Torsion abelian groups

Let *A* be an abelian group and let $\lambda_n \colon A \to A \colon a \mapsto na$ be multiplication by $n \in \mathbb{Z}$.

Let *A* be an abelian group and let $\lambda_n : A \to A : a \mapsto na$ be multiplication by $n \in \mathbb{Z}$. Write A[n] for ker (λ_n) and nA for im (λ_n) .

Let *A* be an abelian group and let $\lambda_n : A \to A : a \mapsto na$ be multiplication by $n \in \mathbb{Z}$. Write A[n] for ker (λ_n) and nA for im (λ_n) .

The set $A' = \cap nA$ of elements divisible by every $n \in \mathbb{Z}^+$ in *A* is the first Ulm subgroup of *A*.

Let *A* be an abelian group and let $\lambda_n : A \to A : a \mapsto na$ be multiplication by $n \in \mathbb{Z}$. Write A[n] for ker (λ_n) and nA for im (λ_n) .

The set $A' = \cap nA$ of elements divisible by every $n \in \mathbb{Z}^+$ in *A* is the first Ulm subgroup of *A*. (It is a subgroup of *A*.)

Let *A* be an abelian group and let $\lambda_n : A \to A : a \mapsto na$ be multiplication by $n \in \mathbb{Z}$. Write A[n] for ker (λ_n) and nA for im (λ_n) .

The set $A' = \cap nA$ of elements divisible by every $n \in \mathbb{Z}^+$ in *A* is the first Ulm subgroup of *A*. (It is a subgroup of *A*.)

Recursively define $A^0 = A$, $A^{\sigma+1} = (A^{\sigma})'$, and $A^{\lambda} = \bigcap_{\sigma < \lambda} A^{\sigma}$ when λ is a limit ordinal.

Let *A* be an abelian group and let $\lambda_n : A \to A : a \mapsto na$ be multiplication by $n \in \mathbb{Z}$. Write A[n] for ker (λ_n) and nA for im (λ_n) .

The set $A' = \cap nA$ of elements divisible by every $n \in \mathbb{Z}^+$ in *A* is the first Ulm subgroup of *A*. (It is a subgroup of *A*.)

Recursively define $A^0 = A$, $A^{\sigma+1} = (A^{\sigma})'$, and $A^{\lambda} = \bigcap_{\sigma < \lambda} A^{\sigma}$ when λ is a limit ordinal. The sequence $A = A^0 \supseteq A^1 \supseteq \cdots$ must terminate, since

Let *A* be an abelian group and let $\lambda_n : A \to A : a \mapsto na$ be multiplication by $n \in \mathbb{Z}$. Write A[n] for ker (λ_n) and nA for im (λ_n) .

The set $A' = \cap nA$ of elements divisible by every $n \in \mathbb{Z}^+$ in *A* is the first Ulm subgroup of *A*. (It is a subgroup of *A*.)

Recursively define $A^0 = A$, $A^{\sigma+1} = (A^{\sigma})'$, and $A^{\lambda} = \bigcap_{\sigma < \lambda} A^{\sigma}$ when λ is a limit ordinal. The sequence $A = A^0 \supseteq A^1 \supseteq \cdots$ must terminate, since (i) *A* is a set,

Let *A* be an abelian group and let $\lambda_n : A \to A : a \mapsto na$ be multiplication by $n \in \mathbb{Z}$. Write A[n] for ker (λ_n) and nA for im (λ_n) .

The set $A' = \cap nA$ of elements divisible by every $n \in \mathbb{Z}^+$ in *A* is the first Ulm subgroup of *A*. (It is a subgroup of *A*.)

