## Solutions to HW 7.

1. This problem concerns the formal sentence

$$(\forall x)(\forall y)((((\exists z)(x=z^2)) \land ((\exists z)(y=z^2))) \to ((\exists z)(x+y=z^2))).$$

(a) Draw the formula tree for this sentence. [Two Latex versions! The first uses "tikz" and the second uses the "forest" package.]



(b) Standardize the variables apart.



(c) Write the sentence in prenex form.



$$(\forall x)(\forall y)(\forall u)(\forall v)(\exists z)(((x=u^2) \land (y=v^2)) \rightarrow (x+y=z^2))$$

- 2. This problem also concerns the formal sentence from Problem 1.
  - (a) Is the sentence true in the natural numbers,  $\mathbb{N}$ ? No! Give a winning strategy for the appropriate quantifier. (Appropriate quantifier is  $\forall$ .)
    - $\forall$  chooses x = 1.
    - $\forall$  chooses y = 1.
    - $\forall$  chooses u = 1.
    - $\forall$  chooses v = 1.
    - To win,  $\exists$  would have to choose z so that  $z^2 = 2$ . There is no such  $z \in \mathbb{N}$ , so  $\exists$  loses.
  - (b) Is the sentence true in the real numbers,  $\mathbb{R}$ ? Yes!

    Give a winning strategy for the appropriate quantifier. (Appropriate quantifier is ∃.)
    - $\forall$  chooses any x.
    - $\forall$  chooses any y.
    - $\forall$  chooses any u.
    - $\forall$  chooses any v.

 $\forall$  has already lost, unless the choices made satisfy  $x=u^2$  and  $y=v^2$ , so assume that these equalities hold.

- To win,  $\exists$  would have to choose z so that  $z^2 = x + y = u^2 + v^2$ . So  $\exists$  can win by choosing  $z = \sqrt{u^2 + v^2}$ . This choice is possible, since in  $\mathbb R$  squares are nonnegative, so  $u^2, v^2 \ge 0$ . Also, in  $\mathbb R$ , a sum of nonnegative numbers is nonnegative, from which we get  $u^2 + v^2 \ge 0$ . Finally, any nonnegative real number has a real square root, so it is possible to choose a real number z satisfying  $z = \sqrt{u^2 + v^2}$ .
- 3. Negate the sentence from Problem 1 and then rewrite the negation so that it is in prenex form.

$$\neg(\forall x)\ (\forall y)\ (\forall u)\ (\forall v)\ (\exists z)\ (((x=u^2)\land (y=v^2))\to (x+y=z^2)).$$

$$(\exists x) \ (\exists y) \ (\exists u) \ (\exists v) \ (\forall z) \ \neg(((x=u^2) \land (y=v^2)) \rightarrow (x+y=z^2)).$$

You can take this further, if you choose:

$$(\exists x) \ (\exists y) \ (\exists u) \ (\exists v) \ (\forall z) \ (((x=u^2) \land (y=v^2)) \land \neg (x+y=z^2)).$$