Solutions to HW 1.

1. Define $V_{0}=\emptyset, V_{1}=\mathcal{P}\left(V_{0}\right), V_{2}=\mathcal{P}\left(V_{1}\right), V_{3}=\mathcal{P}\left(V_{2}\right)$, and so on.
(a) List the elements of V_{0}, V_{1}, V_{2} and V_{3}.
(i) $V_{0}=\emptyset$,
(ii) $V_{1}=\mathcal{P}(\emptyset)=\{\emptyset\}$,
(iii) $V_{2}=\mathcal{P}\left(V_{1}\right)=\{\emptyset,\{\emptyset\}\}$,
(iv) $V_{3}=\mathcal{P}\left(V_{2}\right)=\{\emptyset,\{\emptyset\},\{\{\emptyset\}\},\{\emptyset,\{\emptyset\}\}\}$,
(b) Draw a directed graph whose "dots" are the sets in V_{3} and where $x \rightarrow y$ means $x \in y$. (Hint: your graph should have four "dots" and four edges.)

2. Find sets A and B satisfying the given conditions.
(a) $A \in B$ and $A \nsubseteq B$.

There are many answers, such as $A=\{\emptyset\}$ and $B=\{\{\emptyset\}\}$.
(b) $A \in B$ and $A \subseteq B$.

You could take $A=\emptyset$ and $B=\{\emptyset\}$.
(c) $A \notin B$ and $A \subseteq B$.

You could take $A=B=\emptyset$.
3. Show that $\bigcup \mathcal{P}(x)=x$.

According to the Axiom of Extensionality, to show that the sets $\bigcup \mathcal{P}(x)$ and x are equal, we must show that they have the same elements.
Claim 1: We show that any element $y \in \bigcup \mathcal{P}(x)$ is an element of x.
If $y \in \bigcup \mathcal{P}(x)$, then y is an element of an element of $\mathcal{P}(x)$ according to the definition of union. This means that there is some set z such that $y \in z \in \mathcal{P}(x)$. Since $z \in \mathcal{P}(x)$, we know that $z \subseteq x$ according to the definition of $\mathcal{P}(x)$. But now we know that $y \in z$ and $z \subseteq x$, so we derive $y \in x$ from the definition of \subseteq.
Claim 2: We show that any element $y \in x$ is an element of $\bigcup \mathcal{P}(x)$.
Choose any $y \in x$. Let $z=\{y\}$ (which is a set according to the Pairing Axiom). Observe $z \subseteq x$ by the definition of subset. Now we have $y \in z$ and $z \subseteq x$, hence $y \in z \in \mathcal{P}(x)$. This yields $y \in \bigcup \mathcal{P}(x)$.

