Semisimple *k*-algebras

Thm.

Thm. \mathbb{A} is a semisimple *k*-algebra

Thm. A is a semisimple *k*-algebra (or ring)

Thm. A is a semisimple *k*-algebra (or ring) iff every A-module is a direct sum of simple modules.

Thm. A is a semisimple *k*-algebra (or ring) iff every A-module is a direct sum of simple modules.

Thm. A is a semisimple *k*-algebra (or ring) iff every A-module is a direct sum of simple modules.

Proof of "only if":

• Let *M* be an A-module, and $0 \neq N \leq M$ be a f.g.-submodule.

Thm. A is a semisimple *k*-algebra (or ring) iff every A-module is a direct sum of simple modules.

Proof of "only if":

• Let *M* be an A-module, and $0 \neq N \leq M$ be a f.g.-submodule.

Thm. A is a semisimple k-algebra (or ring) iff every A-module is a direct sum of simple modules.

- Let *M* be an A-module, and $0 \neq N \leq M$ be a f.g.-submodule.
- Any proper $P \leq N$ may be extended to a maximal proper $P' \prec N$.

Thm. A is a semisimple k-algebra (or ring) iff every A-module is a direct sum of simple modules.

- Let *M* be an A-module, and $0 \neq N \leq M$ be a f.g.-submodule.
- Any proper $P \leq N$ may be extended to a maximal proper $P' \prec N$.

Thm. A is a semisimple k-algebra (or ring) iff every A-module is a direct sum of simple modules.

- Let *M* be an \mathbb{A} -module, and $0 \neq N \leq M$ be a f.g.-submodule.
- Any proper $P \leq N$ may be extended to a maximal proper $P' \prec N$.
- Sub(*N*) is complemented and modular,

Thm. A is a semisimple k-algebra (or ring) iff every A-module is a direct sum of simple modules.

- Let *M* be an \mathbb{A} -module, and $0 \neq N \leq M$ be a f.g.-submodule.
- Any proper $P \leq N$ may be extended to a maximal proper $P' \prec N$.
- Sub(*N*) is complemented and modular,

Thm. A is a semisimple *k*-algebra (or ring) iff every A-module is a direct sum of simple modules.

- Let *M* be an \mathbb{A} -module, and $0 \neq N \leq M$ be a f.g.-submodule.
- Any proper $P \leq N$ may be extended to a maximal proper $P' \prec N$.
- Sub(N) is complemented and modular, so ∃ minimal Q ≤ N complementing P'.

Thm. A is a semisimple *k*-algebra (or ring) iff every A-module is a direct sum of simple modules.

- Let *M* be an \mathbb{A} -module, and $0 \neq N \leq M$ be a f.g.-submodule.
- Any proper $P \leq N$ may be extended to a maximal proper $P' \prec N$.
- Sub(N) is complemented and modular, so ∃ minimal Q ≤ N complementing P'. Q is simple and disjoint from P.

Thm. A is a semisimple *k*-algebra (or ring) iff every A-module is a direct sum of simple modules.

- Let *M* be an \mathbb{A} -module, and $0 \neq N \leq M$ be a f.g.-submodule.
- Any proper $P \leq N$ may be extended to a maximal proper $P' \prec N$.
- Sub(N) is complemented and modular, so ∃ minimal Q ≤ N complementing P'. Q is simple and disjoint from P.
- Summary: If $0 \neq N^{\text{f.g.}} \leq M$, then $N = \sum Q_i^N$ is a sum of simple submodules.

Thm. A is a semisimple *k*-algebra (or ring) iff every A-module is a direct sum of simple modules.

- Let *M* be an \mathbb{A} -module, and $0 \neq N \leq M$ be a f.g.-submodule.
- Any proper $P \leq N$ may be extended to a maximal proper $P' \prec N$.
- Sub(N) is complemented and modular, so ∃ minimal Q ≤ N complementing P'. Q is simple and disjoint from P.
- Summary: If $0 \neq N^{\text{f.g.}} \leq M$, then $N = \sum Q_i^N$ is a sum of simple submodules.

Thm. A is a semisimple *k*-algebra (or ring) iff every A-module is a direct sum of simple modules.

- Let *M* be an \mathbb{A} -module, and $0 \neq N \leq M$ be a f.g.-submodule.
- Any proper $P \leq N$ may be extended to a maximal proper $P' \prec N$.
- Sub(N) is complemented and modular, so ∃ minimal Q ≤ N complementing P'. Q is simple and disjoint from P.
- Summary: If $0 \neq N^{\text{f.g.}} \leq M$, then $N = \sum Q_i^N$ is a sum of simple submodules.
- $M = \sum N^{\text{f.g.}}$ is the sum of its f.g.-submodules,

Thm. A is a semisimple *k*-algebra (or ring) iff every A-module is a direct sum of simple modules.

- Let *M* be an \mathbb{A} -module, and $0 \neq N \leq M$ be a f.g.-submodule.
- Any proper $P \leq N$ may be extended to a maximal proper $P' \prec N$.
- Sub(N) is complemented and modular, so ∃ minimal Q ≤ N complementing P'. Q is simple and disjoint from P.
- Summary: If $0 \neq N^{\text{f.g.}} \leq M$, then $N = \sum Q_i^N$ is a sum of simple submodules.
- $M = \sum N^{\text{f.g.}}$ is the sum of its f.g.-submodules,

Thm. A is a semisimple *k*-algebra (or ring) iff every A-module is a direct sum of simple modules.

- Let *M* be an \mathbb{A} -module, and $0 \neq N \leq M$ be a f.g.-submodule.
- Any proper $P \leq N$ may be extended to a maximal proper $P' \prec N$.
- Sub(N) is complemented and modular, so ∃ minimal Q ≤ N complementing P'. Q is simple and disjoint from P.
- Summary: If $0 \neq N^{\text{f.g.}} \leq M$, then $N = \sum Q_i^N$ is a sum of simple submodules.
- $M = \sum N^{\text{f.g.}}$ is the sum of its f.g.-submodules, so $M = \sum_{N} \sum Q_{i}^{N}$ is a sum of simple submodules.

Thm. A is a semisimple *k*-algebra (or ring) iff every A-module is a direct sum of simple modules.

- Let *M* be an A-module, and $0 \neq N \leq M$ be a f.g.-submodule.
- Any proper $P \leq N$ may be extended to a maximal proper $P' \prec N$.
- Sub(N) is complemented and modular, so ∃ minimal Q ≤ N complementing P'. Q is simple and disjoint from P.
- Summary: If $0 \neq N^{\text{f.g.}} \leq M$, then $N = \sum Q_i^N$ is a sum of simple submodules.
- $M = \sum N^{\text{f.g.}}$ is the sum of its f.g.-submodules, so $M = \sum_{N} \sum Q_{i}^{N}$ is a sum of simple submodules.
- The sum can be made direct:

Thm. A is a semisimple *k*-algebra (or ring) iff every A-module is a direct sum of simple modules.

- Let *M* be an A-module, and $0 \neq N \leq M$ be a f.g.-submodule.
- Any proper $P \leq N$ may be extended to a maximal proper $P' \prec N$.
- Sub(N) is complemented and modular, so ∃ minimal Q ≤ N complementing P'. Q is simple and disjoint from P.
- Summary: If $0 \neq N^{\text{f.g.}} \leq M$, then $N = \sum Q_i^N$ is a sum of simple submodules.
- $M = \sum N^{\text{f.g.}}$ is the sum of its f.g.-submodules, so $M = \sum_{N} \sum Q_{i}^{N}$ is a sum of simple submodules.
- The sum can be made direct:

Thm. A is a semisimple *k*-algebra (or ring) iff every A-module is a direct sum of simple modules.

