Solutions to HW 7.

1. This problem concerns the formal sentence

$$
(\forall x)(\forall y)\left(\left(\left((\exists z)\left(x=z^{2}\right)\right) \wedge\left((\exists z)\left(y=z^{2}\right)\right)\right) \rightarrow\left((\exists z)\left(x+y=z^{2}\right)\right)\right)
$$

(a) Draw the formula tree for this sentence.
[Two Latex versions! The first uses "tikz" and the second uses the "forest" package.]

(b) Standardize the variables apart.

(c) Write the sentence in prenex form.

1

$$
(\forall x)(\forall y)(\forall u)(\forall v)(\exists z)\left(\left(\left(x=u^{2}\right) \wedge\left(y=v^{2}\right)\right) \rightarrow\left(x+y=z^{2}\right)\right)
$$

2. This problem also concerns the formal sentence from Problem 1.
(a) Is the sentence true in the natural numbers, \mathbb{N} ? No!

Give a winning strategy for the appropriate quantifier. (Appropriate quantifier is \forall.)

- \forall chooses $x=1$.
- \forall chooses $y=1$.
- \forall chooses $u=1$.
- \forall chooses $v=1$.
- To win, \exists would have to choose z so that $z^{2}=2$. There is no such $z \in \mathbb{N}$, so \exists loses.
(b) Is the sentence true in the real numbers, \mathbb{R} ? Yes!

Give a winning strategy for the appropriate quantifier. (Appropriate quantifier is \exists.)

- \forall chooses any x.
- \forall chooses any y.
- \forall chooses any u.
- \forall chooses any v.
\forall has already lost, unless the choices made satisfy $x=u^{2}$ and $y=v^{2}$, so assume that these equalities hold.
- To win, \exists would have to choose z so that $z^{2}=x+y=u^{2}+v^{2}$. So \exists can win by choosing $z=\sqrt{u^{2}+v^{2}}$. This choice is possible, since in \mathbb{R} squares are nonnegative, so $u^{2}, v^{2} \geq 0$. Also, in \mathbb{R}, a sum of nonnegative numbers is nonnegative, from which we get $u^{2}+v^{2} \geq 0$. Finally, any nonnegative real number has a real square root, so it is possible to choose a real number z satisfying $z=\sqrt{u^{2}+v^{2}}$.

3. Negate the sentence from Problem 1 and then rewrite the negation so that it is in prenex form.

$$
\begin{aligned}
& \neg(\forall x)(\forall y)(\forall u)(\forall v)(\exists z)\left(\left(\left(x=u^{2}\right) \wedge\left(y=v^{2}\right)\right) \rightarrow\left(x+y=z^{2}\right)\right) . \\
& (\exists x)(\exists y)(\exists u)(\exists v)(\forall z) \neg\left(\left(\left(x=u^{2}\right) \wedge\left(y=v^{2}\right)\right) \rightarrow\left(x+y=z^{2}\right)\right) .
\end{aligned}
$$

You can take this further, if you choose:

$$
(\exists x)(\exists y)(\exists u)(\exists v)(\forall z)\left(\left(\left(x=u^{2}\right) \wedge\left(y=v^{2}\right)\right) \wedge \neg\left(x+y=z^{2}\right)\right)
$$

