Solutions to HW 9.

1. This problem involves a deck of 52 distinct playing cards.
(a) In how many ways can a 13 -card bridge hand be dealt from the deck?

We want an ordered sequence of 13 cards chosen from a 52-element set. There are 13 ! $\cdot\binom{52}{13}=(52)_{13}=\frac{52 \text { ! }}{39 \text { ! of these. }}$
(b) How many different 13-card bridge hands are there?

We want a 13 -card subset of a 52 -element set. There are $\binom{52}{13}=\frac{52!}{13!39!}$ of these.
2. (a) How many paths are there from the point $(0,0)$ of \mathbb{R}^{2} to the point $(10,15)$ of \mathbb{R}^{2} if each path consists of a sequence of steps of length 1 moving in the direction of the positive x-axis or the positive y-axis?

We can describe a path by a list of instructions of the form " $(x, x, y, x, y, y, \ldots, x, y, y)$ ", which is a string of $10 x$'s and $15 y$'s in some order. If the first two instructions are x, then we take our first two steps in the x direction; if our next instruction is y, we take our next step in the y direction. ETC.
The number of paths is equal to the number of lists of instructions, which is equal to the number of strings of length $10+15=25$ consisting of x 's and y 's, which contain $10 x$'s and $15 y$'s. This number is $\binom{25}{10}=\frac{25}{10!15!}$. (You have 25 instructions, and you "choose" 10 instructions to be x 's and let the remaining 15 instructions be y 's.)
(b) How many paths are there from the point $(0,0,0)$ of \mathbb{R}^{3} to the point $(10,15,20)$ of \mathbb{R}^{3} if each path consists of a sequence of steps of length 1 moving in the direction of the positive x-axis, the positive y-axis or the positive z-axis?

Using the same reasoning, we want to count strings of length $10+15+20=45$ which have $10 x$'s, $15 y$'s, and $20 z$'s. The number is $\binom{45}{10,15,20}=\frac{45!}{10!15!20!}$.
3. Let $M C(n, k)$ be the number " n-multichoose- k ". Use a combinatorial argument to show that $M C(n, 0)+M C(n, 1)+\cdots+M C(n, k)=M C(n+1, k)$.

Solution 1. (A combinatorial argument.) Let D be the set of all distributions of k identical balls to $n+1$ distinct boxes with repetition allowed. $|D|=M C(n+1, k)=\left(\binom{n+1}{k}\right)=\binom{n+k}{k}$.

Partition D into sets $D_{0}, D_{1}, \ldots, D_{k}$ where $D_{i} \subseteq D$ is the number of distributions where i balls are distributed to the first n boxes, while the remaining $k-i$ balls are distributed to the last box. Since we can distribute i identical balls to the first n boxes in $M C(n, i)$ ways, and we have no choice but to put the remaining $k-i$ balls into the last box, we have $\left|D_{i}\right|=M C(n, i)$. Since we have a partition,

$$
M C(n+1, k)=|D|=\left|D_{0}\right|+\left|D_{1}\right|+\cdots+\left|D_{k}\right|=M C(n, 0)+M C(n, 1)+\cdots+M C(n, k)
$$

Solution 2. (Not a combinatorial argument, but OK.)

$$
\begin{aligned}
& M C(n, 0)+M C(n, 1)+\cdots+M C(n, k)=\binom{n-1}{0}+\binom{n}{1}+\binom{n+1}{2}+\cdots+\binom{n+k-1}{k} \\
&\left.=\left[\begin{array}{c}
n \\
0
\end{array}\right)+\binom{n}{1}\right]+\binom{n+1}{2}+\cdots+\binom{n+k-1}{k} \\
&\left.=\left[\begin{array}{c}
n+1 \\
1
\end{array}\right)\right]+\binom{n+1}{2}+\cdots+\binom{n+k-1}{k} \\
&\left.=\left[\begin{array}{c}
n+1 \\
1
\end{array}\right)+\binom{n+1}{2}\right]+\cdots+\binom{n+k-1}{k} \\
& \vdots \\
&=\binom{n+k-1}{k-1}+\binom{n+k-1}{k} \\
&=\binom{n+k}{k}=M C(n+1, k) .
\end{aligned}
$$