- Let *M* be an A-module, and $0 \neq N \leq M$ be a f.g.-submodule.
- Any proper $P \leq N$ may be extended to a maximal proper $P' \prec N$.
- Sub(N) is complemented and modular, so ∃ minimal Q ≤ N complementing P'. Q is simple and disjoint from P.
- Summary: If $0 \neq N^{\text{f.g.}} \leq M$, then $N = \sum Q_i^N$ is a sum of simple submodules.
- $M = \sum N^{\text{f.g.}}$ is the sum of its f.g.-submodules, so $M = \sum_{N} \sum Q_{i}^{N}$ is a sum of simple submodules.
- The sum can be made direct: define a set *X* of simple submodules to be independent if $\sum Y \neq \sum Z$

Thm. A is a semisimple *k*-algebra (or ring) iff every A-module is a direct sum of simple modules.

- Let *M* be an A-module, and $0 \neq N \leq M$ be a f.g.-submodule.
- Any proper $P \leq N$ may be extended to a maximal proper $P' \prec N$.
- Sub(N) is complemented and modular, so ∃ minimal Q ≤ N complementing P'. Q is simple and disjoint from P.
- Summary: If $0 \neq N^{\text{f.g.}} \leq M$, then $N = \sum Q_i^N$ is a sum of simple submodules.
- $M = \sum N^{\text{f.g.}}$ is the sum of its f.g.-submodules, so $M = \sum_{N} \sum Q_{i}^{N}$ is a sum of simple submodules.
- The sum can be made direct: define a set *X* of simple submodules to be independent if $\sum Y \neq \sum Z$ for any $Y, Z \subseteq X$,

Thm. A is a semisimple *k*-algebra (or ring) iff every A-module is a direct sum of simple modules.

- Let *M* be an A-module, and $0 \neq N \leq M$ be a f.g.-submodule.
- Any proper $P \leq N$ may be extended to a maximal proper $P' \prec N$.
- Sub(N) is complemented and modular, so ∃ minimal Q ≤ N complementing P'. Q is simple and disjoint from P.
- Summary: If $0 \neq N^{\text{f.g.}} \leq M$, then $N = \sum Q_i^N$ is a sum of simple submodules.
- $M = \sum N^{\text{f.g.}}$ is the sum of its f.g.-submodules, so $M = \sum_{N} \sum Q_{i}^{N}$ is a sum of simple submodules.
- The sum can be made direct: define a set *X* of simple submodules to be independent if $\sum Y \neq \sum Z$ for any $Y, Z \subseteq X, Y \neq Z$.

Thm. A is a semisimple *k*-algebra (or ring) iff every A-module is a direct sum of simple modules.

- Let *M* be an A-module, and $0 \neq N \leq M$ be a f.g.-submodule.
- Any proper $P \leq N$ may be extended to a maximal proper $P' \prec N$.
- Sub(N) is complemented and modular, so ∃ minimal Q ≤ N complementing P'. Q is simple and disjoint from P.
- Summary: If $0 \neq N^{\text{f.g.}} \leq M$, then $N = \sum Q_i^N$ is a sum of simple submodules.
- $M = \sum N^{\text{f.g.}}$ is the sum of its f.g.-submodules, so $M = \sum_{N} \sum Q_{i}^{N}$ is a sum of simple submodules.
- The sum can be made direct: define a set X of simple submodules to be independent if $\sum Y \neq \sum Z$ for any $Y, Z \subseteq X, Y \neq Z$. Any sum of simple submodules equals an independent sum

Thm. A is a semisimple *k*-algebra (or ring) iff every A-module is a direct sum of simple modules.

- Let *M* be an A-module, and $0 \neq N \leq M$ be a f.g.-submodule.
- Any proper $P \leq N$ may be extended to a maximal proper $P' \prec N$.
- Sub(N) is complemented and modular, so ∃ minimal Q ≤ N complementing P'. Q is simple and disjoint from P.
- Summary: If $0 \neq N^{\text{f.g.}} \leq M$, then $N = \sum Q_i^N$ is a sum of simple submodules.
- $M = \sum N^{\text{f.g.}}$ is the sum of its f.g.-submodules, so $M = \sum_{N} \sum Q_{i}^{N}$ is a sum of simple submodules.
- The sum can be made direct: define a set X of simple submodules to be independent if $\sum Y \neq \sum Z$ for any $Y, Z \subseteq X, Y \neq Z$. Any sum of simple submodules equals an independent sum (ZL),

Thm. A is a semisimple *k*-algebra (or ring) iff every A-module is a direct sum of simple modules.

- Let *M* be an A-module, and $0 \neq N \leq M$ be a f.g.-submodule.
- Any proper $P \leq N$ may be extended to a maximal proper $P' \prec N$.
- Sub(N) is complemented and modular, so ∃ minimal Q ≤ N complementing P'. Q is simple and disjoint from P.
- Summary: If $0 \neq N^{\text{f.g.}} \leq M$, then $N = \sum Q_i^N$ is a sum of simple submodules.
- $M = \sum N^{\text{f.g.}}$ is the sum of its f.g.-submodules, so $M = \sum_{N} \sum Q_{i}^{N}$ is a sum of simple submodules.
- The sum can be made direct: define a set X of simple submodules to be independent if $\sum Y \neq \sum Z$ for any $Y, Z \subseteq X, Y \neq Z$. Any sum of simple submodules equals an independent sum (ZL), which is a direct sum.

Thm. A is a semisimple *k*-algebra (or ring) iff every A-module is a direct sum of simple modules.

Proof of "only if":

- Let *M* be an A-module, and $0 \neq N \leq M$ be a f.g.-submodule.
- Any proper $P \leq N$ may be extended to a maximal proper $P' \prec N$.
- Sub(N) is complemented and modular, so ∃ minimal Q ≤ N complementing P'. Q is simple and disjoint from P.
- Summary: If $0 \neq N^{\text{f.g.}} \leq M$, then $N = \sum Q_i^N$ is a sum of simple submodules.
- $M = \sum N^{\text{f.g.}}$ is the sum of its f.g.-submodules, so $M = \sum_{N} \sum Q_{i}^{N}$ is a sum of simple submodules.
- The sum can be made direct: define a set *X* of simple submodules to be independent if $\sum Y \neq \sum Z$ for any $Y, Z \subseteq X, Y \neq Z$. Any sum of simple submodules equals an independent sum (ZL), which is a direct sum.

Thm.

Thm. If \mathbb{A} is a semisimple *k*-algebra

Thm. If \mathbb{A} is a semisimple *k*-algebra (or ring),

Thm. If \mathbb{A} is a semisimple *k*-algebra (or ring), then \mathbb{A} has finitely many isotypes of simple modules.

Thm. If A is a semisimple *k*-algebra (or ring), then A has finitely many isotypes of simple modules.

(This affords a quick proof that \mathbb{Z} is not semisimple.)

Thm. If A is a semisimple *k*-algebra (or ring), then A has finitely many isotypes of simple modules.

(This affords a quick proof that $\ensuremath{\mathbb{Z}}$ is not semisimple.)

Proof:
Thm. If A is a semisimple *k*-algebra (or ring), then A has finitely many isotypes of simple modules.

(This affords a quick proof that $\ensuremath{\mathbb{Z}}$ is not semisimple.)

Proof:

• The 1-generated free A-module,

Thm. If A is a semisimple *k*-algebra (or ring), then A has finitely many isotypes of simple modules.

(This affords a quick proof that $\ensuremath{\mathbb{Z}}$ is not semisimple.)

Proof:

• The 1-generated free A-module,

Thm. If A is a semisimple *k*-algebra (or ring), then A has finitely many isotypes of simple modules.

(This affords a quick proof that $\ensuremath{\mathbb{Z}}$ is not semisimple.)

Proof:

• The 1-generated free \mathbb{A} -module, $\mathbb{A}\mathbb{A}$,

Thm. If A is a semisimple *k*-algebra (or ring), then A has finitely many isotypes of simple modules.

(This affords a quick proof that $\ensuremath{\mathbb{Z}}$ is not semisimple.)

Proof:

• The 1-generated free \mathbb{A} -module, $\mathbb{A}\mathbb{A}$, is a sum of simples.

Thm. If A is a semisimple *k*-algebra (or ring), then A has finitely many isotypes of simple modules.

