Solutions to HW 6.

1. Show that $f: \mathbb{N} \times \mathbb{N} \rightarrow \mathbb{N}:(m, n) \mapsto 2^{m}(2 n+1)-1$ is a bijection. (This shows that $|\mathbb{N} \times \mathbb{N}|=|\mathbb{N}|$ using a different argument than the one given in class.)
(f is injective) If $f(m, n)=f(p, q)$, then $2^{m}(2 n+1)-1=2^{p}(2 q+1)-1$, or $2^{m}(2 n+1)=$ $2^{p}(2 q+1)$ (a nonzero natural number). By uniqueness of prime factorizations, every nonzero natural number is expressible in a unique way as a product of a power of 2 and an odd number, hence $2^{m}=2^{p}$ and $2 n+1=2 q+1$. From $2^{m}=2^{p}$ we derive $m=p$ by unique factorization, and from $2 n+1=2 q+1$ we derive $2 n=2 q$, and then $n=q$ with some arithmetic. This shows that $f(m, n)=f(p, q)$ implies $(m, n)=(p, q)$.
(f is surjective) If $k \in \mathbb{N}$, then we can solve $2^{x}(2 y+1)-1=k$ for $x, y \in \mathbb{N}$. Simply write this as as $2^{x}(2 y+1)=k+1$, then choose x so that 2^{x} is the exact power of 2 that divides $k+1$ and choose y so that $2 y+1$ is the odd number that remains after dividing $k+1$ by 2^{x}. The statement that $2^{x}(2 y+1)-1=k$ is solvable for $x, y \in \mathbb{N}$ is exactly what it means for f to be surjective.
2. Show that if $|X|=|Y|$, then $|\mathcal{P}(X)|=|\mathcal{P}(Y)|$.

I will write the solution in a general form below, but first let me explain the idea of the solution in small example. Let $X=\{0,1\}$ and $Y=\{a, b\}$. Let $f: X \rightarrow Y$ be the bijection $0 \mapsto a, 1 \mapsto b$. Think of f as "renaming the elements 0,1 using a, b ". To prove that $|\mathcal{P}(X)|=|\mathcal{P}(Y)|$ we need to establish that there is a bijection $\hat{f}: \mathcal{P}(X) \rightarrow \mathcal{P}(Y)$. Written out more fully, we need to establish that there is a bijection

$$
\hat{f}:\{\emptyset,\{0\},\{1\},\{0,1\}\} \rightarrow\{\emptyset,\{a\},\{b\},\{a, b\}\}
$$

The idea is to take \hat{f} to be the function that "renames inside the braces". That is $\hat{f}(\emptyset)=\emptyset$, $\hat{f}(\{0\})=\{a\}, \hat{f}(\{1\})=\{b\}, \hat{f}(\{0,1\})=\{a, b\}$. So, the idea $\hat{f}(\{0,1\})=\{f(0), f(1)\}$ may be expressed as "renaming a set with \hat{f} means renaming the elements inside the set with f ".

Let's write this down for general X and Y. Since $|X|=|Y|$, there is a bijection $f: X \rightarrow$ Y. Let $g: Y \rightarrow X$ be the inverse of f. Define functions $\hat{f}: \mathcal{P}(X) \rightarrow \mathcal{P}(Y)$ by the rule $\hat{f}(S)=\{f(x) \in Y \mid x \in S\}$ and $\hat{g}: \mathcal{P}(Y) \rightarrow \mathcal{P}(X)$ by the rule $\hat{g}(T)=\{g(y) \in X \mid y \in T\}$. It is not hard to see that \widehat{g} is the inverse of \widehat{f}, as follows:

$$
\widehat{g} \circ \widehat{f}(S)=\widehat{g}(\{f(x) \in Y \mid x \in S\})=\{g \circ f(x) \in X \mid x \in S\}=\{x \in X \mid x \in S\}=S
$$

for any $S \in \mathcal{P}(X)$, and a similar argument shows that $\widehat{f} \circ \widehat{g}(T)=T$ for any $T \in \mathcal{P}(Y)$.
Since $\hat{f}: \mathcal{P}(X) \rightarrow \mathcal{P}(Y)$ is invertible, it is a bijection, hence $|\mathcal{P}(X)|=|\mathcal{P}(Y)|$.
3. Let $\operatorname{Eq}(\mathbb{N})$ be the set of equivalence relations on \mathbb{N}. Show that $|\mathcal{P}(\mathbb{N})| \leq|\operatorname{Eq}(\mathbb{N})| \leq$ $|\mathcal{P}(\mathbb{N} \times \mathbb{N})|$. Use Problem 2 to conclude that $|\operatorname{Eq}(\mathbb{N})|=|\mathcal{P}(\mathbb{N})|$.

Let \mathbb{N}^{+}be the set of nonzero natural numbers. According to the "Laws of Successor" (Sep 20 handout "arithmetic.pdf"), the successor function $S: \mathbb{N} \rightarrow \mathbb{N}^{+}$is a bijection, so $|\mathbb{N}|=\left|\mathbb{N}^{+}\right|$. By Problem 2, $|\mathcal{P}(\mathbb{N})|=\left|\mathcal{P}\left(\mathbb{N}^{+}\right)\right|$.

Now we define a function $f: \mathcal{P}\left(\mathbb{N}^{+}\right) \rightarrow \operatorname{Eq}(\mathbb{N})$ by defining $f(S)$ to equal the equivalence relation on \mathbb{N} with one equivalence class equal to $S \cup\{0\}$ and all other equivalence classes equal to singletons. That is, for $S \in \mathcal{P}\left(\mathbb{N}^{+}\right)$, define $f(S)=(S \cup\{0\})^{2} \cup\{\{(n, n)\} \mid n \in \mathbb{N}\}$ The function f is injective, since if $S, T \in \mathcal{P}\left(\mathbb{N}^{+}\right)$and $f(S)=f(T)=E$, then the E equivalence class containing 0 is $S \cup\{0\}=T \cup\{0\}$; since both S and T consist of nonzero elements, $S=T$. Altogether this shows that

$$
\begin{equation*}
|\mathcal{P}(\mathbb{N})|=\left|\mathcal{P}\left(\mathbb{N}^{+}\right)\right| \leq|\operatorname{Eq}(\mathbb{N})| \tag{1}
\end{equation*}
$$

Next, every equivalence relation on \mathbb{N} is a binary relation on \mathbb{N}, hence is a subset of $\mathbb{N} \times \mathbb{N}$. This means that $\operatorname{Eq}(\mathbb{N}) \subseteq \mathcal{P}(\mathbb{N} \times \mathbb{N})$, hence $|\operatorname{Eq}(\mathbb{N})| \leq|\mathcal{P}(\mathbb{N} \times \mathbb{N})|$. Since $|\mathbb{N} \times \mathbb{N}|=|\mathbb{N}|$, we derive from Problem 2 that

$$
\begin{equation*}
|\operatorname{Eq}(\mathbb{N})| \leq|\mathcal{P}(\mathbb{N} \times \mathbb{N})|=|\mathcal{P}(\mathbb{N})| \tag{2}
\end{equation*}
$$

Combining (1) and (2) yields $|\mathcal{P}(\mathbb{N})| \leq|\operatorname{Eq}(\mathbb{N})| \leq|\mathcal{P}(\mathbb{N})|$, so $|\operatorname{Eq}(\mathbb{N})|=|\mathcal{P}(\mathbb{N})|$ by the Cantor-Bernstein-Shröder Theorem.

