Solutions to HW 3.

1. Explain why it is true that the function $F: A \rightarrow \mathcal{P}(A): a \mapsto\{a\}$ is injective.

If $F(a)=F(b)$, then $\{a\}=\{b\}$, according to the definition of F. Now, by the Axiom of Extensionality, $a=b$. This establishes that F is injective. (We showed that $F(a)=F(b)$ implies $a=b$.)
2. In this problem, $f: A \rightarrow B$ and $g: B \rightarrow C$ will be composable functions.
(a) Show that if $g \circ f$ is injective, then f is injective, while if $g \circ f$ is surjective, then g is surjective.

Assume that $f\left(a_{1}\right)=f\left(a_{2}\right)$. Since g is a function, $g\left(f\left(a_{1}\right)\right)=g\left(f\left(a_{2}\right)\right)$. This may also be written as $g \circ f\left(a_{1}\right)=g \circ f\left(a_{2}\right)$. By the injectivity of $g \circ f$, we get that $a_{1}=a_{2}$. Altogether, this shows that $f\left(a_{1}\right)=f\left(a_{2}\right)$ implies $a_{1}=a_{2}$, so f is injective.
(b) Show that if $g \circ f$ is surjective, then g is surjective.

Assume that $g \circ f: A \rightarrow C$ is surjective. It is our goal to prove that $g: B \rightarrow C$ is surjective. To this end, choose $c \in C$ arbitrarily; our aim is to show that there exists $b \in B$ such that $g(b)=c$. Since $g \circ f: A \rightarrow C$ is surjective, there is some $a \in A$ such that $c=g \circ f(a)=g(f(a))$. If we take $b=f(a)$, then we obtain that $g(b)=g(f(a))=c$, as desired.
3. This is a continuation of Problem 2, so assume that $f: A \rightarrow B$ and $g: B \rightarrow C$ are composable functions.
(a) Give an example where $g \circ f$ is injective, but g is not injective.
(b) Give an example where $g \circ f$ is surjective but f is not surjective.

We give an example that works for both Part (a) and Part (b).
Let $A=\{0\}=C$ and let $B=\{0,1\}$. Let $f: A \rightarrow B$ be defined so that $f(0)=0$, and let $g: B \rightarrow C$ be defined so that $g(0)=g(1)=0$. Then $g \circ f: A \rightarrow C$ is the identity function, so it is both injective and surjective. But f is not surjective and g is not injective.

