HW 3.

1. Explain why it is true that the function $F: A \to \mathcal{P}(A): a \mapsto \{a\}$ is injective.

- 2. In this problem, $f: A \to B$ and $g: B \to C$ will be composable functions.
- (a) Show that if $g \circ f$ is injective, then f is injective, while if $g \circ f$ is surjective, then g is surjective.
- (b) Show that if $g \circ f$ is surjective, then g is surjective.

- 3. This is a continuation of Problem 2, so assume that $f: A \to B$ and $g: B \to C$ are composable functions.
- (a) Give an example where $g \circ f$ is injective, but g is not injective.
- (b) Give an example where $g \circ f$ is surjective but f is not surjective.