Recursively define $A^0 = A$, $A^{\sigma+1} = (A^{\sigma})'$, and $A^{\lambda} = \bigcap_{\sigma < \lambda} A^{\sigma}$ when λ is a limit ordinal. The sequence $A = A^0 \supseteq A^1 \supseteq \cdots$ must terminate, since (i) *A* is a set, (ii) there are ordinal-many superscripts,

Let *A* be an abelian group and let $\lambda_n : A \to A : a \mapsto na$ be multiplication by $n \in \mathbb{Z}$. Write A[n] for ker (λ_n) and nA for im (λ_n) .

The set $A' = \cap nA$ of elements divisible by every $n \in \mathbb{Z}^+$ in *A* is the first Ulm subgroup of *A*. (It is a subgroup of *A*.)

Recursively define $A^0 = A$, $A^{\sigma+1} = (A^{\sigma})'$, and $A^{\lambda} = \bigcap_{\sigma < \lambda} A^{\sigma}$ when λ is a limit ordinal. The sequence $A = A^0 \supseteq A^1 \supseteq \cdots$ must terminate, since (i) *A* is a set, (ii) there are ordinal-many superscripts, and (iii) once we have $A^{\sigma} = A^{\sigma+1}$ the sequence can no longer change.

Let *A* be an abelian group and let $\lambda_n : A \to A : a \mapsto na$ be multiplication by $n \in \mathbb{Z}$. Write A[n] for ker (λ_n) and nA for im (λ_n) .

The set $A' = \cap nA$ of elements divisible by every $n \in \mathbb{Z}^+$ in *A* is the first Ulm subgroup of *A*. (It is a subgroup of *A*.)

Recursively define $A^0 = A$, $A^{\sigma+1} = (A^{\sigma})'$, and $A^{\lambda} = \bigcap_{\sigma < \lambda} A^{\sigma}$ when λ is a limit ordinal. The sequence $A = A^0 \supseteq A^1 \supseteq \cdots$ must terminate, since (i) *A* is a set, (ii) there are ordinal-many superscripts, and (iii) once we have $A^{\sigma} = A^{\sigma+1}$ the sequence can no longer change. The least ordinal σ such that $A^{\sigma} = A^{\sigma+1}$ is called the Ulm length of *A*.

Let *A* be an abelian group and let $\lambda_n : A \to A : a \mapsto na$ be multiplication by $n \in \mathbb{Z}$. Write A[n] for ker (λ_n) and nA for im (λ_n) .

The set $A' = \cap nA$ of elements divisible by every $n \in \mathbb{Z}^+$ in *A* is the first Ulm subgroup of *A*. (It is a subgroup of *A*.)

Recursively define $A^0 = A$, $A^{\sigma+1} = (A^{\sigma})'$, and $A^{\lambda} = \bigcap_{\sigma < \lambda} A^{\sigma}$ when λ is a limit ordinal. The sequence $A = A^0 \supseteq A^1 \supseteq \cdots$ must terminate, since (i) *A* is a set, (ii) there are ordinal-many superscripts, and (iii) once we have $A^{\sigma} = A^{\sigma+1}$ the sequence can no longer change. The least ordinal σ such that $A^{\sigma} = A^{\sigma+1}$ is called the Ulm length of *A*.

If σ is the Ulm length of *A*, the elements of $A^{\sigma+1}$ are the elements infinitely divisible in A^{σ} (= $A^{\sigma+1}$), so A^{σ} is divisible.

Let *A* be an abelian group and let $\lambda_n : A \to A : a \mapsto na$ be multiplication by $n \in \mathbb{Z}$. Write A[n] for ker (λ_n) and nA for im (λ_n) .

The set $A' = \cap nA$ of elements divisible by every $n \in \mathbb{Z}^+$ in *A* is the first Ulm subgroup of *A*. (It is a subgroup of *A*.)

Recursively define $A^0 = A$, $A^{\sigma+1} = (A^{\sigma})'$, and $A^{\lambda} = \bigcap_{\sigma < \lambda} A^{\sigma}$ when λ is a limit ordinal. The sequence $A = A^0 \supseteq A^1 \supseteq \cdots$ must terminate, since (i) *A* is a set, (ii) there are ordinal-many superscripts, and (iii) once we have $A^{\sigma} = A^{\sigma+1}$ the sequence can no longer change. The least ordinal σ such that $A^{\sigma} = A^{\sigma+1}$ is called the Ulm length of *A*.

