Solutions to HW 8.

1. Show that " $A \subseteq B$ and $B \subseteq A$ implies $A=B$ " in each of the following two ways.
(a) With a direct proof.

We assume that $(A \subseteq B) \wedge(B \subseteq A)$, and argue that $A=B$.
Choose any $a \in A$. Since $A \subseteq B$, it follows that $a \in B$. Now choose any $b \in B$. Since $B \subseteq A$, it follows that $b \in A$. We have shown that A and B have the same elements, so $A=B$ by the Axiom of Extensionality.
(b) With a proof of the contrapositive.

Assume that $A \neq B$. The two sets do not have the same elements, so either (i) there is some x in A that is not in $B(x \in A-B)$ or (ii) there is some y in B that is not in $A(y \in B-A)$. In Case (i), $A \nsubseteq B$, while in Case (ii), $B \nsubseteq A$. This shows that

$$
(A \neq B) \rightarrow(A \nsubseteq B) \vee(B \nsubseteq A),
$$

which is the contrapositive statement.
2. Prove the statement "If $A \cap B=\emptyset$ and $A \cup B=B$, then $A=\emptyset$ " in each of the following two ways.
(a) With a direct proof.

Assume that $A \cap B=\emptyset$ and $A \cup B=B$. We have

$$
\begin{aligned}
\emptyset & =A \cap \underline{B} & & \text { Assumption } \\
& =A \cap(\underline{A \cup B}) & & \text { Assumption } \\
& =A & & \text { Absorption Law, (true of any sets } A, B)
\end{aligned}
$$

A second direct proof:

$$
\begin{aligned}
\emptyset & =A \cap \underline{B} & & \text { Assumption } \\
& =A \cap(\underline{A \cup B}) & & \text { Assumption } \\
& =(A \cap A) \cup(A \cap B) & & \text { Distributive Law } \\
& =(A \cap A) \cup \emptyset & & \text { Assumption } \\
& =A \cap A & & \emptyset \text { is a unit element for } \cup \\
& =A & & \text { Idempotence of } \cap
\end{aligned}
$$

(b) With a proof by contradiction.

Assume that $A \cap B=\emptyset, A \cup B=B$, but $A \neq \emptyset$. Since $A \neq \emptyset$, there exists some $x \in A$. From the definition of union, $x \in A \cup B(=B)$. Therefore $x \in A$ and $x \in B$, so $x \in A \cap B$, contradicting $A \cap B=\emptyset$.
3. The goal of this problem is to prove that the composition of two injective functions is injective. The type of structure involved looks like $\mathbb{X}=\langle A, B, C ; f, g\rangle$ where $f: A \rightarrow B$ and $g: B \rightarrow C$ are functions. Let the variables a, a^{\prime} range over the set A and and the variables b, b^{\prime} range over the set B.

The functions (i) f, (ii) g, (iii) $g \circ f$ are injective if the following sentences hold in \mathbb{X} :
(i) $(\forall a)\left(\forall a^{\prime}\right)\left(\left(f(a)=f\left(a^{\prime}\right)\right) \rightarrow\left(a=a^{\prime}\right)\right)$.
(ii) $(\forall b)\left(\forall b^{\prime}\right)\left(\left(g(b)=g\left(b^{\prime}\right) \rightarrow\left(b=b^{\prime}\right)\right)\right.$.
(iii) $(\forall a)\left(\forall a^{\prime}\right)\left(\left(g \circ f(a)=g \circ f\left(a^{\prime}\right)\right) \rightarrow\left(a=a^{\prime}\right)\right)$.

To prove that the composition of injective functions is injective, you must give a winning strategy for \exists in the sentence in (iii). YOU ARE ALLOWED TO USE the fact that there exist winning strategies for \exists in the sentences in (i) and (ii). Write a proof that indicates the winning strategy for \exists in (iii), which accesses the information of the strategies for \exists in (i) and (ii).

We must provide a winning strategy for \exists for Game (iii). We are allowed to use that there exist winning strategies for \exists in Games (i) and (ii).

Since the existential quantifier \exists does not appear in any of the sentences, the only possible strategy for \exists in any of these games is "Do nothing". That is, the strategy for \exists is "just watch while \forall plays". We need to explain why this is a winning strategy for \exists in Game (iii).

Each of the sentences has the form

$$
\text { (Quantifiers)(Premise } \rightarrow \text { Conclusion). }
$$

Recall that $P \rightarrow C$ fails only when the premise P is true and the conclusion C is false. We will use this fact.

We argue that "Do nothing" is a winning strategy for \exists for Game (iii). Suppose

- (Play 1): \forall chooses some $a \in A$.
- (Play 2): \forall chooses some $a^{\prime} \in A$.

We must show that $\left(g \circ f(a)=g \circ f\left(a^{\prime}\right)\right) \rightarrow\left(a=a^{\prime}\right)$ holds.
Case 1. (The premise $P: " g \circ f(a)=g \circ f\left(a^{\prime}\right)$ " of sentence (iii) does not hold.)
In this case, \exists has won, since $(P \rightarrow C)$ is true when the premise does not hold.
Case 2. (The premise $P:$ " $g \circ f(a)=g \circ f\left(a^{\prime}\right) "$ of sentence (iii) DOES hold.)
In this case, let $b=f(a)$ and $b^{\prime}=f\left(a^{\prime}\right)$. (Here \exists is imagining an instance of Game (ii) where \forall chooses $b=f(a)$ and $b^{\prime}=f\left(a^{\prime}\right)$.) Since the premise of sentence (iii) holds, we obtain $g(b)=g(f(a))=g\left(f\left(a^{\prime}\right)\right)=g\left(b^{\prime}\right)$, establishing that the premise of sentence (ii) holds. Since we are assuming that the sentence in (ii) is true, the conclusion $b=b^{\prime}$ of Game (ii) holds. Now, $f(a)=b=b^{\prime}=f\left(a^{\prime}\right)$, establishing that the premise of statement (i) holds. Since we are assuming that the sentence in (i) is true, the conclusion $a=a^{\prime}$ holds. This establishes that \exists wins in Case 2.

These are the only cases, so "Do nothing" is a winning strategy for \exists.

