Solutions to HW 1.

- 1. Define $V_0 = \emptyset$, $V_1 = \mathcal{P}(V_0)$, $V_2 = \mathcal{P}(V_1)$, $V_3 = \mathcal{P}(V_2)$, and so on. (a) List the elements of V_0, V_1, V_2 and V_3 .
 - (b) Draw a directed graph whose "dots" are the sets in V_3 and where $x \to y$ means $x \in y$. (Hint: your graph should have four "dots" and four edges.)
- 2. Find sets A and B satisfying the given conditions.
 - (a) $A \in B$ and $A \nsubseteq B$.
 - (b) $A \in B$ and $A \subseteq B$.
 - (c) $A \notin B$ and $A \subseteq B$.

3. Show that $\bigcup \mathcal{P}(x) = x$.