If σ is the Ulm length of A, the elements of $A^{\sigma+1}$ are the elements infinitely divisible in A^{σ} (= $A^{\sigma+1}$), so A^{σ} is divisible. This forces $A \cong A^{\sigma} \oplus (A/A^{\sigma})$. Call $A_{\text{div}} := A^{\sigma}$ the divisible part of A and $A_{\text{red}} := A/A^{\sigma}$ the reduced part of A.

Every torsion abelian group A is the direct sum $A_{div} \oplus A_{red}$ of a divisible torsion group and a reduced torsion group.

Every torsion abelian group *A* is the direct sum $A_{div} \oplus A_{red}$ of a divisible torsion group and a reduced torsion group. Both components further decompose into *p*-primary components.

Every torsion abelian group *A* is the direct sum $A_{div} \oplus A_{red}$ of a divisible torsion group and a reduced torsion group. Both components further decompose into *p*-primary components. If $D = (A_{div})_p$, then $D \cong \bigoplus^{\kappa} \mathbb{Z}_{p^{\infty}}$, so D[p]

Every torsion abelian group *A* is the direct sum $A_{div} \oplus A_{red}$ of a divisible torsion group and a reduced torsion group. Both components further decompose into *p*-primary components. If $D = (A_{div})_p$, then $D \cong \bigoplus^{\kappa} \mathbb{Z}_{p^{\infty}}$, so $D[p] \cong (\bigoplus^{\kappa} \mathbb{Z}_{p^{\infty}})[p]$

Every torsion abelian group *A* is the direct sum $A_{div} \oplus A_{red}$ of a divisible torsion group and a reduced torsion group. Both components further decompose into *p*-primary components. If $D = (A_{div})_p$, then $D \cong \bigoplus^{\kappa} \mathbb{Z}_{p^{\infty}}$, so $D[p] \cong (\bigoplus^{\kappa} \mathbb{Z}_{p^{\infty}}) [p] \cong \bigoplus^{\kappa} \mathbb{Z}_p$,

Every torsion abelian group *A* is the direct sum $A_{div} \oplus A_{red}$ of a divisible torsion group and a reduced torsion group. Both components further decompose into *p*-primary components. If $D = (A_{div})_p$, then $D \cong \bigoplus^{\kappa} \mathbb{Z}_{p^{\infty}}$, so $D[p] \cong (\bigoplus^{\kappa} \mathbb{Z}_{p^{\infty}}) [p] \cong \bigoplus^{\kappa} \mathbb{Z}_p$, so $\kappa = \dim_{\mathbb{F}_p}(D[p])$.

Every torsion abelian group *A* is the direct sum $A_{div} \oplus A_{red}$ of a divisible torsion group and a reduced torsion group. Both components further decompose into *p*-primary components. If $D = (A_{div})_p$, then $D \cong \bigoplus^{\kappa} \mathbb{Z}_{p^{\infty}}$, so $D[p] \cong (\bigoplus^{\kappa} \mathbb{Z}_{p^{\infty}}) [p] \cong \bigoplus^{\kappa} \mathbb{Z}_p$, so $\kappa = \dim_{\mathbb{F}_p}(D[p])$. Nothing more to say.

Every torsion abelian group *A* is the direct sum $A_{div} \oplus A_{red}$ of a divisible torsion group and a reduced torsion group. Both components further decompose into *p*-primary components. If $D = (A_{div})_p$, then $D \cong \bigoplus^{\kappa} \mathbb{Z}_{p^{\infty}}$, so $D[p] \cong (\bigoplus^{\kappa} \mathbb{Z}_{p^{\infty}}) [p] \cong \bigoplus^{\kappa} \mathbb{Z}_p$, so $\kappa = \dim_{\mathbb{F}_p}(D[p])$. Nothing more to say.

