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The Ulm subgroup

Let A be an abelian group and let λn : A→ A : a 7→ na be multiplication by
n ∈ Z. Write A[n] for ker(λn) and nA for im(λn).

The set A′ = ∩ nA of elements divisible by every n ∈ Z+ in A is the first Ulm
subgroup of A. (It is a subgroup of A.)

Recursively define A0 = A, Aσ+1 = (Aσ)′, and Aλ =
⋂
σ<λ Aσ when λ is a

limit ordinal. The sequence A = A0 ⊇ A1 ⊇ · · · must terminate, since
(i) A is a set, (ii) there are ordinal-many superscripts, and (iii) once we have
Aσ = Aσ+1 the sequence can no longer change. The least ordinal σ such that
Aσ = Aσ+1 is called the Ulm length of A.

If σ is the Ulm length of A, the elements of Aσ+1 are the elements infinitely
divisible in Aσ (= Aσ+1), so Aσ is divisible. This forces A ∼= Aσ ⊕ (A/Aσ).
Call Adiv := Aσ the divisible part of A and Ared := A/Aσ the reduced part of A.
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The Ulm invariants

Every torsion abelian group A is the direct sum Adiv ⊕ Ared of a divisible
torsion group and a reduced torsion group. Both components further
decompose into p-primary components. If D = (Adiv)p, then D ∼= ⊕κZp∞ , so
D[p] ∼= (⊕κZp∞) [p] ∼= ⊕κZp, so κ = dimFp(D[p]). Nothing more to say.

Henceforth, let A = Ared be a reduced abelian p-group. A is m-divisible by
every m coprime to p, so we focus on p-divisibility for such groups:

p0A = A,

pσ+1A = p(pσA),

pλA = ∩σ<λ (pσA) if λ is limit.

pωA is the first Ulm subgroup of A. pω(pωA) = pω·2A is the second.

Df. The σ-th Ulm invariant of A is

fA(σ) := dimFp

(
(pσA)[p]/(pσ+1A)[p]

)
.

This is a function from ordinals to cardinals.
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Examples

Ex. 1. (divisible case)
If D is a divisible abelian p-group, then fD(s) = 0 for all s. In particular, Zp∞

and Zp∞ ⊕ Zp∞ have the same Ulm invariants.

Ex. 2 (direct sum of cyclic case)

A = (Zp ⊕ · · · ⊕ Zp︸ ︷︷ ︸
κ1

)⊕ (Zp2 ⊕ · · · ⊕ Zp2︸ ︷︷ ︸
κ2

)⊕ (Zp3 ⊕ · · · ⊕ Zp3︸ ︷︷ ︸
κ3

)⊕ · · ·

A is reduced. Its Ulm invariants are
(fA(0), fA(1), fA(2), . . .) = (κ1, κ2, κ3, . . .).
fA(σ) = 0 if σ is an infinite ordinal, since no nonzero element of A is infinitely
p-divisible.
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Ulm’s Theorem

Ulm’s Thm. Two countable, reduced, abelian p-groups are isomorphic iff
they have the same Ulm invariants.

Corollary. A countable abelian p-group is a direct sum of cyclic groups if and
only if it has no elements of infinite p-height. (I.e., its first Ulm subgroup is
trivial.)

Bad Example. The group A = ⊕∞k=1Zpk is a reduced p-group whose Ulm
invariants are (fA(0), fA(1), fA(2), . . .) = (1, 1, 1, . . .), and fA(σ) = 0 if σ is an
infinite ordinal.

The torsion subgroup B of
∏∞

k=1 Zpk has all of these properties, but B 6∼= A
since B is uncountable while A is countable. If B were a direct sum of cyclic
p-groups, then we would have to have B ∼= A, so this B is an example of a
reduced abelian p-group that is not a direct sum of cyclic groups.
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The bounded case

Prüfer’s First Theorem. (Theorem 4.3.5) An abelian group satisfying the
identity nx = 0, n 6= 0, is a direct sum of cyclic groups satisfying nx = 0.
Proof goes here.
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Kulikov’s Theorem

Theorem. If A is a torsion abelian group, then there is a universally exact
sequence

0→ C→ A→ D→ 0

where C is a direct sum of cyclic groups and D is a torsion divisible group.
(If C is bounded, then this sequence splits – Theorem 4.3.8.)

Example. If A be the torsion subgroup of
∏∞

k=1 Zpk , then C = ⊕∞k=1Zpk and
D = A/C work. The sequence does not split.
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