Cardinality.

- (1) A set X is **finite** if there is a natural number $k \in \mathbb{N}$ and a bijection $f: k \to X$.
- (2) A set X is **infinite** if it is not finite.
- (3) A set X is **countably infinite** if there is bijection $f: \mathbb{N} \to X$.
- (4) A set X is **countable** if it is finite or countably infinite.
- (5) A set X is **uncountable** if it is not countable.
- (6) $|X| \leq |Y|$ (or $|Y| \geq |X|$) means there is an injection $f: X \to Y$. We read " $|X| \leq |Y|$ " as "the cardinality of X is less than or equal to the cardinality of Y". When either X or Y is a natural number, we might drop the vertical bars and write $k \leq |Y|$ or $|X| \leq k$, but these are just abbreviations for $|k| \leq |Y|$ or $|X| \leq |k|$. We also might write $k \leq \ell$ instead of $|k| \leq |\ell|$ when $k, \ell \in \mathbb{N}$.
- (7) |X| = |Y| means there is an bijection $f: X \to Y$. We say "the cardinality of X equal to the cardinality of Y" or X is **equipotent with** Y.
- (8) |X| < |Y| (or |Y| > |X|) means $|X| \le |Y|$ holds but |X| = |Y| fails.

The following are theorems of ZFC (= Zermelo-Fraenkel set theory with the Axiom of Choice).

Theorem 1. A subset of a countable set is countable.

Theorem 2. $|\mathbb{N} \times \mathbb{N}| = |\mathbb{N}|$.

Theorem 3. A countable union of countable sets is countable.

Theorem 4. If A is an infinite alphabet and S is the set of finite strings of symbols in this alphabet, then |A| = |S|.

Theorem 5. (Cantor-Bernstein-Schröder) If $|A| \leq |B|$ and $|B| \leq |A|$, then |A| = |B|.

Theorem 6. (Cantor's Theorem) If X is a set, then $|X| < |\mathcal{P}(X)|$.

Theorem 7. $|\mathbb{N}| < |\mathcal{P}(\mathbb{N})| \le |[0_{\mathbb{R}}, 1_{\mathbb{R}}]| \le |\mathbb{R}| \le |\mathcal{P}(\mathbb{N})|$, so $|\mathbb{N}| < |\mathcal{P}(\mathbb{N})| = |[0, 1]| = |\mathbb{R}|$.