Henceforth, let $A = A_{red}$ be a reduced abelian *p*-group.

Every torsion abelian group *A* is the direct sum $A_{div} \oplus A_{red}$ of a divisible torsion group and a reduced torsion group. Both components further decompose into *p*-primary components. If $D = (A_{div})_p$, then $D \cong \bigoplus^{\kappa} \mathbb{Z}_{p^{\infty}}$, so $D[p] \cong (\bigoplus^{\kappa} \mathbb{Z}_{p^{\infty}}) [p] \cong \bigoplus^{\kappa} \mathbb{Z}_p$, so $\kappa = \dim_{\mathbb{F}_p}(D[p])$. Nothing more to say.

Every torsion abelian group *A* is the direct sum $A_{div} \oplus A_{red}$ of a divisible torsion group and a reduced torsion group. Both components further decompose into *p*-primary components. If $D = (A_{div})_p$, then $D \cong \bigoplus^{\kappa} \mathbb{Z}_{p^{\infty}}$, so $D[p] \cong (\bigoplus^{\kappa} \mathbb{Z}_{p^{\infty}}) [p] \cong \bigoplus^{\kappa} \mathbb{Z}_p$, so $\kappa = \dim_{\mathbb{F}_p}(D[p])$. Nothing more to say.

•
$$p^0 A = A$$
,

Every torsion abelian group *A* is the direct sum $A_{div} \oplus A_{red}$ of a divisible torsion group and a reduced torsion group. Both components further decompose into *p*-primary components. If $D = (A_{div})_p$, then $D \cong \bigoplus^{\kappa} \mathbb{Z}_{p^{\infty}}$, so $D[p] \cong (\bigoplus^{\kappa} \mathbb{Z}_{p^{\infty}}) [p] \cong \bigoplus^{\kappa} \mathbb{Z}_p$, so $\kappa = \dim_{\mathbb{F}_p}(D[p])$. Nothing more to say.

•
$$p^0A = A$$
,

•
$$p^{\sigma+1}A = p(p^{\sigma}A)$$
,

Every torsion abelian group *A* is the direct sum $A_{div} \oplus A_{red}$ of a divisible torsion group and a reduced torsion group. Both components further decompose into *p*-primary components. If $D = (A_{div})_p$, then $D \cong \bigoplus^{\kappa} \mathbb{Z}_{p^{\infty}}$, so $D[p] \cong (\bigoplus^{\kappa} \mathbb{Z}_{p^{\infty}}) [p] \cong \bigoplus^{\kappa} \mathbb{Z}_p$, so $\kappa = \dim_{\mathbb{F}_p}(D[p])$. Nothing more to say.

Every torsion abelian group *A* is the direct sum $A_{div} \oplus A_{red}$ of a divisible torsion group and a reduced torsion group. Both components further decompose into *p*-primary components. If $D = (A_{div})_p$, then $D \cong \bigoplus^{\kappa} \mathbb{Z}_{p^{\infty}}$, so $D[p] \cong (\bigoplus^{\kappa} \mathbb{Z}_{p^{\infty}}) [p] \cong \bigoplus^{\kappa} \mathbb{Z}_p$, so $\kappa = \dim_{\mathbb{F}_p}(D[p])$. Nothing more to say.

Every torsion abelian group *A* is the direct sum $A_{div} \oplus A_{red}$ of a divisible torsion group and a reduced torsion group. Both components further decompose into *p*-primary components. If $D = (A_{div})_p$, then $D \cong \bigoplus^{\kappa} \mathbb{Z}_{p^{\infty}}$, so $D[p] \cong (\bigoplus^{\kappa} \mathbb{Z}_{p^{\infty}}) [p] \cong \bigoplus^{\kappa} \mathbb{Z}_p$, so $\kappa = \dim_{\mathbb{F}_p}(D[p])$. Nothing more to say.

