More Terminology about Functions

(1) $F \subseteq A \times B, \quad F: A \rightarrow B, \quad A \xrightarrow{F} B$.

The first notation expresses only that F is a binary relation from A to B. The second and third notation express that F is a function from A to B, so it is a binary realtion from A to B that satisfies the function rule.
(2) F assigns y to $x, \quad y=F(x)$.

This is to remind us that if $F(x)=y$, then F is assigning to x the value y, not the other way around. (F does not assign x to y, rather it assigns y to x.)
(3) $F: A \rightarrow B: x \mapsto\left(\right.$ value assigned to x). (E.g., $F: \mathbb{R} \rightarrow \mathbb{R}: x \mapsto x^{2}$)

This is a description of the "mapsto" symbol, \mapsto. This is not simply another type of arrow that can be used interchangeably with \rightarrow. Rather, the notation

$$
F: \mathbb{R} \rightarrow[-1,1]: x \mapsto \sin (x)
$$

is expressing that F is a function from the domain \mathbb{R} to the codomain $[-1,1]$ which assigns the value $\sin (x)$ to x. The \mapsto symbol is used to indicate the "formula" or "rule" that defines F.
(4) F is injective: (Equivalently, F is 1-1.)
F is injective if

$$
F(a)=F(b) \quad \text { implies } \quad a=b .
$$

In the contrapositive (hence equivalent) form, this reads

$$
a \neq b \quad \text { implies } \quad F(a) \neq F(b) .
$$

(5) F is surjective: (Equivalently, F is onto.)
F is surjective if $\operatorname{im}(F)=\operatorname{cod}(F)$. If we refer to the directed graph representation of F, it says that each element of the codomain "receives an arrow head". More formally, in symbols,

$$
(\forall b)(\exists a)(b=F(a)) .
$$

Here b is a variable representing values in the codomain of F and a is a variable representing values in the domain of F.
(6) F is bijective: (Equivalently, F is $1-1$ and onto.)
bijective $=$ injective + surjective.
(7) F is invertible:
$F: A \rightarrow B$ is invertible if there is a function $G: B \rightarrow A$ such that $G \circ F=\operatorname{id}_{A}$ and $F \circ G=\operatorname{id}_{B}$.
(8) F is constant:
$F: A \rightarrow B$ is constant if it assigns all elements of the domain the same value, i.e., it "assumes only one value". More precisely, F is constant if $F \subseteq A \times B$ and $F=A \times\{b\}$ for some $b \in B$. IN symbols, we indicate F is constant by writing

$$
\left(\forall x_{1}\right)\left(\forall x_{2}\right)\left(F\left(x_{1}\right)=F\left(x_{2}\right)\right) .
$$

(9) F is the identity function on A :

The identity function on A, written id_{A}, is the function $\operatorname{id}_{A}: A \rightarrow A: x \mapsto x$. As a relation, it is

$$
\operatorname{id}_{A}=\left\{(a, a) \in A^{2} \mid a \in A\right\} .
$$

(10) F is the inclusion map for a subset $A \subseteq B$:

If A is a subset of B, then the inclusion map from A to B is

$$
\iota: A \rightarrow B: a \mapsto a .
$$

As a set, $\iota=\mathrm{id}_{A}$.
(11) F is the natural map for a partition P on A :

If P is a partition of A, then the natural map from A to P is

$$
\nu: A \rightarrow P: a \mapsto[a] .
$$

This is the function that maps $a \in A$ to the cell of P containing a.
(12) $A \xrightarrow{F} B \xrightarrow{G} C, \quad$ or $\quad G \circ F: A \rightarrow C$.

Here we are writing notation for the composition of F and G. The composite function $G \circ F$ is the function $(G \circ F)(a)=G(F(a))$. We read " $G \circ F$ " as " G of F " (sometimes just " G circle F "). The composition is defined by the formula

$$
G \circ f=\{(a, c) \in A \times C \mid(\exists b \in B)(((a, b) \in F) \wedge((b, c) \in G))\} .
$$

Example. If $F(x)=x^{2}$ and $G(x)=\sin (x)$, then $G \circ F(x)=G(F(x))=\sin \left(x^{2}\right)$.

