Solutions to HW 4.

Addition

$$
\begin{array}{cll}
m+0 & :=m & \\
m+S(n) & :=S(m+n) & \\
\text { (Recurrence Relation for }+ \text {) }
\end{array}
$$

Multiplication

$$
\begin{array}{clll}
m \cdot 0 & :=0 & & \text { (Initial Condition for } \cdot \text {) } \\
m \cdot S(n) & :=m \cdot n+m & & \text { (Recurrence Relation for } \cdot)
\end{array}
$$

1. Prove that $m(n+k)=(m n)+(m k)$ holds for the natural numbers.

This is a proof by induction on k.
(Base Case: $k=0$)

$$
\begin{aligned}
m(n+0) & =m n & & (\text { IC },+) \\
& =m n+0 & & (\text { IC },+) \\
& =m n+m 0 & & \text { (IC, } \cdot)
\end{aligned}
$$

(Inductive Step: Assume true for k, prove true for $S(k)$)

$$
\begin{align*}
m(n+S(k)) & =m S(n+k) & & (\mathrm{RR},+) \tag{RR,+}\\
& =m(n+k)+m & & (\mathrm{RR}, \cdot) \\
& =(m n+m k)+m & & \text { (IH) } \tag{IH}\\
& =m n+(m k+m) & & \text { (Associative Law, }+) \\
& =m n+m S(k) & & \text { (RR, } \cdot)
\end{align*}
$$

2. Prove that $m(n k)=(m n) k$ holds for the natural numbers.

This is a proof by induction on k.
(Base Case: $k=0$)

$$
\begin{array}{rlrl}
m(n 0) & =m 0 & (\text { IC }, \cdot) \\
& =0 & (\text { IC }, \cdot) \\
& =(m n) 0 & & \text { (IC, } \cdot)
\end{array}
$$

(Inductive Step: Assume true for k, prove true for $S(k)$)

$$
\begin{align*}
m(n \cdot S(k)) & =m(n k+n) & & (\mathrm{RR}, \cdot) \\
& =m(n k)+m n & & (\mathrm{Distributive} \mathrm{Law)} \\
& =(m n) k+m n & & (\mathrm{IH}) \\
& =(m n) \cdot S(k) & & (\mathrm{RR}, \cdot) \tag{IH}
\end{align*}
$$

3. Prove that $m n=n m$ holds for the natural numbers. (Some lemmas will be needed.)

Lemma 1. $0 k=0$.
Proof. This is a proof by induction on k.
(Base Case: $k=0$)

$$
\begin{equation*}
00=0 \tag{IC,•}
\end{equation*}
$$

(Inductive Step: Assume true for k, prove true for $S(k)$)

$$
\begin{align*}
0 \cdot S(k) & =0 k+0 & & (\mathrm{RR}, \cdot) \\
& =0+0 & & (\mathrm{IH}) \tag{IH}\\
& =0 & & (\mathrm{IC},+)
\end{align*}
$$

Lemma 2. (Right distributivity) $(m+n) k=m k+n k$.
Proof. This is a proof by induction on k.
(Base Case: $k=0$)

$$
\begin{align*}
(m+n) 0 & =0 \\
& =0+0 \tag{IC,+}\\
& =m 0+n 0
\end{align*}
$$

(Inductive Step: Assume true for k, prove true for $S(k)$)

$$
\begin{aligned}
(m+n) \cdot S(k) & =(m+n) k+(m+n) & & (\mathrm{RR}, \cdot) \\
& =(m k+n k)+(m+n) & & (\mathrm{IH}) \\
& =m k+(n k+(m+n)) & & \text { (Associative Law, }+ \text {) } \\
& =m k+((n k+m)+n)) & & \text { (Associative Law, }+ \text {) } \\
& =m k+((m+n k)+n)) & & \text { (Commutative Law, }+ \text {) } \\
& =m k+(m+(n k+n)) & & \text { (Associative Law, }+ \text {) } \\
& =(m k+m)+(n k+n) & & \text { (Associative Law, }+ \text {) } \\
& =(m \cdot S(k))+(n \cdot S(k)) & & (\mathrm{RR}, \cdot)
\end{aligned}
$$

Solution to the Problem.

Proof. We prove that $m n=n m$ by induction on n.
(Base Case: $n=0$)

$$
\begin{align*}
m 0 & =0 & & (\text { IC }, \cdot) \\
& =0 m & & (\text { Lemm } \tag{Lemma1}
\end{align*}
$$

(Inductive Step: Assume true for n, prove true for $S(n)$)

$$
\begin{align*}
m \cdot S(n) & =m n+m \\
& =n m+m \tag{IH}\\
& =(n+1) m \\
& =S(n) \cdot m
\end{align*}
$$

$$
(\mathrm{RR}, \cdot)
$$

(Lemma 2)

$$
(S(n)=n+1)
$$