Henceforth, let $A = A_{red}$ be a reduced abelian *p*-group. *A* is *m*-divisible by every *m* coprime to *p*, so we focus on *p*-divisibility for such groups:

•
$$p^0A = A$$
,

•
$$p^{\sigma+1}A = p(p^{\sigma}A),$$

•
$$p^{\lambda}A = \bigcap_{\sigma < \lambda} (p^{\sigma}A)$$
 if λ is limit.

 $p^{\omega}A$ is the first Ulm subgroup of A.

Every torsion abelian group *A* is the direct sum $A_{div} \oplus A_{red}$ of a divisible torsion group and a reduced torsion group. Both components further decompose into *p*-primary components. If $D = (A_{div})_p$, then $D \cong \bigoplus^{\kappa} \mathbb{Z}_{p^{\infty}}$, so $D[p] \cong (\bigoplus^{\kappa} \mathbb{Z}_{p^{\infty}}) [p] \cong \bigoplus^{\kappa} \mathbb{Z}_p$, so $\kappa = \dim_{\mathbb{F}_p}(D[p])$. Nothing more to say.

Henceforth, let $A = A_{red}$ be a reduced abelian *p*-group. *A* is *m*-divisible by every *m* coprime to *p*, so we focus on *p*-divisibility for such groups:

• $p^0A = A$,

•
$$p^{\sigma+1}A = p(p^{\sigma}A),$$

•
$$p^{\lambda}A = \bigcap_{\sigma < \lambda} (p^{\sigma}A)$$
 if λ is limit.

 $p^{\omega}A$ is the first Ulm subgroup of A. $p^{\omega}(p^{\omega}A) = p^{\omega \cdot 2}A$ is the second.

Every torsion abelian group *A* is the direct sum $A_{div} \oplus A_{red}$ of a divisible torsion group and a reduced torsion group. Both components further decompose into *p*-primary components. If $D = (A_{div})_p$, then $D \cong \bigoplus^{\kappa} \mathbb{Z}_{p^{\infty}}$, so $D[p] \cong (\bigoplus^{\kappa} \mathbb{Z}_{p^{\infty}}) [p] \cong \bigoplus^{\kappa} \mathbb{Z}_p$, so $\kappa = \dim_{\mathbb{F}_p}(D[p])$. Nothing more to say.

Henceforth, let $A = A_{red}$ be a reduced abelian *p*-group. *A* is *m*-divisible by every *m* coprime to *p*, so we focus on *p*-divisibility for such groups:

• $p^0A = A$,

•
$$p^{\sigma+1}A = p(p^{\sigma}A),$$

•
$$p^{\lambda}A = \bigcap_{\sigma < \lambda} (p^{\sigma}A)$$
 if λ is limit.

 $p^{\omega}A$ is the first Ulm subgroup of *A*. $p^{\omega}(p^{\omega}A) = p^{\omega \cdot 2}A$ is the second. Df.

Every torsion abelian group *A* is the direct sum $A_{div} \oplus A_{red}$ of a divisible torsion group and a reduced torsion group. Both components further decompose into *p*-primary components. If $D = (A_{div})_p$, then $D \cong \bigoplus^{\kappa} \mathbb{Z}_{p^{\infty}}$, so $D[p] \cong (\bigoplus^{\kappa} \mathbb{Z}_{p^{\infty}}) [p] \cong \bigoplus^{\kappa} \mathbb{Z}_p$, so $\kappa = \dim_{\mathbb{F}_p}(D[p])$. Nothing more to say.

Henceforth, let $A = A_{red}$ be a reduced abelian *p*-group. *A* is *m*-divisible by every *m* coprime to *p*, so we focus on *p*-divisibility for such groups:

• $p^0 A = A$,

•
$$p^{\sigma+1}A = p(p^{\sigma}A),$$

•
$$p^{\lambda}A = \bigcap_{\sigma < \lambda} (p^{\sigma}A)$$
 if λ is limit.

