Discrete Math Quiz 6

Name:			

You have 10 minutes to complete this quiz. You may not use any unauthorized sources and you may not communicate with others about the exam. If you have a question raise your hand and remain seated. In order to receive full credit your answer must be **complete**, **legible** and **correct**. Show your work, and give adequate explanations.

1. State Cantor's Theorem.

Cantor's Theorem. For any set A, $|A| < |\mathcal{P}(A)|$.

2. Is $((p \to q) \leftrightarrow (q \to p))$ a tautology? (Explain.)

No.

If $((p \to q) \leftrightarrow (q \to p))$ were a tautology, then we would have $(p \to q) \equiv (q \to p)$. However, the only truth assignment that makes $p \to q$ false is p = 1, q = 0, and this assignment does NOT make $q \to p$ false, so $p \to q$ is NOT equivalent to $q \to p$.

You can answer this question with a truth table, too.

p	q	$p \rightarrow q$	$q \rightarrow p$	$(p \to q) \leftrightarrow (q \to p)$
0	0	1	1	1
0	1	1	0	0
1	0	0	1	0
1	1	1	1	1

The final column contains some 0's, so the proposition is not a tautology.