Solutions to HW 1.

1. Define $V_{0}=\emptyset, V_{1}=\mathcal{P}\left(V_{0}\right), V_{2}=\mathcal{P}\left(V_{1}\right), V_{3}=\mathcal{P}\left(V_{2}\right)$, and so on.
(a) List the elements of V_{0}, V_{1}, V_{2} and V_{3}.
(b) Draw a directed graph whose "dots" are the sets in V_{3} and where $x \rightarrow y$ means $x \in y$. (Hint: your graph should have four "dots" and four edges.)
2. Find sets A and B satisfying the given conditions.
(a) $A \in B$ and $A \nsubseteq B$.
(b) $A \in B$ and $A \subseteq B$.
(c) $A \notin B$ and $A \subseteq B$.
3. Show that $\bigcup \mathcal{P}(x)=x$.
