there is bijection $f : \mathbb{N} \to X$.
- ② A set X is **countable** if it is finite or countably infinite.
- **3** A set *X* is **uncountable** if it is not countable.

Examples.

• The following sets are countable:

 $\mathbb{N}, \quad \mathbb{Z},$

- **①** A set X is **countably infinite** if there is bijection $f : \mathbb{N} \to X$.
- ② A set X is **countable** if it is finite or countably infinite.
- **3** A set *X* is **uncountable** if it is not countable.

Examples.

• The following sets are countable:

 $\mathbb{N}, \quad \mathbb{Z}, \quad \mathbb{Q},$

- **①** A set X is **countably infinite** if there is bijection $f : \mathbb{N} \to X$.
- ② A set X is **countable** if it is finite or countably infinite.
- **3** A set *X* is **uncountable** if it is not countable.

Examples.

• The following sets are countable:

 \mathbb{N} , \mathbb{Z} , \mathbb{Q} , and

- **①** A set X is **countably infinite** if there is bijection $f : \mathbb{N} \to X$.
- ② A set X is **countable** if it is finite or countably infinite.
- **3** A set *X* is **uncountable** if it is not countable.

Examples.

• The following sets are countable:

 $\mathbb{N}, \mathbb{Z}, \mathbb{Q}, \text{ and } \mathbb{W}$

- **①** A set X is **countably infinite** if there is bijection $f : \mathbb{N} \to X$.
- ② A set X is **countable** if it is finite or countably infinite.
- **3** A set *X* is **uncountable** if it is not countable.

Examples.

• The following sets are countable:

$$\mathbb{N}, \mathbb{Z}, \mathbb{Q}, \text{ and } \mathbb{W}$$

where \mathbb{W} is the set of all finite-length strings of symbols from some countable alphabet.

- **①** A set X is **countably infinite** if there is bijection $f : \mathbb{N} \to X$.
- ② A set X is **countable** if it is finite or countably infinite.
- **3** A set *X* is **uncountable** if it is not countable.

Examples.

• The following sets are countable:

$$\mathbb{N}$$
, \mathbb{Z} , \mathbb{Q} , and \mathbb{W}

where \mathbb{W} is the set of all finite-length strings of symbols from some countable alphabet.

The following sets are uncountable:

- **①** A set X is **countably infinite** if there is bijection $f : \mathbb{N} \to X$.
- ② A set X is **countable** if it is finite or countably infinite.
- **3** A set *X* is **uncountable** if it is not countable.

Examples.

• The following sets are countable:

$$\mathbb{N}$$
, \mathbb{Z} , \mathbb{Q} , and \mathbb{W}

where \mathbb{W} is the set of all finite-length strings of symbols from some countable alphabet.

The following sets are uncountable:

- **①** A set X is **countably infinite** if there is bijection $f : \mathbb{N} \to X$.
- ② A set X is **countable** if it is finite or countably infinite.
- **3** A set *X* is **uncountable** if it is not countable.

Examples.

• The following sets are countable:

$$\mathbb{N}$$
, \mathbb{Z} , \mathbb{Q} , and \mathbb{W}

where \mathbb{W} is the set of all finite-length strings of symbols from some countable alphabet.

2 The following sets are uncountable:

 \mathbb{R} ,

- **①** A set X is **countably infinite** if there is bijection $f : \mathbb{N} \to X$.
- ② A set X is **countable** if it is finite or countably infinite.
- **3** A set *X* is **uncountable** if it is not countable.

Examples.

• The following sets are countable:

$$\mathbb{N}$$
, \mathbb{Z} , \mathbb{Q} , and \mathbb{W}

where \mathbb{W} is the set of all finite-length strings of symbols from some countable alphabet.

The following sets are uncountable:

$$\mathbb{R}$$
, \mathbb{R}^n

- **①** A set X is **countably infinite** if there is bijection $f : \mathbb{N} \to X$.
- ② A set X is **countable** if it is finite or countably infinite.
- **3** A set *X* is **uncountable** if it is not countable.

Examples.

• The following sets are countable:

$$\mathbb{N}$$
, \mathbb{Z} , \mathbb{Q} , and \mathbb{W}

where \mathbb{W} is the set of all finite-length strings of symbols from some countable alphabet.

The following sets are uncountable:

$$\mathbb{R}$$
, $\mathbb{R}^n (n > 0)$,

- **①** A set X is **countably infinite** if there is bijection $f: \mathbb{N} \to X$.
- ② A set X is **countable** if it is finite or countably infinite.
- **3** A set *X* is **uncountable** if it is not countable.

Examples.

• The following sets are countable:

$$\mathbb{N}$$
, \mathbb{Z} , \mathbb{Q} , and \mathbb{W}

where \mathbb{W} is the set of all finite-length strings of symbols from some countable alphabet.

The following sets are uncountable:

$$\mathbb{R}$$
, $\mathbb{R}^n (n > 0)$, \mathbb{C} ,

- **①** A set X is **countably infinite** if there is bijection $f : \mathbb{N} \to X$.
- ② A set X is **countable** if it is finite or countably infinite.
- **3** A set *X* is **uncountable** if it is not countable.

Examples.

• The following sets are countable:

$$\mathbb{N}$$
, \mathbb{Z} , \mathbb{Q} , and \mathbb{W}

where \mathbb{W} is the set of all finite-length strings of symbols from some countable alphabet.

2 The following sets are uncountable:

$$\mathbb{R}$$
, $\mathbb{R}^n (n > 0)$, \mathbb{C} , $\mathcal{P}(\mathbb{N})$.