(This affords a quick proof that $\ensuremath{\mathbb{Z}}$ is not semisimple.)

- The 1-generated free \mathbb{A} -module, $\mathbb{A}\mathbb{A}$, is a sum of simples.
- Only finitely many summands are needed to generate the generator of ${}_{\mathbb{A}}\mathbb{A}$,

Thm. If A is a semisimple *k*-algebra (or ring), then A has finitely many isotypes of simple modules.

(This affords a quick proof that $\ensuremath{\mathbb{Z}}$ is not semisimple.)

- The 1-generated free \mathbb{A} -module, $\mathbb{A}\mathbb{A}$, is a sum of simples.
- Only finitely many summands are needed to generate the generator of ${}_{\mathbb{A}}\mathbb{A}$,

Thm. If A is a semisimple *k*-algebra (or ring), then A has finitely many isotypes of simple modules.

(This affords a quick proof that $\ensuremath{\mathbb{Z}}$ is not semisimple.)

- The 1-generated free \mathbb{A} -module, $\mathbb{A}\mathbb{A}$, is a sum of simples.
- Only finitely many summands are needed to generate the generator of ${}_{\mathbb{A}}\mathbb{A}$, so ${}_{\mathbb{A}}\mathbb{A} \cong \bigoplus_{i=1}^{n} Q_i$.

Thm. If A is a semisimple *k*-algebra (or ring), then A has finitely many isotypes of simple modules.

(This affords a quick proof that $\ensuremath{\mathbb{Z}}$ is not semisimple.)

- The 1-generated free \mathbb{A} -module, $\mathbb{A}\mathbb{A}$, is a sum of simples.
- Only finitely many summands are needed to generate the generator of ${}_{\mathbb{A}}\mathbb{A}$, so ${}_{\mathbb{A}}\mathbb{A} \cong \bigoplus_{i=1}^{n} Q_i$.
- Any simple \mathbb{A} -module *S* is isomorphic to one of the Q_i 's.

Thm. If A is a semisimple *k*-algebra (or ring), then A has finitely many isotypes of simple modules.

(This affords a quick proof that $\ensuremath{\mathbb{Z}}$ is not semisimple.)

- The 1-generated free \mathbb{A} -module, $\mathbb{A}\mathbb{A}$, is a sum of simples.
- Only finitely many summands are needed to generate the generator of ${}_{\mathbb{A}}\mathbb{A}$, so ${}_{\mathbb{A}}\mathbb{A} \cong \bigoplus_{i=1}^{n} Q_i$.
- Any simple \mathbb{A} -module *S* is isomorphic to one of the Q_i 's.

Thm. If A is a semisimple *k*-algebra (or ring), then A has finitely many isotypes of simple modules.

(This affords a quick proof that $\ensuremath{\mathbb{Z}}$ is not semisimple.)

- The 1-generated free \mathbb{A} -module, $\mathbb{A}\mathbb{A}$, is a sum of simples.
- Only finitely many summands are needed to generate the generator of ${}_{\mathbb{A}}\mathbb{A}$, so ${}_{\mathbb{A}}\mathbb{A} \cong \bigoplus_{i=1}^{n} Q_i$.
- Any simple \mathbb{A} -module *S* is isomorphic to one of the Q_i 's.

Thm. If A is a semisimple *k*-algebra (or ring), then A has finitely many isotypes of simple modules.

(This affords a quick proof that $\ensuremath{\mathbb{Z}}$ is not semisimple.)

- The 1-generated free \mathbb{A} -module, $\mathbb{A}\mathbb{A}$, is a sum of simples.
- Only finitely many summands are needed to generate the generator of ${}_{\mathbb{A}}\mathbb{A}$, so ${}_{\mathbb{A}}\mathbb{A} \cong \bigoplus_{i=1}^{n} Q_i$.
- Any simple A-module S is isomorphic to one of the Q_i 's. (Otherwise $|S| = |\text{Hom}(_{\mathbb{A}}\mathbb{A}, S)| = |\text{Hom}(\oplus Q_i, S)| = |\prod \text{Hom}(Q_i, S)| = 1.)$

Thm. If A is a semisimple *k*-algebra (or ring), then A has finitely many isotypes of simple modules.

(This affords a quick proof that $\ensuremath{\mathbb{Z}}$ is not semisimple.)

Proof:

- The 1-generated free \mathbb{A} -module, $\mathbb{A}\mathbb{A}$, is a sum of simples.
- Only finitely many summands are needed to generate the generator of ${}_{\mathbb{A}}\mathbb{A}$, so ${}_{\mathbb{A}}\mathbb{A} \cong \bigoplus_{i=1}^{n} Q_i$.
- Any simple A-module S is isomorphic to one of the Q_i 's. (Otherwise $|S| = |\text{Hom}(_{\mathbb{A}}\mathbb{A}, S)| = |\text{Hom}(\oplus Q_i, S)| = |\prod \text{Hom}(Q_i, S)| = 1.)$

•

Schur's Lm.

Schur's Lm. If *S* is a simple \mathbb{A} -module,

Schur's Lm. If *S* is a simple A-module, then $\text{End}_{\mathbb{A}}(S) = \text{Hom}_{\mathbb{A}}(S, S) = D$ is a division ring. **Refinements.**

Schur's Lm. If *S* is a simple \mathbb{A} -module, then $\text{End}_{\mathbb{A}}(S) = \text{Hom}_{\mathbb{A}}(S, S) = D$ is a division ring.

Refinements.

() if \mathbb{A} is a *k*-algebra, then *D* has a canonical *k*-algebra structure.

Schur's Lm. If *S* is a simple \mathbb{A} -module, then $\text{End}_{\mathbb{A}}(S) = \text{Hom}_{\mathbb{A}}(S, S) = D$ is a division ring.

Refinements.

() if \mathbb{A} is a *k*-algebra, then *D* has a canonical *k*-algebra structure.

Schur's Lm. If *S* is a simple \mathbb{A} -module, then $\operatorname{End}_{\mathbb{A}}(S) = \operatorname{Hom}_{\mathbb{A}}(S, S) = D$ is a division ring.

- **(**) if \mathbb{A} is a *k*-algebra, then *D* has a canonical *k*-algebra structure.
- **2** if \mathbb{A} is a *k*-algebra and *S* is a f.d. over *k*, then *D* is f.d. over *k*.

Schur's Lm. If *S* is a simple \mathbb{A} -module, then $\operatorname{End}_{\mathbb{A}}(S) = \operatorname{Hom}_{\mathbb{A}}(S, S) = D$ is a division ring.

- **(**) if \mathbb{A} is a *k*-algebra, then *D* has a canonical *k*-algebra structure.
- **2** if \mathbb{A} is a *k*-algebra and *S* is a f.d. over *k*, then *D* is f.d. over *k*.

Schur's Lm. If *S* is a simple \mathbb{A} -module, then $\operatorname{End}_{\mathbb{A}}(S) = \operatorname{Hom}_{\mathbb{A}}(S, S) = D$ is a division ring.

- **(**) if \mathbb{A} is a *k*-algebra, then *D* has a canonical *k*-algebra structure.
- **2** if \mathbb{A} is a *k*-algebra and *S* is a f.d. over *k*, then *D* is f.d. over *k*.
- \bigcirc if \mathbb{A} is a *k*-algebra, *S* is a f.d. over *k*, and *k* is alg. closed,

Schur's Lm. If *S* is a simple \mathbb{A} -module, then $\operatorname{End}_{\mathbb{A}}(S) = \operatorname{Hom}_{\mathbb{A}}(S, S) = D$ is a division ring.

- **(**) if \mathbb{A} is a *k*-algebra, then *D* has a canonical *k*-algebra structure.
- **2** if \mathbb{A} is a *k*-algebra and *S* is a f.d. over *k*, then *D* is f.d. over *k*.
- \bigcirc if \mathbb{A} is a *k*-algebra, *S* is a f.d. over *k*, and *k* is alg. closed,

Schur's Lm. If *S* is a simple \mathbb{A} -module, then $\operatorname{End}_{\mathbb{A}}(S) = \operatorname{Hom}_{\mathbb{A}}(S, S) = D$ is a division ring.

