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Two basic counting principles

Sum Rule. (Or “Additive counting principle”) If A and B are disjoint finite
sets, then |A ∪ B| = |A|+ |B|.

Product Rule. (Or “Multiplicative counting principle”) If A and B are finite
sets, then |A× B| = |A| · |B|.

In general, the Sum Rule is suggested when (exclusive) “OR” is being
counted, while the Product Rule is suggested when (independent) “AND” is
being counted.
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Size of a power set using the Sum Rule

Theorem. If |X| = n, then |P(X)| = 2n.

Proof. Induction on |X|.

(Base case, n = 0.) |X| = 0⇒ X = ∅, P(X) = {∅}, |P(X)| = 1 = 20.

(Inductive step.) Assume the theorem is true for sets of size n, and let’s prove
it for some set Xn+1 = {x1, . . . , xn, xn+1} of size n + 1.

Let A ⊆ P(Xn+1) be the set of those subsets of X that do not contain the last
element, xn+1, and let B be the set of those subsets of X that do contain the
last element, xn+1. |A| = |B| = |P(Xn)| = 2n. P(Xn+1) is the disjoint union
of A and B. (A subset of Xn+1 lies in either A OR B, but not both).
By the Sum Rule, |P(Xn+1)| = |A|+ |B| = 2n + 2n = 2n+1. 2
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Size of a power set using the Product Rule

Theorem. If |X| = n, then |P(X)| = 2n.

Proof. We count the number of subsets of X by counting the number of
“descriptions” of subsets. This means we will count the number of
characteristic functions c : X → {0, 1}. A subset S = {2, 3, 5} of
X = {1, 2, 3, . . . , n} may be “described” by its characteristic function:
(c(x) = 1 iff x ∈ S)

x 1 2 3 4 5 · · · n

c(x) 0 1 1 0 1 · · · 0

There are 2 choices for c(1), 2 (independent) choices for c(2), . . . , 2 choices
for c(n), so |X| = 2 · 2 · · · 2 = 2n. 2

Here we used the fact that a subset S ⊆ X can be described by specifying
whether 1 ∈ S AND specifying whether 2 ∈ X, etc.
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Number of functions from k to n

Theorem. The number of functions f : k→ n is nk.

Proof. Count descriptions of such functions.

x 1 2 3 4 5 · · · k

f (x) 0 7 1 0 2 · · · 3

There are n choices for f (0), n (independent) choices for f (1), etc. Hence the
number of functions is n · n · · · n = nk. 2
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Number of bijections from k to n

Theorem. The number of bijections from k to n is 0 if k 6= n; otherwise it is
n!.

Proof. Count descriptions of such functions. . . .
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Number of injections from k to n

Theorem. The number of injections from k to n is

(n)k = n · (n− 1) · · · (n− k + 1)︸ ︷︷ ︸
k factors

.

(n)k is called a “falling factorial”.

Proof. Count descriptions of such functions. . . .
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Double counting (or over counting)

Exercises.

1 How many cows do I have?
2 Show that the number of 2-element subsets of n is n(n− 1)/2.
3 Show, more generally, that the number of k-element subsets of n is

(n)k/k! =
(n

k

)
.
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