Solutions to HW 6.

1. Show that $f: \mathbb{N} \times \mathbb{N} \to \mathbb{N}: (m, n) \mapsto 2^m(2n+1) - 1$ is a bijection. (This shows that $|\mathbb{N} \times \mathbb{N}| = |\mathbb{N}|$ using a different argument than the one given in class.)

(f is injective) If f(m,n) = f(p,q), then $2^m(2n+1) - 1 = 2^p(2q+1) - 1$, or $2^m(2n+1) = 2^p(2q+1)$ (a nonzero natural number). By uniqueness of prime factorizations, every nonzero natural number is expressible in a unique way as a product of a power of 2 and an odd number, hence $2^m = 2^p$ and 2n + 1 = 2q + 1. From $2^m = 2^p$ we derive m = p by unique factorization, and from 2n + 1 = 2q + 1 we derive 2n = 2q, and then n = q with some arithmetic. This shows that f(m, n) = f(p, q) implies (m, n) = (p, q).

(f is surjective) If $k \in \mathbb{N}$, then we can solve $2^x(2y+1) - 1 = k$ for $x, y \in \mathbb{N}$. Simply write this as as $2^x(2y+1) = k+1$, then choose x so that 2^x is the exact power of 2 that divides k+1 and choose y so that 2y+1 is the odd number that remains after dividing k+1 by 2^x . The statement that $2^x(2y+1) - 1 = k$ is solvable for $x, y \in \mathbb{N}$ is exactly what it means for f to be surjective.

2. Show that if |X| = |Y|, then $|\mathcal{P}(X)| = |\mathcal{P}(Y)|$.

I will write the solution in a general form below, but first let me explain the idea of the solution in small example. Let $X = \{0, 1\}$ and $Y = \{a, b\}$. Let $f: X \to Y$ be the bijection $0 \mapsto a, 1 \mapsto b$. Think of f as "renaming the elements 0, 1 using a, b". To prove that $|\mathcal{P}(X)| = |\mathcal{P}(Y)|$ we need to establish that there is a bijection $\hat{f}: \mathcal{P}(X) \to \mathcal{P}(Y)$. Written out more fully, we need to establish that there is a bijection

$$\hat{f}: \{\emptyset, \{0\}, \{1\}, \{0, 1\}\} \to \{\emptyset, \{a\}, \{b\}, \{a, b\}\}$$

The idea is to take \hat{f} to be the function that "renames inside the braces". That is $\hat{f}(\emptyset) = \emptyset$, $\hat{f}(\{0\}) = \{a\}, \hat{f}(\{1\}) = \{b\}, \hat{f}(\{0,1\}) = \{a,b\}$. So, the idea $\hat{f}(\{0,1\}) = \{f(0), f(1)\}$ may be expressed as "renaming a set with \hat{f} means renaming the elements inside the set with f".

Let's write this down for general X and Y. Since |X| = |Y|, there is a bijection $f: X \to Y$. Let $g: Y \to X$ be the inverse of f. Define functions $\hat{f}: \mathcal{P}(X) \to \mathcal{P}(Y)$ by the rule $\hat{f}(S) = \{f(x) \in Y \mid x \in S\}$ and $\hat{g}: \mathcal{P}(Y) \to \mathcal{P}(X)$ by the rule $\hat{g}(T) = \{g(y) \in X \mid y \in T\}$. It is not hard to see that \hat{g} is the inverse of \hat{f} , as follows:

$$\widehat{g} \circ f(S) = \widehat{g}(\{f(x) \in Y \mid x \in S\}) = \{g \circ f(x) \in X \mid x \in S\} = \{x \in X \mid x \in S\} = S$$

for any $S \in \mathcal{P}(X)$, and a similar argument shows that $\widehat{f} \circ \widehat{g}(T) = T$ for any $T \in \mathcal{P}(Y)$. Since $\widehat{f} : \mathcal{P}(X) \to \mathcal{P}(Y)$ is invertible, it is a bijection, hence $|\mathcal{P}(X)| = |\mathcal{P}(Y)|$. 3. Let Eq(\mathbb{N}) be the set of equivalence relations on \mathbb{N} . Show that $|\mathcal{P}(\mathbb{N})| \leq |\text{Eq}(\mathbb{N})| \leq |\mathcal{P}(\mathbb{N} \times \mathbb{N})|$. Use Problem 2 to conclude that $|\text{Eq}(\mathbb{N})| = |\mathcal{P}(\mathbb{N})|$.

Let \mathbb{N}^+ be the set of nonzero natural numbers. According to the "Laws of Successor" (Sep 20 handout "arithmetic.pdf"), the successor function $S \colon \mathbb{N} \to \mathbb{N}^+$ is a bijection, so $|\mathbb{N}| = |\mathbb{N}^+|$. By Problem 2, $|\mathcal{P}(\mathbb{N})| = |\mathcal{P}(\mathbb{N}^+)|$.

Now we define a function $f: \mathcal{P}(\mathbb{N}^+) \to \operatorname{Eq}(\mathbb{N})$ by defining f(S) to equal the equivalence relation on \mathbb{N} with one equivalence class equal to $S \cup \{0\}$ and all other equivalence classes equal to singletons. That is, for $S \in \mathcal{P}(\mathbb{N}^+)$, define $f(S) = (S \cup \{0\})^2 \cup \{\{(n,n)\} \mid n \in \mathbb{N}\}$ The function f is injective, since if $S, T \in \mathcal{P}(\mathbb{N}^+)$ and f(S) = f(T) = E, then the Eequivalence class containing 0 is $S \cup \{0\} = T \cup \{0\}$; since both S and T consist of nonzero elements, S = T. Altogether this shows that

(1)
$$|\mathcal{P}(\mathbb{N})| = |\mathcal{P}(\mathbb{N}^+)| \le |\mathrm{Eq}(\mathbb{N})|.$$

Next, every equivalence relation on \mathbb{N} is a binary relation on \mathbb{N} , hence is a subset of $\mathbb{N} \times \mathbb{N}$. This means that $\operatorname{Eq}(\mathbb{N}) \subseteq \mathcal{P}(\mathbb{N} \times \mathbb{N})$, hence $|\operatorname{Eq}(\mathbb{N})| \leq |\mathcal{P}(\mathbb{N} \times \mathbb{N})|$. Since $|\mathbb{N} \times \mathbb{N}| = |\mathbb{N}|$, we derive from Problem 2 that

(2) $|\mathrm{Eq}(\mathbb{N})| \le |\mathcal{P}(\mathbb{N} \times \mathbb{N})| = |\mathcal{P}(\mathbb{N})|.$

Combining (1) and (2) yields $|\mathcal{P}(\mathbb{N})| \leq |\mathrm{Eq}(\mathbb{N})| \leq |\mathcal{P}(\mathbb{N})|$, so $|\mathrm{Eq}(\mathbb{N})| = |\mathcal{P}(\mathbb{N})|$ by the Cantor-Bernstein-Shröder Theorem.