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The Axiom of Replacement

Axiom of Replacement.
Given a set A and a class function F, then

{F(x) | x ∈ A}

is a set.

This axiom was not part of Ernst Zermelo’s 1908 list of axioms for set theory,
but was suggested by Abraham Fraenkel in 1922.

Examples of class functions.

1 S(x)
2 P(x)
3 F(x) =

⋃
x

To remember: If F(x) is a class function and A is a set, then F(A) (the image
of A under F) is a set.
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The Axiom of Choice

Axiom of Choice.
Given A = {Xi | i ∈ I}, a set of nonempty pairwise-disjoint sets, there is a set
C that intersects each Xi in exactly one element.

(Shorter: every partition has a transversal.)

This axiom asserts the existence of a set C without explaining how it is
constructed.

Bertrand Russell highlighted the nonconstructive nature of this axiom when
he wrote:

The Axiom of Choice is necessary to select a set from an infinite number of
pairs of socks, but not an infinite number of pairs of shoes.
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An important consequence of the Axiom of Choice

Given all the axioms of ZF, it can be proved that the Axiom of Choice is
equivalent to the following statement.

Theorem. (ZFC)
Every set can be enumerated.

An enumeration of {a, b, c} is a bijection e : 3→ {a, b, c}. An enumeration
of the set of prime numbers is p : N→ Primes : n 7→ pn = nth prime. More
generally, there is a class of sets called ordinal numbers that are available for
enumerating sets. The ordinal numbers start 0, 1, 2, . . .. Next we have
ω = {0, 1, 2, . . .} = natural numbers. We use successor to continue
S(ω) = ω + 1, SS(ω) = ω + 2, . . .. We form unions at limits:

0, 1, 2, . . . , ω, ω + 1, ω + 1, . . . .

The previous theorem asserts that every set can be enumerated by an ordinal
number. This kind of enumeration allows us to examine the elements of a set
one at a time.
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The Axiom of Foundation

Axiom of Foundation.
If A is a nonempty set, then there is an x ∈ A such that x and A are disjoint. x
is called an ∈-minimal (epsilon-minimal) element of A.
The point of this axiom is to prevent infinite descending ∈-chains:

· · · ∈ x2 ∈ x1 ∈ x0,

or cycles where a ∈ b and b ∈ a, so

· · · ∈ b ∈ a ∈ b ∈ a.

looks like an infinite descending ∈-chain.

If x0 3 x1 3 x2 3 · · · looks like an infinite descending ∈-chain, then
A = {x0, x1, . . .} has no ∈-minimal element. Conversely, if A 6= ∅ has no
∈-minimal element, then one can recursively construct an infinite descending
∈-chain.
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Two Consequences of the Axiom of Foundation

Consequence 1. If you assume the Axiom of Foundation, then there is no set
x such that x ∈ x. Otherwise we would get

· · · ∈ x ∈ x ∈ x,

which we know is bad. Applying Pairing to such an x yields a nonempty set
A = {x} that has no ∈-minimal element. Thus, in ZFC, every x satisfies x /∈ x,
hence the Russell class

R = {x | x /∈ x}

is the class of all sets.

Consequence 2. The successor function is injective.

S(x) = S(y) implies x ∪ {x} = y ∪ {y}. If x 6= y, then x ∈ y and y ∈ x, which
contradicts the Axiom of Foundation. A = {x, y} has no ∈-minimal element.
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