- **()** if \mathbb{A} is a *k*-algebra, then *D* has a canonical *k*-algebra structure.
- **2** if \mathbb{A} is a *k*-algebra and *S* is a f.d. over *k*, then *D* is f.d. over *k*.
- § if A is a k-algebra, S is a f.d. over k, and k is alg. closed, then D = k.

Schur's Lm. If *S* is a simple \mathbb{A} -module, then $\operatorname{End}_{\mathbb{A}}(S) = \operatorname{Hom}_{\mathbb{A}}(S, S) = D$ is a division ring.

Refinements.

- **()** if \mathbb{A} is a *k*-algebra, then *D* has a canonical *k*-algebra structure.
- \bigcirc if \mathbb{A} is a *k*-algebra and *S* is a f.d. over *k*, then *D* is f.d. over *k*.
- § if A is a k-algebra, S is a f.d. over k, and k is alg. closed, then D = k.

Proof:

• If $\varphi \in \text{Hom}(S, S)$ is nonzero,

Schur's Lm. If *S* is a simple \mathbb{A} -module, then $\operatorname{End}_{\mathbb{A}}(S) = \operatorname{Hom}_{\mathbb{A}}(S, S) = D$ is a division ring.

Refinements.

- **()** if \mathbb{A} is a *k*-algebra, then *D* has a canonical *k*-algebra structure.
- \bigcirc if \mathbb{A} is a *k*-algebra and *S* is a f.d. over *k*, then *D* is f.d. over *k*.
- § if A is a k-algebra, S is a f.d. over k, and k is alg. closed, then D = k.

Proof:

• If $\varphi \in \text{Hom}(S, S)$ is nonzero,

Schur's Lm. If *S* is a simple \mathbb{A} -module, then $\operatorname{End}_{\mathbb{A}}(S) = \operatorname{Hom}_{\mathbb{A}}(S, S) = D$ is a division ring.

Refinements.

- **()** if \mathbb{A} is a *k*-algebra, then *D* has a canonical *k*-algebra structure.
- \bigcirc if \mathbb{A} is a *k*-algebra and *S* is a f.d. over *k*, then *D* is f.d. over *k*.
- § if A is a k-algebra, S is a f.d. over k, and k is alg. closed, then D = k.

Proof:

• If $\varphi \in \operatorname{Hom}(S, S)$ is nonzero, then $\ker(\varphi) = \{0\}$ and $\operatorname{im}(\varphi) = S$,

Schur's Lm. If *S* is a simple \mathbb{A} -module, then $\operatorname{End}_{\mathbb{A}}(S) = \operatorname{Hom}_{\mathbb{A}}(S, S) = D$ is a division ring.

Refinements.

- **(**) if \mathbb{A} is a *k*-algebra, then *D* has a canonical *k*-algebra structure.
- \bigcirc if \mathbb{A} is a *k*-algebra and *S* is a f.d. over *k*, then *D* is f.d. over *k*.
- § if A is a k-algebra, S is a f.d. over k, and k is alg. closed, then D = k.

Proof:

If φ ∈ Hom(S, S) is nonzero, then ker(φ) = {0} and im(φ) = S, so φ is an isomorphism,

Schur's Lm. If *S* is a simple \mathbb{A} -module, then $\operatorname{End}_{\mathbb{A}}(S) = \operatorname{Hom}_{\mathbb{A}}(S, S) = D$ is a division ring.

Refinements.

- **()** if \mathbb{A} is a *k*-algebra, then *D* has a canonical *k*-algebra structure.
- **2** if \mathbb{A} is a *k*-algebra and *S* is a f.d. over *k*, then *D* is f.d. over *k*.
- if A is a k-algebra, S is a f.d. over k, and k is alg. closed, then D = k.

Proof:

If φ ∈ Hom(S, S) is nonzero, then ker(φ) = {0} and im(φ) = S, so φ is an isomorphism, so ∃φ⁻¹ ∈ Hom(S, S).

Refinements.

- **()** if \mathbb{A} is a *k*-algebra, then *D* has a canonical *k*-algebra structure.
- \bigcirc if \mathbb{A} is a *k*-algebra and *S* is a f.d. over *k*, then *D* is f.d. over *k*.
- **)** if \mathbb{A} is a *k*-algebra, *S* is a f.d. over *k*, and *k* is alg. closed, then D = k.

Proof:

If φ ∈ Hom(S, S) is nonzero, then ker(φ) = {0} and im(φ) = S, so φ is an isomorphism, so ∃φ⁻¹ ∈ Hom(S, S). (End(S) ⊆ {0} ∪ {units}.)

Refinements.

- **()** if \mathbb{A} is a *k*-algebra, then *D* has a canonical *k*-algebra structure.
- \bigcirc if \mathbb{A} is a *k*-algebra and *S* is a f.d. over *k*, then *D* is f.d. over *k*.
- **)** if \mathbb{A} is a *k*-algebra, *S* is a f.d. over *k*, and *k* is alg. closed, then D = k.

Proof:

If φ ∈ Hom(S, S) is nonzero, then ker(φ) = {0} and im(φ) = S, so φ is an isomorphism, so ∃φ⁻¹ ∈ Hom(S, S). (End(S) ⊆ {0} ∪ {units}.)

• If
$$\alpha \in k$$
, and $\ell_{\alpha}(v) := \alpha \cdot v$,

Refinements.

- **()** if \mathbb{A} is a *k*-algebra, then *D* has a canonical *k*-algebra structure.
- \bigcirc if \mathbb{A} is a *k*-algebra and *S* is a f.d. over *k*, then *D* is f.d. over *k*.
- **)** if \mathbb{A} is a *k*-algebra, *S* is a f.d. over *k*, and *k* is alg. closed, then D = k.

Proof:

If φ ∈ Hom(S, S) is nonzero, then ker(φ) = {0} and im(φ) = S, so φ is an isomorphism, so ∃φ⁻¹ ∈ Hom(S, S). (End(S) ⊆ {0} ∪ {units}.)

• If
$$\alpha \in k$$
, and $\ell_{\alpha}(v) := \alpha \cdot v$,

Refinements.

- **(**) if \mathbb{A} is a *k*-algebra, then *D* has a canonical *k*-algebra structure.
- \bigcirc if \mathbb{A} is a *k*-algebra and *S* is a f.d. over *k*, then *D* is f.d. over *k*.
- § if A is a k-algebra, S is a f.d. over k, and k is alg. closed, then D = k.

- If φ ∈ Hom(S, S) is nonzero, then ker(φ) = {0} and im(φ) = S, so φ is an isomorphism, so ∃φ⁻¹ ∈ Hom(S, S). (End(S) ⊆ {0} ∪ {units}.)
- If $\alpha \in k$, and $\ell_{\alpha}(v) := \alpha \cdot v$, then $\ell_{\alpha} \in Z(D)$.

Refinements.

- **(**) if \mathbb{A} is a *k*-algebra, then *D* has a canonical *k*-algebra structure.
- \bigcirc if \mathbb{A} is a *k*-algebra and *S* is a f.d. over *k*, then *D* is f.d. over *k*.
- § if A is a k-algebra, S is a f.d. over k, and k is alg. closed, then D = k.

- If φ ∈ Hom(S, S) is nonzero, then ker(φ) = {0} and im(φ) = S, so φ is an isomorphism, so ∃φ⁻¹ ∈ Hom(S, S). (End(S) ⊆ {0} ∪ {units}.)
- If α ∈ k, and ℓ_α(v) := α · v, then ℓ_α ∈ Z(D). The map Λ : k → Z(D) : α ↦ ℓ_α makes D a k-algebra.

Refinements.

- **()** if \mathbb{A} is a *k*-algebra, then *D* has a canonical *k*-algebra structure.
- **2** if \mathbb{A} is a *k*-algebra and *S* is a f.d. over *k*, then *D* is f.d. over *k*.
- § if A is a k-algebra, S is a f.d. over k, and k is alg. closed, then D = k.