 $p^{\omega}A$ is the first Ulm subgroup of A. $p^{\omega}(p^{\omega}A) = p^{\omega \cdot 2}A$ is the second.

Df. The σ -th Ulm invariant of A is

$$f_A(\sigma) := \dim_{\mathbb{F}_p} \left((p^{\sigma}A)[p]/(p^{\sigma+1}A)[p] \right).$$

Every torsion abelian group *A* is the direct sum $A_{div} \oplus A_{red}$ of a divisible torsion group and a reduced torsion group. Both components further decompose into *p*-primary components. If $D = (A_{div})_p$, then $D \cong \bigoplus^{\kappa} \mathbb{Z}_{p^{\infty}}$, so $D[p] \cong (\bigoplus^{\kappa} \mathbb{Z}_{p^{\infty}}) [p] \cong \bigoplus^{\kappa} \mathbb{Z}_p$, so $\kappa = \dim_{\mathbb{F}_p}(D[p])$. Nothing more to say.

Henceforth, let $A = A_{red}$ be a reduced abelian *p*-group. *A* is *m*-divisible by every *m* coprime to *p*, so we focus on *p*-divisibility for such groups:

• $p^0 A = A$,

•
$$p^{\sigma+1}A = p(p^{\sigma}A),$$

•
$$p^{\lambda}A = \bigcap_{\sigma < \lambda} (p^{\sigma}A)$$
 if λ is limit.

 $p^{\omega}A$ is the first Ulm subgroup of A. $p^{\omega}(p^{\omega}A) = p^{\omega \cdot 2}A$ is the second.

Df. The σ -th Ulm invariant of A is

$$f_A(\sigma) := \dim_{\mathbb{F}_p} \left((p^{\sigma}A)[p]/(p^{\sigma+1}A)[p] \right).$$

This is a function from ordinals to cardinals.

Examples

Examples

Ex. 1. (divisible case)

Examples

Ex. 1. (divisible case) If *D* is a divisible abelian *p*-group, then $f_D(s) = 0$ for all *s*.

Ex. 1. (divisible case)

If *D* is a divisible abelian *p*-group, then $f_D(s) = 0$ for all *s*. In particular, $\mathbb{Z}_{p^{\infty}}$ and $\mathbb{Z}_{p^{\infty}} \oplus \mathbb{Z}_{p^{\infty}}$ have the same Ulm invariants.

Ex. 1. (divisible case)

If *D* is a divisible abelian *p*-group, then $f_D(s) = 0$ for all *s*. In particular, $\mathbb{Z}_{p^{\infty}}$ and $\mathbb{Z}_{p^{\infty}} \oplus \mathbb{Z}_{p^{\infty}}$ have the same Ulm invariants.

Ex. 2 (direct sum of cyclic case)

Ex. 1. (divisible case)

If *D* is a divisible abelian *p*-group, then $f_D(s) = 0$ for all *s*. In particular, $\mathbb{Z}_{p^{\infty}}$ and $\mathbb{Z}_{p^{\infty}} \oplus \mathbb{Z}_{p^{\infty}}$ have the same Ulm invariants.

Ex. 2 (direct sum of cyclic case)

$$A = (\underbrace{\mathbb{Z}_p \oplus \cdots \oplus \mathbb{Z}_p}_{\kappa_1}) \oplus (\underbrace{\mathbb{Z}_{p^2} \oplus \cdots \oplus \mathbb{Z}_{p^2}}_{\kappa_2}) \oplus (\underbrace{\mathbb{Z}_{p^3} \oplus \cdots \oplus \mathbb{Z}_{p^3}}_{\kappa_3}) \oplus \cdots$$

Ex. 1. (divisible case)

If *D* is a divisible abelian *p*-group, then $f_D(s) = 0$ for all *s*. In particular, $\mathbb{Z}_{p^{\infty}}$ and $\mathbb{Z}_{p^{\infty}} \oplus \mathbb{Z}_{p^{\infty}}$ have the same Ulm invariants.

