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Two basic counting principles

Sum Rule. (Or “Additive counting principle”) If A and B are disjoint finite
sets, then |A U B| = |A| + |B].

Product Rule. (Or “Multiplicative counting principle”) If A and B are finite
sets, then |A x B| = |A| - |B].

In general, the Sum Rule is suggested when (exclusive) “OR” is being
counted, while the Product Rule is suggested when (independent) “AND” is
being counted.
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Size of a power set using the Product Rule

Theorem. If |X| = n, then |P(X)| = 2".

Proof. We count the number of subsets of X by counting the number of
“descriptions” of subsets. This means we will count the number of
characteristic functions ¢: X — {0, 1}. A subset S = {2, 3,5} of

X ={1,2,3,...,n} may be “described” by its characteristic function:
(c(x) =1iffx e S)

L x [[1[2[3]4[5] - |n]
[ floft]r]oft]---]o]
There are 2 choices for ¢(1), 2 (independent) choices for ¢(2), ..., 2 choices

forc(n),so |X|=2-2---2=2".0

Here we used the fact that a subset S C X can be described by specifying
whether 1 € § AND specifying whether 2 € X, etc.
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