- If φ ∈ Hom(S, S) is nonzero, then ker(φ) = {0} and im(φ) = S, so φ is an isomorphism, so ∃φ⁻¹ ∈ Hom(S, S). (End(S) ⊆ {0} ∪ {units}.)
- If α ∈ k, and ℓ_α(v) := α · v, then ℓ_α ∈ Z(D). The map Λ : k → Z(D) : α ↦ ℓ_α makes D a k-algebra.
- If $\dim_k(S) = n$, then $\operatorname{End}_k(S) = \underline{M_n(k)}$

Refinements.

- **()** if \mathbb{A} is a *k*-algebra, then *D* has a canonical *k*-algebra structure.
- **2** if \mathbb{A} is a *k*-algebra and *S* is a f.d. over *k*, then *D* is f.d. over *k*.
- § if A is a k-algebra, S is a f.d. over k, and k is alg. closed, then D = k.

- If φ ∈ Hom(S, S) is nonzero, then ker(φ) = {0} and im(φ) = S, so φ is an isomorphism, so ∃φ⁻¹ ∈ Hom(S, S). (End(S) ⊆ {0} ∪ {units}.)
- If α ∈ k, and ℓ_α(v) := α · v, then ℓ_α ∈ Z(D). The map Λ : k → Z(D) : α ↦ ℓ_α makes D a k-algebra.
- If $\dim_k(S) = n$, then $\operatorname{End}_k(S) = \underline{M_n(k)}$
Refinements.

- **()** if \mathbb{A} is a *k*-algebra, then *D* has a canonical *k*-algebra structure.
- **2** if \mathbb{A} is a *k*-algebra and *S* is a f.d. over *k*, then *D* is f.d. over *k*.
- § if A is a k-algebra, S is a f.d. over k, and k is alg. closed, then D = k.

- If φ ∈ Hom(S, S) is nonzero, then ker(φ) = {0} and im(φ) = S, so φ is an isomorphism, so ∃φ⁻¹ ∈ Hom(S, S). (End(S) ⊆ {0} ∪ {units}.)
- If α ∈ k, and ℓ_α(v) := α · v, then ℓ_α ∈ Z(D). The map Λ : k → Z(D) : α ↦ ℓ_α makes D a k-algebra.
- If $\dim_k(S) = n$, then $\operatorname{End}_k(S) = \underline{M_n(k)} \supseteq \operatorname{End}_{\mathbb{A}}(S) = \underline{\underline{D}}$

Refinements.

- **()** if \mathbb{A} is a *k*-algebra, then *D* has a canonical *k*-algebra structure.
- \bigcirc if \mathbb{A} is a *k*-algebra and *S* is a f.d. over *k*, then *D* is f.d. over *k*.
- § if A is a k-algebra, S is a f.d. over k, and k is alg. closed, then D = k.

- If φ ∈ Hom(S, S) is nonzero, then ker(φ) = {0} and im(φ) = S, so φ is an isomorphism, so ∃φ⁻¹ ∈ Hom(S, S). (End(S) ⊆ {0} ∪ {units}.)
- If $\alpha \in k$, and $\ell_{\alpha}(v) := \alpha \cdot v$, then $\ell_{\alpha} \in Z(D)$. The map $\Lambda : k \to Z(D) : \alpha \mapsto \ell_{\alpha}$ makes D a k-algebra.
- If $\dim_k(S) = n$, then $\operatorname{End}_k(S) = \underline{M_n(k)} \supseteq \operatorname{End}_{\mathbb{A}}(S) = \underline{\underline{D}} \supseteq \Lambda(k) = \underline{\underline{k} \cdot \underline{I}}$.

Refinements.

- **()** if \mathbb{A} is a *k*-algebra, then *D* has a canonical *k*-algebra structure.
- \bigcirc if \mathbb{A} is a *k*-algebra and *S* is a f.d. over *k*, then *D* is f.d. over *k*.
- § if A is a k-algebra, S is a f.d. over k, and k is alg. closed, then D = k.

- If φ ∈ Hom(S, S) is nonzero, then ker(φ) = {0} and im(φ) = S, so φ is an isomorphism, so ∃φ⁻¹ ∈ Hom(S, S). (End(S) ⊆ {0} ∪ {units}.)
- If $\alpha \in k$, and $\ell_{\alpha}(v) := \alpha \cdot v$, then $\ell_{\alpha} \in Z(D)$. The map $\Lambda : k \to Z(D) : \alpha \mapsto \ell_{\alpha}$ makes D a k-algebra.
- If $\dim_k(S) = n$, then $\operatorname{End}_k(S) = \underline{M_n(k)} \supseteq \operatorname{End}_{\mathbb{A}}(S) = \underline{\underline{D}} \supseteq \Lambda(k) = \underline{\underline{k} \cdot \underline{I}}$.

Refinements.

- **()** if \mathbb{A} is a *k*-algebra, then *D* has a canonical *k*-algebra structure.
- **2** if \mathbb{A} is a *k*-algebra and *S* is a f.d. over *k*, then *D* is f.d. over *k*.
- § if A is a k-algebra, S is a f.d. over k, and k is alg. closed, then D = k.

- If φ ∈ Hom(S, S) is nonzero, then ker(φ) = {0} and im(φ) = S, so φ is an isomorphism, so ∃φ⁻¹ ∈ Hom(S, S). (End(S) ⊆ {0} ∪ {units}.)
- If α ∈ k, and ℓ_α(v) := α · v, then ℓ_α ∈ Z(D). The map Λ: k → Z(D): α ↦ ℓ_α makes D a k-algebra.
- If $\dim_k(S) = n$, then $\operatorname{End}_k(S) = \underline{M}_n(k) \supseteq \operatorname{End}_{\mathbb{A}}(S) = \underline{\underline{D}} \supseteq \Lambda(k) = \underline{\underline{k} \cdot \underline{I}}$. Hence $\dim_k(D) \leq \dim_k(S)^2$.

Refinements.

- **()** if \mathbb{A} is a *k*-algebra, then *D* has a canonical *k*-algebra structure.
- **2** if \mathbb{A} is a *k*-algebra and *S* is a f.d. over *k*, then *D* is f.d. over *k*.
- § if A is a k-algebra, S is a f.d. over k, and k is alg. closed, then D = k.

- If φ ∈ Hom(S, S) is nonzero, then ker(φ) = {0} and im(φ) = S, so φ is an isomorphism, so ∃φ⁻¹ ∈ Hom(S, S). (End(S) ⊆ {0} ∪ {units}.)
- If α ∈ k, and ℓ_α(v) := α · v, then ℓ_α ∈ Z(D). The map Λ: k → Z(D): α ↦ ℓ_α makes D a k-algebra.
- If $\dim_k(S) = n$, then $\operatorname{End}_k(S) = \underline{M}_n(k) \supseteq \operatorname{End}_{\mathbb{A}}(S) = \underline{\underline{D}} \supseteq \Lambda(k) = \underline{\underline{k} \cdot \underline{I}}$. Hence $\dim_k(D) \leq \dim_k(S)^2$.
- Assume $k = \overline{k}$ and D is a f.d. k-division algebra.

Refinements.

- **()** if \mathbb{A} is a *k*-algebra, then *D* has a canonical *k*-algebra structure.
- **2** if \mathbb{A} is a *k*-algebra and *S* is a f.d. over *k*, then *D* is f.d. over *k*.
- § if A is a k-algebra, S is a f.d. over k, and k is alg. closed, then D = k.

- If φ ∈ Hom(S, S) is nonzero, then ker(φ) = {0} and im(φ) = S, so φ is an isomorphism, so ∃φ⁻¹ ∈ Hom(S, S). (End(S) ⊆ {0} ∪ {units}.)
- If α ∈ k, and ℓ_α(v) := α · v, then ℓ_α ∈ Z(D). The map Λ: k → Z(D): α ↦ ℓ_α makes D a k-algebra.
- If $\dim_k(S) = n$, then $\operatorname{End}_k(S) = \underline{M}_n(k) \supseteq \operatorname{End}_{\mathbb{A}}(S) = \underline{\underline{D}} \supseteq \Lambda(k) = \underline{\underline{k} \cdot \underline{I}}$. Hence $\dim_k(D) \leq \dim_k(S)^2$.
- Assume $k = \overline{k}$ and D is a f.d. k-division algebra.