Ex. 2 (direct sum of cyclic case)

$$A = (\underbrace{\mathbb{Z}_p \oplus \cdots \oplus \mathbb{Z}_p}_{\kappa_1}) \oplus (\underbrace{\mathbb{Z}_{p^2} \oplus \cdots \oplus \mathbb{Z}_{p^2}}_{\kappa_2}) \oplus (\underbrace{\mathbb{Z}_{p^3} \oplus \cdots \oplus \mathbb{Z}_{p^3}}_{\kappa_3}) \oplus \cdots$$

A is reduced.

Ex. 1. (divisible case)

If *D* is a divisible abelian *p*-group, then $f_D(s) = 0$ for all *s*. In particular, $\mathbb{Z}_{p^{\infty}}$ and $\mathbb{Z}_{p^{\infty}} \oplus \mathbb{Z}_{p^{\infty}}$ have the same Ulm invariants.

Ex. 2 (direct sum of cyclic case)

$$A = (\underbrace{\mathbb{Z}_p \oplus \cdots \oplus \mathbb{Z}_p}_{\kappa_1}) \oplus (\underbrace{\mathbb{Z}_{p^2} \oplus \cdots \oplus \mathbb{Z}_{p^2}}_{\kappa_2}) \oplus (\underbrace{\mathbb{Z}_{p^3} \oplus \cdots \oplus \mathbb{Z}_{p^3}}_{\kappa_3}) \oplus \cdots$$

A is reduced. Its Ulm invariants are $(f_A(0), f_A(1), f_A(2), \ldots) = (\kappa_1, \kappa_2, \kappa_3, \ldots).$

Ex. 1. (divisible case)

If *D* is a divisible abelian *p*-group, then $f_D(s) = 0$ for all *s*. In particular, $\mathbb{Z}_{p^{\infty}}$ and $\mathbb{Z}_{p^{\infty}} \oplus \mathbb{Z}_{p^{\infty}}$ have the same Ulm invariants.

Ex. 2 (direct sum of cyclic case)

$$A = (\underbrace{\mathbb{Z}_p \oplus \cdots \oplus \mathbb{Z}_p}_{\kappa_1}) \oplus (\underbrace{\mathbb{Z}_{p^2} \oplus \cdots \oplus \mathbb{Z}_{p^2}}_{\kappa_2}) \oplus (\underbrace{\mathbb{Z}_{p^3} \oplus \cdots \oplus \mathbb{Z}_{p^3}}_{\kappa_3}) \oplus \cdots$$

A is reduced. Its Ulm invariants are

$$(f_A(0), f_A(1), f_A(2), \ldots) = (\kappa_1, \kappa_2, \kappa_3, \ldots).$$

 $f_A(\sigma) = 0$ if σ is an infinite ordinal, since no nonzero element of A is infinitely *p*-divisible.

Ulm's Thm.

Ulm's Thm. Two countable, reduced, abelian *p*-groups are isomorphic iff they have the same Ulm invariants.

Ulm's Thm. Two countable, reduced, abelian *p*-groups are isomorphic iff they have the same Ulm invariants.

Corollary.

Ulm's Thm. Two countable, reduced, abelian *p*-groups are isomorphic iff they have the same Ulm invariants.

Corollary. A countable abelian *p*-group is a direct sum of cyclic groups if and only if it has no elements of infinite *p*-height. (I.e., its first Ulm subgroup is trivial.)

Ulm's Thm. Two countable, reduced, abelian *p*-groups are isomorphic iff they have the same Ulm invariants.

Corollary. A countable abelian *p*-group is a direct sum of cyclic groups if and only if it has no elements of infinite *p*-height. (I.e., its first Ulm subgroup is trivial.)

Bad Example.

