DISCRETE MATH (MATH 2001)
REVIEW SHEET II
Sections 2.7, 3.1, 3.2, 3.5, 3.6.1, 4.1-4.4, 4.6.1, 4.8, 6.1-6.3, 6.5, 6.6

IV. Cardinality.
(a) Meaning of |A| < |B|, |A| = |B|, and |A| < |B].
(b) Finite and infinite. Countable and uncountable.
(c) Pigeonhole Principle. N is infinite.
(d) Cantor-Bernstein-Schroeder Theorem.
(e) Cantor’s Theorem.
(f) IN[ < [P(N)| = [R| = [R"].
V. Logic.
(a) Structures.
(b) Alphabet of symbols. Ingredients in a compound predicate.

T Y z
primary primary logical
operations  predicates operations

B

compound predicate

(c) Deciding the truth of a statement in a structure.
(i) Assigning tables to terms.

(ii) Assigning tables to atomic formulas.

(iii) Logical connectives. Truth tables. Propositional tautology. Propositional
contradiction. Logical equivalence of propositions. Logical implication of
propositions. Logical independence of propositions.

(iv) Effect of logical connectives and quantifiers on the tables for predicates.

(vi) Disjunctive normal form.

(vii) Prenex form.

(viii) Quantifier games. Winning strategies.
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(d) Proof.
(i) Definition of “proof”.
(ii) Axioms. Logically valid sentence.
(iii) Laws of deduction. Modus ponens, modus tollens.
(iv) Direct proof, proof of the contrapositive, and proof by contradiction. Proof
by cases.
(v) The use of truth tables for designing proof strategies.
(vi) The relationship between truth and provability: semantic consequence
(X | S) versus syntactic consequence (3 F 5).
(vii) Significance of Soundness and Completeness with regard to proof systems.
(vii) Relevance of Godel’s Completeness Theorem.

VI. Counting.
(a) Additive counting principle and multiplicative counting principle.
(b) Number of functions f : kK — n. Characteristic functions. |P(n)|.
(c) Number of injective functions f : k — n.
(d) Number of bijective functions f : k& — n. Number of permutations of a finite
set.
(e) If E is a uniform equivalence relation on X, then

| X/E| = |X|/(common size of E-classes).

(f) Binomial coefficients: definition, formula, recursion, Binomial Theorem, Pascal’s
Triangle, combinatorial proof.

(g) Multinomial coefficients: definition, formula, recursion, Multinomial Theorem,
Pascal’s Pyramid.

(h) Multichoose numbers: definition, formula.

(i) Inclusion-exclusion.

(j) Number of surjective functions f : k — n.

(k) Stirling numbers of the second kind: definition, formula, recursion.

General advice on preparing for a math test.
Be prepared to demonstrate understanding in the following ways.

(i) Know the definitions of new concepts, and the meanings of the definitions.

(ii) Know the statements and meanings of the major theorems.

(iii) Know examples/counterexamples. (The purpose of an example is to illustrate the
extent of a definition or theorem. The purpose of a counterexample is to indicate
the limits of a definition or theorem.)

(iv) Know how to perform the different kinds of calculations discussed in class. (Here
calculation refers to any routine or mechanical procedure, such as creating a truth
table or putting a sentence in prenex form.)

(v) Be prepared to prove elementary statements. (Understanding the proofs done in
class is the best preparation for this.)



(vi) Know how to correct mistakes made on old HW.

Is the final exam cumulative?

No. The final exam will cover only material discussed after the October 6 midterm.

Specifically, you will be examined only on Section 2.7 (Cardinality) and parts of Chapters
3, 4 (logic) and 6 (counting). But some of this later material relies on earlier material. For
example, in some problems you might need to know what a subset is, even though that is not
the focus of the problem. For another example, a question on logic might ask you to write
a sentence formally. The sentence might be about sets or functions or natural numbers,
and you might need to know about sets or functions or the natural numbers to write the
sentence correctly.

Some definitions to know.

(1) Predicate. Operation. Structure.
2) Logical connective. Truth table. Tautology. Contradiction.

) Contrapositive. Converse. Inverse.

) Disjunction. Conjunction. Disjunctive normal form.

) Proof. Axioms. Rules of deduction.

) Valid sentence.

) Semantic consequence. Syntactic consequence.

) Soundness. Completeness.

) Additive counting principal. Multiplicative counting principal.

) Binomial coefficient. Multinomial coefficient. Multichoose number. Stirling number.
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Some theorems to know.

(1) Pigeonhole Principle.

(2) Cantor-Bernstein-Schroeder Theorem.

(3) Cantor’s Theorem.

(4) Godel’s Completeness Theorem.