Refinements.

- **()** if \mathbb{A} is a *k*-algebra, then *D* has a canonical *k*-algebra structure.
- **2** if \mathbb{A} is a *k*-algebra and *S* is a f.d. over *k*, then *D* is f.d. over *k*.
- § if A is a k-algebra, S is a f.d. over k, and k is alg. closed, then D = k.

- If φ ∈ Hom(S, S) is nonzero, then ker(φ) = {0} and im(φ) = S, so φ is an isomorphism, so ∃φ⁻¹ ∈ Hom(S, S). (End(S) ⊆ {0} ∪ {units}.)
- If α ∈ k, and ℓ_α(v) := α · v, then ℓ_α ∈ Z(D). The map Λ: k → Z(D): α ↦ ℓ_α makes D a k-algebra.
- If $\dim_k(S) = n$, then $\operatorname{End}_k(S) = \underline{M_n(k)} \supseteq \operatorname{End}_{\mathbb{A}}(S) = \underline{\underline{D}} \supseteq \Lambda(k) = \underline{\underline{k} \cdot \underline{I}}$. Hence $\dim_k(D) \leq \dim_k(S)^2$.
- Assume $k = \overline{k}$ and D is a f.d. k-division algebra. Assume $k = k \cdot 1_D$ is a subfield of Z(D).

Refinements.

- **()** if \mathbb{A} is a *k*-algebra, then *D* has a canonical *k*-algebra structure.
- **2** if \mathbb{A} is a *k*-algebra and *S* is a f.d. over *k*, then *D* is f.d. over *k*.
- § if A is a k-algebra, S is a f.d. over k, and k is alg. closed, then D = k.

- If φ ∈ Hom(S, S) is nonzero, then ker(φ) = {0} and im(φ) = S, so φ is an isomorphism, so ∃φ⁻¹ ∈ Hom(S, S). (End(S) ⊆ {0} ∪ {units}.)
- If $\alpha \in k$, and $\ell_{\alpha}(v) := \alpha \cdot v$, then $\ell_{\alpha} \in Z(D)$. The map $\Lambda : k \to Z(D) : \alpha \mapsto \ell_{\alpha}$ makes D a k-algebra.
- If $\dim_k(S) = n$, then $\operatorname{End}_k(S) = \underline{M_n(k)} \supseteq \operatorname{End}_{\mathbb{A}}(S) = \underline{\underline{D}} \supseteq \Lambda(k) = \underline{\underline{k} \cdot \underline{I}}$. Hence $\dim_k(D) \leq \dim_k(S)^2$.
- Assume $k = \overline{k}$ and D is a f.d. k-division algebra. Assume $k = k \cdot 1_D$ is a subfield of Z(D). If $d \in D$, then k[d] is an algebraic field extension of k.

Refinements.

- **()** if \mathbb{A} is a *k*-algebra, then *D* has a canonical *k*-algebra structure.
- **2** if \mathbb{A} is a *k*-algebra and *S* is a f.d. over *k*, then *D* is f.d. over *k*.
- § if A is a k-algebra, S is a f.d. over k, and k is alg. closed, then D = k.

- If φ ∈ Hom(S, S) is nonzero, then ker(φ) = {0} and im(φ) = S, so φ is an isomorphism, so ∃φ⁻¹ ∈ Hom(S, S). (End(S) ⊆ {0} ∪ {units}.)
- If α ∈ k, and ℓ_α(v) := α · v, then ℓ_α ∈ Z(D). The map Λ: k → Z(D): α ↦ ℓ_α makes D a k-algebra.
- If $\dim_k(S) = n$, then $\operatorname{End}_k(S) = \underline{M_n(k)} \supseteq \operatorname{End}_{\mathbb{A}}(S) = \underline{\underline{D}} \supseteq \Lambda(k) = \underline{\underline{k} \cdot \underline{I}}$. Hence $\dim_k(D) \leq \dim_k(S)^2$.
- Assume k = k̄ and D is a f.d. k-division algebra. Assume k = k ⋅ 1_D is a subfield of Z(D). If d ∈ D, then k[d] is an algebraic field extension of k. Hence k ⊆ Z(D) ⊆ D ⊆ k.

Refinements.

- **(**) if \mathbb{A} is a *k*-algebra, then *D* has a canonical *k*-algebra structure.
- **2** if \mathbb{A} is a *k*-algebra and *S* is a f.d. over *k*, then *D* is f.d. over *k*.
- § if A is a k-algebra, S is a f.d. over k, and k is alg. closed, then D = k.

Proof:

- If φ ∈ Hom(S, S) is nonzero, then ker(φ) = {0} and im(φ) = S, so φ is an isomorphism, so ∃φ⁻¹ ∈ Hom(S, S). (End(S) ⊆ {0} ∪ {units}.)
- If α ∈ k, and ℓ_α(v) := α · v, then ℓ_α ∈ Z(D). The map Λ: k → Z(D): α ↦ ℓ_α makes D a k-algebra.
- If $\dim_k(S) = n$, then $\operatorname{End}_k(S) = \underline{M_n(k)} \supseteq \operatorname{End}_{\mathbb{A}}(S) = \underline{\underline{D}} \supseteq \Lambda(k) = \underline{\underline{k} \cdot \underline{I}}$. Hence $\dim_k(D) \leq \dim_k(S)^2$.
- Assume $k = \overline{k}$ and D is a f.d. k-division algebra. Assume $k = k \cdot 1_D$ is a subfield of Z(D). If $d \in D$, then k[d] is an algebraic field extension of k. Hence $k \subseteq Z(D) \subseteq D \subseteq k$.

•

Assume that $_{\mathbb{A}}\mathbb{A}\cong S_1^{n_1}\oplus\cdots\oplus S_k^{n_k}$.

Assume that $_{\mathbb{A}}\mathbb{A}\cong S_1^{n_1}\oplus\cdots\oplus S_k^{n_k}$.

On the one hand,

Assume that $_{\mathbb{A}}\mathbb{A}\cong S_1^{n_1}\oplus\cdots\oplus S_k^{n_k}$.

On the one hand, $\operatorname{End}_{\mathbb{A}}(\mathbb{A}\mathbb{A})$ consists of the right multiplications $r_a \colon x \mapsto x \cdot a$.

Assume that $_{\mathbb{A}}\mathbb{A}\cong S_1^{n_1}\oplus\cdots\oplus S_k^{n_k}$.

On the one hand, $\operatorname{End}_{\mathbb{A}}({}_{\mathbb{A}}\mathbb{A})$ consists of the right multiplications $r_a : x \mapsto x \cdot a$. Since $r_a \circ r_b = r_{ba}$, $\operatorname{End}_{\mathbb{A}}({}_{\mathbb{A}}\mathbb{A}) \cong \mathbb{A}^{\operatorname{op}}$.

Assume that $_{\mathbb{A}}\mathbb{A}\cong S_1^{n_1}\oplus\cdots\oplus S_k^{n_k}$.

On the one hand, $\operatorname{End}_{\mathbb{A}}(\mathbb{A}\mathbb{A})$ consists of the right multiplications $r_a \colon x \mapsto x \cdot a$. Since $r_a \circ r_b = r_{ba}$, $\operatorname{End}_{\mathbb{A}}(\mathbb{A}\mathbb{A}) \cong \mathbb{A}^{\operatorname{op}}$.

On the other hand,

Assume that $_{\mathbb{A}}\mathbb{A}\cong S_1^{n_1}\oplus\cdots\oplus S_k^{n_k}$.