Ulm's Thm. Two countable, reduced, abelian *p*-groups are isomorphic iff they have the same Ulm invariants.

Corollary. A countable abelian *p*-group is a direct sum of cyclic groups if and only if it has no elements of infinite *p*-height. (I.e., its first Ulm subgroup is trivial.)

Bad Example. The group $A = \bigoplus_{k=1}^{\infty} \mathbb{Z}_{p^k}$ is a reduced *p*-group whose Ulm invariants are $(f_A(0), f_A(1), f_A(2), \ldots) = (1, 1, 1, \ldots)$, and $f_A(\sigma) = 0$ if σ is an infinite ordinal.

Ulm's Thm. Two countable, reduced, abelian *p*-groups are isomorphic iff they have the same Ulm invariants.

Corollary. A countable abelian *p*-group is a direct sum of cyclic groups if and only if it has no elements of infinite *p*-height. (I.e., its first Ulm subgroup is trivial.)

Bad Example. The group $A = \bigoplus_{k=1}^{\infty} \mathbb{Z}_{p^k}$ is a reduced *p*-group whose Ulm invariants are $(f_A(0), f_A(1), f_A(2), \ldots) = (1, 1, 1, \ldots)$, and $f_A(\sigma) = 0$ if σ is an infinite ordinal.

The torsion subgroup *B* of $\prod_{k=1}^{\infty} \mathbb{Z}_{p^k}$ has all of these properties, but $B \not\cong A$ since *B* is uncountable while *A* is countable.

Ulm's Thm. Two countable, reduced, abelian *p*-groups are isomorphic iff they have the same Ulm invariants.

Corollary. A countable abelian *p*-group is a direct sum of cyclic groups if and only if it has no elements of infinite *p*-height. (I.e., its first Ulm subgroup is trivial.)

Bad Example. The group $A = \bigoplus_{k=1}^{\infty} \mathbb{Z}_{p^k}$ is a reduced *p*-group whose Ulm invariants are $(f_A(0), f_A(1), f_A(2), \ldots) = (1, 1, 1, \ldots)$, and $f_A(\sigma) = 0$ if σ is an infinite ordinal.

The torsion subgroup *B* of $\prod_{k=1}^{\infty} \mathbb{Z}_{p^k}$ has all of these properties, but $B \not\cong A$ since *B* is uncountable while *A* is countable. If *B* were a direct sum of cyclic *p*-groups, then we would have to have $B \cong A$, so this *B* is an example of a reduced abelian *p*-group that is not a direct sum of cyclic groups.

The bounded case

The bounded case

Prüfer's First Theorem. (Theorem 4.3.5) An abelian group satisfying the identity nx = 0, $n \neq 0$, is a direct sum of cyclic groups satisfying nx = 0.

The bounded case

Prüfer's First Theorem. (Theorem 4.3.5) An abelian group satisfying the identity nx = 0, $n \neq 0$, is a direct sum of cyclic groups satisfying nx = 0. *Proof goes here.*

Kulikov's Theorem

Kulikov's Theorem

Theorem. If A is a torsion abelian group, then there is a <u>universally exact</u> sequence

1

$$0 \to C \to A \to D \to 0$$

where *C* is a direct sum of cyclic groups and *D* is a torsion divisible group. (If *C* is bounded, then this sequence splits – Theorem 4.3.8.)

Kulikov's Theorem

Theorem. If A is a torsion abelian group, then there is a <u>universally exact</u> sequence

$$0 \to C \to A \to D \to 0$$

where *C* is a direct sum of cyclic groups and *D* is a torsion divisible group. (If *C* is bounded, then this sequence splits – Theorem 4.3.8.)

Example. If *A* be the torsion subgroup of $\prod_{k=1}^{\infty} \mathbb{Z}_{p^k}$, then $C = \bigoplus_{k=1}^{\infty} \mathbb{Z}_{p^k}$ and D = A/C work. The sequence does not split.