(5) Binomial Theorem. Multinomial Theorem.
(6) Inclusion-Exclusion Theorem.

Practice Problems.
(1) How do you answer a question where you are asked to “Give an example”?

Give an example of such a question.

(2) How do you answer a question where you are asked to “Give a definition”?

Define “definition”.



(3) If you are asked to “Give a proof or counterexample”, how do you decide which thing
to do?

Give a proof or counterexample to the claim “Every prime is odd.”

(4) Suppose the task is to define the word “function”, and the answer given is “A function
is something with an input and an output, like f(z) = x+1.” Explain what is wrong
with this answer.

(5) State the theorem.
(a) Cantor’s Theorem.
(b) Cantor-Bernstein-Schroeder Theorem.

(6) True or False? Explain.
(a) If AC BC (C and |A| =|C], then |A| = |B].
(b) If A has an uncountable subset, then A is uncountable.

(7) Write a formal sentence expressing the Axiom of Union. Then draw a formula tree
for your sentence.

(8) Suppose that P and @ are compound propositions.
a) Must the implication P — () be logically equivalent to its converse?
gically
a) Must the implication P — () be logically inequivalent to its converse?
gically
a) Must the implication P — () be logically independent of its converse?
p g Yy P

(9) A theorem with two hypotheses and one conclusion has the form ((Hy A Hy) — C).
Which of the following implications defines a valid proof strategy?
(a) (H A (=C)) — (-Hy) (the proof would look like Hy, (=C'),- -+, (=Ha).)
(b) (=€) = ((~H1) A (~H2)))
(¢) (H — (Hy — ()

(10) A politician claims that if we adopt their plan, then everyone will benefit. Let A =
“we adopt their plan” and let B(z) = “z benefits”. This claim may be formalized
as “A — (Vz)B(x)”. When asked to justify their claim, the politician explains”
“Imagine if we did not adopt the plan. Then X, Y, and Z are likely to happen,
and some people will not benefit”. This explanation may be formalized as “(—A) —
(3z)(=B(z))”. Does this explanation justify the claim? Explain why or why not.



(11) Write the following sentence in prenex form.

(V) (Vy)((z < y) = (B2)(z < 2)) AM(EF2)((z < 2) A (2 <9))) A((F2)(y < 2)))

Decide the truth of this sentence in (a) (R; <), (b) (Z; <) by describing a winning
strategy for the relevant quantifier.

(12) The following sentence expresses that the function f(z) = 2z + 1 is continuous at
x =1
(Ve > 0)(3 > 0)(Vz)((0 < |z — 1| < &) = (|f(x) = f(1)| < ¢e)).
Explain why the following is a winning strategy for 3 for this sentence in the structure
<R7 +, =, 07 ) 17 |$|7 < f(l')>
e V chooses some €.

e J chooses 6 = ¢/2.
e Y chooses some z.

Is f(z) = 2z + 1 continuous at x = 17
(13) Prove that the empty set is finite.

(14) How many license plates have exactly 7 characters consisting of decimal digits (0, 1,...,9)
and letters of the alphabet (a,b,...,z)7 What if there are exactly 3 decimal digits,
4 letters of the alphabet, and the digits must come before the letters?

(15) How many license plates have 3 decimal digits and 4 letters of the alphabet if the
plate must start and end with a digit, and either start with 9 or end with 97

(16) How many ways are there to distribute 12 different books to 3 people? What if each
person must get at least one book?

(17) How many ways are there to distribute 12 identical textbooks to three shelves? How
many ways to distribute 12 different books to three shelves? (In the second question,
assume that the order of the books on each shelf matters.)

(18) How many positive integral solutions are there to the equation
T+ 2o+ T3+ x4+ T5+ X6 = 1007

How many nonnegative integral solutions are there?



(19) How many ways are there to make 3 fruit baskets from 8 pineapples, 10 pomegranates,
6 coconuts and 20 figs if each basket must contain each kind of fruit?

(20) In your department, everyone works in one of three workgroups. Workgroups A and
B each have a total of 23 workers; Workgroup C has a total of 32 workers; there are
5 workers who belong in both groups A and B; 10 workers who belong in both B and
C; 8 workers who belong in both A and C; and three workers who belong in all three
groups. How many workers are in your department?

(21) How many positive integers less than 1000 are not divisible by 2, 3, 5 or 77
(22) How many 5 digit numbers fail to contain the sequence 017 How about 007

(23) How many 6 digit numbers have the property that, for every k, the kth digit is
different than the (7 — k)th digit?

(24) Give a combinatorial proof that S(n,n — 1) = C(n, 2).

(25) Suppose that |A| = n and |B| = m. How many pairs (X,Y) are there where
X = coim(f) and Y = im(f) for some function f: A — B?