On the one hand, $\operatorname{End}_{\mathbb{A}}({}_{\mathbb{A}}\mathbb{A})$ consists of the right multiplications $r_a : x \mapsto x \cdot a$. Since $r_a \circ r_b = r_{ba}$, $\operatorname{End}_{\mathbb{A}}({}_{\mathbb{A}}\mathbb{A}) \cong \mathbb{A}^{\operatorname{op}}$.

On the other hand, the elements of $\operatorname{End}_{\mathbb{A}} \begin{pmatrix} n_1 + \dots + n_k \\ \oplus_{i=1} & S_i \end{pmatrix}$ may be represented by matrices [Hom (S_j, S_i)].

Assume that $_{\mathbb{A}}\mathbb{A}\cong S_1^{n_1}\oplus\cdots\oplus S_k^{n_k}$.

On the one hand, $\operatorname{End}_{\mathbb{A}}({}_{\mathbb{A}}\mathbb{A})$ consists of the right multiplications $r_a : x \mapsto x \cdot a$. Since $r_a \circ r_b = r_{ba}$, $\operatorname{End}_{\mathbb{A}}({}_{\mathbb{A}}\mathbb{A}) \cong \mathbb{A}^{\operatorname{op}}$.

On the other hand, the elements of $\operatorname{End}_{\mathbb{A}} \begin{pmatrix} n_1 + \dots + n_k \\ \oplus_{i=1} & S_i \end{pmatrix}$ may be represented by matrices $[\operatorname{Hom}(S_i, S_i)]$. Thus,

Assume that $_{\mathbb{A}}\mathbb{A}\cong S_1^{n_1}\oplus\cdots\oplus S_k^{n_k}$.

On the one hand, $\operatorname{End}_{\mathbb{A}}({}_{\mathbb{A}}\mathbb{A})$ consists of the right multiplications $r_a : x \mapsto x \cdot a$. Since $r_a \circ r_b = r_{ba}$, $\operatorname{End}_{\mathbb{A}}({}_{\mathbb{A}}\mathbb{A}) \cong \mathbb{A}^{\operatorname{op}}$.

On the other hand, the elements of $\operatorname{End}_{\mathbb{A}} \begin{pmatrix} n_1 + \dots + n_k \\ \oplus_{i=1} & S_i \end{pmatrix}$ may be represented by matrices [Hom (S_j, S_i)]. Thus,

 $\mathbb{A}^{\mathrm{op}}\cong$

Assume that $_{\mathbb{A}}\mathbb{A}\cong S_1^{n_1}\oplus\cdots\oplus S_k^{n_k}$.

On the one hand, $\operatorname{End}_{\mathbb{A}}({}_{\mathbb{A}}\mathbb{A})$ consists of the right multiplications $r_a : x \mapsto x \cdot a$. Since $r_a \circ r_b = r_{ba}$, $\operatorname{End}_{\mathbb{A}}({}_{\mathbb{A}}\mathbb{A}) \cong \mathbb{A}^{\operatorname{op}}$.

On the other hand, the elements of $\operatorname{End}_{\mathbb{A}} \begin{pmatrix} n_1 + \dots + n_k \\ \oplus_{i=1} & S_i \end{pmatrix}$ may be represented by matrices [Hom (S_j, S_i)]. Thus,

$$\mathbb{A}^{\mathrm{op}} \cong \left\{ \left[egin{array}{c|c|c|c|c|c|c|c|} M_{n_1}(D_1) & 0 & \cdots & 0 \ \hline 0 & M_{n_2}(D_2) & 0 \ \hline \hline \vdots & \ddots & \vdots \ \hline 0 & 0 \cdots & 0 & M_{n_k}(D_k) \end{array}
ight]
ight\} \cong$$

Assume that $_{\mathbb{A}}\mathbb{A}\cong S_1^{n_1}\oplus\cdots\oplus S_k^{n_k}$.

On the one hand, $\operatorname{End}_{\mathbb{A}}({}_{\mathbb{A}}\mathbb{A})$ consists of the right multiplications $r_a : x \mapsto x \cdot a$. Since $r_a \circ r_b = r_{ba}$, $\operatorname{End}_{\mathbb{A}}({}_{\mathbb{A}}\mathbb{A}) \cong \mathbb{A}^{\operatorname{op}}$.

On the other hand, the elements of $\operatorname{End}_{\mathbb{A}} \begin{pmatrix} n_1 + \dots + n_k \\ \oplus_{i=1} & S_i \end{pmatrix}$ may be represented by matrices [Hom (S_j, S_i)]. Thus,

$$\mathbb{A}^{\text{op}} \cong \left\{ \begin{bmatrix} \frac{M_{n_1}(D_1) & 0 & \cdots & 0}{0 & M_{n_2}(D_2) & 0} \\ \vdots & & \ddots & \vdots \\ \hline 0 & 0 \cdots & 0 & M_{n_k}(D_k) \end{bmatrix} \right\} \cong \prod_{j=1}^k M_{n_j}(D_j).$$

Assume that $_{\mathbb{A}}\mathbb{A}\cong S_1^{n_1}\oplus\cdots\oplus S_k^{n_k}$.

On the one hand, $\operatorname{End}_{\mathbb{A}}({}_{\mathbb{A}}\mathbb{A})$ consists of the right multiplications $r_a : x \mapsto x \cdot a$. Since $r_a \circ r_b = r_{ba}$, $\operatorname{End}_{\mathbb{A}}({}_{\mathbb{A}}\mathbb{A}) \cong \mathbb{A}^{\operatorname{op}}$.

On the other hand, the elements of $\operatorname{End}_{\mathbb{A}} \begin{pmatrix} n_1 + \dots + n_k \\ \oplus_{i=1} & S_i \end{pmatrix}$ may be represented by matrices [Hom (S_j, S_i)]. Thus,

$$\mathbb{A}^{\mathrm{op}} \cong \left\{ egin{bmatrix} rac{M_{n_1}(D_1) & 0 & \cdots & 0 \ \hline 0 & M_{n_2}(D_2) & 0 \ \hline \vdots & \ddots & \vdots \ \hline 0 & 0 \cdots & 0 & M_{n_k}(D_k) \end{bmatrix}
ight\} \cong \prod_{j=1}^k M_{n_j}(D_j).$$

Hence $\mathbb{A} \cong \prod_{j=1}^{k} M_{n_j}(D_j^{\text{op}}).$

Assume that $_{\mathbb{A}}\mathbb{A}\cong S_1^{n_1}\oplus\cdots\oplus S_k^{n_k}$.

On the one hand, $\operatorname{End}_{\mathbb{A}}({}_{\mathbb{A}}\mathbb{A})$ consists of the right multiplications $r_a : x \mapsto x \cdot a$. Since $r_a \circ r_b = r_{ba}$, $\operatorname{End}_{\mathbb{A}}({}_{\mathbb{A}}\mathbb{A}) \cong \mathbb{A}^{\operatorname{op}}$.

On the other hand, the elements of $\operatorname{End}_{\mathbb{A}} \begin{pmatrix} n_1 + \dots + n_k \\ \oplus_{i=1} & S_i \end{pmatrix}$ may be represented by matrices [Hom (S_j, S_i)]. Thus,

$$\mathbb{A}^{\mathrm{op}}\cong\left\{egin{bmatrix} rac{M_{n_1}(D_1) & 0 & \cdots & 0 \ \hline 0 & M_{n_2}(D_2) & 0 \ \hline \hline \vdots & \ddots & \vdots \ \hline 0 & 0 \cdots & 0 & M_{n_k}(D_k) \end{bmatrix}
ight\}\cong\prod_{j=1}^k M_{n_j}(D_j).$$

Hence $\mathbb{A} \cong \prod_{j=1}^{k} M_{n_j}(D_j^{\text{op}}).$

If *G* is finite, then $\mathbb{C}[G] \cong \prod_{j=1}^{k} M_{n_j}(\mathbb{C})$ where *k* is the number of isotypes of simple $\mathbb{C}[G]$ -modules,

Assume that $_{\mathbb{A}}\mathbb{A}\cong S_1^{n_1}\oplus\cdots\oplus S_k^{n_k}$.

On the one hand, $\operatorname{End}_{\mathbb{A}}({}_{\mathbb{A}}\mathbb{A})$ consists of the right multiplications $r_a : x \mapsto x \cdot a$. Since $r_a \circ r_b = r_{ba}$, $\operatorname{End}_{\mathbb{A}}({}_{\mathbb{A}}\mathbb{A}) \cong \mathbb{A}^{\operatorname{op}}$.

On the other hand, the elements of $\operatorname{End}_{\mathbb{A}} \begin{pmatrix} n_1 + \dots + n_k \\ \oplus_{i=1} & S_i \end{pmatrix}$ may be represented by matrices [Hom (S_j, S_i)]. Thus,

$$\mathbb{A}^{\mathrm{op}} \cong \left\{ egin{bmatrix} rac{M_{n_1}(D_1) & 0 & \cdots & 0 \ \hline 0 & M_{n_2}(D_2) & 0 \ \hline \hline \vdots & \ddots & \vdots \ \hline 0 & 0 \cdots & 0 & M_{n_k}(D_k) \end{bmatrix}
ight\} \cong \prod_{j=1}^k M_{n_j}(D_j).$$

Hence $\mathbb{A} \cong \prod_{j=1}^{k} M_{n_j}(D_j^{\text{op}}).$

If *G* is finite, then $\mathbb{C}[G] \cong \prod_{j=1}^{k} M_{n_j}(\mathbb{C})$ where *k* is the number of isotypes of simple $\mathbb{C}[G]$ -modules, as n_j is the *k*-dimension of S_j .

•
$$M_3(k) = \left\{ \begin{bmatrix} * & 0 & 0 \\ * & 0 & 0 \\ * & 0 & 0 \end{bmatrix} + \begin{bmatrix} 0 & * & 0 \\ 0 & * & 0 \\ 0 & * & 0 \end{bmatrix} + \begin{bmatrix} 0 & 0 & * \\ 0 & 0 & * \\ 0 & 0 & * \end{bmatrix} \right\},$$

•
$$M_3(k) = \left\{ \begin{bmatrix} * & 0 & 0 \\ * & 0 & 0 \\ * & 0 & 0 \end{bmatrix} + \begin{bmatrix} 0 & * & 0 \\ 0 & * & 0 \\ 0 & * & 0 \end{bmatrix} + \begin{bmatrix} 0 & 0 & * \\ 0 & 0 & * \\ 0 & 0 & * \end{bmatrix} \right\},$$

•
$$M_3(k) = \left\{ \begin{bmatrix} * & 0 & 0 \\ * & 0 & 0 \\ * & 0 & 0 \end{bmatrix} + \begin{bmatrix} 0 & * & 0 \\ 0 & * & 0 \\ 0 & * & 0 \end{bmatrix} + \begin{bmatrix} 0 & 0 & * \\ 0 & 0 & * \\ 0 & 0 & * \end{bmatrix} \right\}$$
, and more generally $M_n(k)$ is the direct sum of *n* left ideals, each isomorphic to k^n .

- The *k*-space $S = k^n$ of column vectors of length *n* is a simple $M_n(k)$ -module.
- $M_3(k) = \left\{ \begin{bmatrix} * & 0 & 0 \\ * & 0 & 0 \\ * & 0 & 0 \end{bmatrix} + \begin{bmatrix} 0 & * & 0 \\ 0 & * & 0 \\ 0 & * & 0 \end{bmatrix} + \begin{bmatrix} 0 & 0 & * \\ 0 & 0 & * \\ 0 & 0 & * \end{bmatrix} \right\}$, and more generally $M_n(k)$ is the direct sum of *n* left ideals, each isomorphic to k^n .
- The category of $M_n(k)$ -modules has a unique simple member $S = k^n$,

- The *k*-space $S = k^n$ of column vectors of length *n* is a simple $M_n(k)$ -module.
- $M_3(k) = \left\{ \begin{bmatrix} * & 0 & 0 \\ * & 0 & 0 \\ * & 0 & 0 \end{bmatrix} + \begin{bmatrix} 0 & * & 0 \\ 0 & * & 0 \\ 0 & * & 0 \end{bmatrix} + \begin{bmatrix} 0 & 0 & * \\ 0 & 0 & * \\ 0 & 0 & * \end{bmatrix} \right\}$, and more generally $M_n(k)$ is the direct sum of *n* left ideals, each isomorphic to k^n .
- The category of $M_n(k)$ -modules has a unique simple member $S = k^n$,

- The *k*-space $S = k^n$ of column vectors of length *n* is a simple $M_n(k)$ -module.
- $M_3(k) = \left\{ \begin{bmatrix} * & 0 & 0 \\ * & 0 & 0 \\ * & 0 & 0 \end{bmatrix} + \begin{bmatrix} 0 & * & 0 \\ 0 & * & 0 \\ 0 & * & 0 \end{bmatrix} + \begin{bmatrix} 0 & 0 & * \\ 0 & 0 & * \\ 0 & 0 & * \end{bmatrix} \right\}$, and more generally $M_n(k)$ is the direct sum of *n* left ideals, each isomorphic to k^n .
- The category of $M_n(k)$ -modules has a unique simple member $S = k^n$, and every $M_n(k)$ -module is isomorphic to $\bigoplus^{\kappa} S$ for uniquely determined κ .
- (Restriction of scalars)

- The *k*-space $S = k^n$ of column vectors of length *n* is a simple $M_n(k)$ -module.
- $M_3(k) = \left\{ \begin{bmatrix} * & 0 & 0 \\ * & 0 & 0 \\ * & 0 & 0 \end{bmatrix} + \begin{bmatrix} 0 & * & 0 \\ 0 & * & 0 \\ 0 & * & 0 \end{bmatrix} + \begin{bmatrix} 0 & 0 & * \\ 0 & 0 & * \\ 0 & 0 & * \end{bmatrix} \right\}$, and more generally $M_n(k)$ is the direct sum of *n* left ideals, each isomorphic to k^n .
- The category of $M_n(k)$ -modules has a unique simple member $S = k^n$, and every $M_n(k)$ -module is isomorphic to $\bigoplus^{\kappa} S$ for uniquely determined κ .
- (Restriction of scalars)

- The *k*-space $S = k^n$ of column vectors of length *n* is a simple $M_n(k)$ -module.
- $M_3(k) = \left\{ \begin{bmatrix} * & 0 & 0 \\ * & 0 & 0 \\ * & 0 & 0 \end{bmatrix} + \begin{bmatrix} 0 & * & 0 \\ 0 & * & 0 \\ 0 & * & 0 \end{bmatrix} + \begin{bmatrix} 0 & 0 & * \\ 0 & 0 & * \\ 0 & 0 & * \end{bmatrix} \right\}$, and more generally $M_n(k)$ is the direct sum of *n* left ideals, each isomorphic to k^n .
- The category of $M_n(k)$ -modules has a unique simple member $S = k^n$, and every $M_n(k)$ -module is isomorphic to $\bigoplus^{\kappa} S$ for uniquely determined κ .
- (Restriction of scalars) If $\varphi \colon R \to T$ is an algebra/ring hom,

- The *k*-space $S = k^n$ of column vectors of length *n* is a simple $M_n(k)$ -module.
- $M_3(k) = \left\{ \begin{bmatrix} * & 0 & 0 \\ * & 0 & 0 \\ * & 0 & 0 \end{bmatrix} + \begin{bmatrix} 0 & * & 0 \\ 0 & * & 0 \\ 0 & * & 0 \end{bmatrix} + \begin{bmatrix} 0 & 0 & * \\ 0 & 0 & * \\ 0 & 0 & * \end{bmatrix} \right\}$, and more generally $M_n(k)$ is the direct sum of *n* left ideals, each isomorphic to k^n .
- The category of $M_n(k)$ -modules has a unique simple member $S = k^n$, and every $M_n(k)$ -module is isomorphic to $\bigoplus^{\kappa} S$ for uniquely determined κ .
- (Restriction of scalars) If φ: R → T is an algebra/ring hom, then any T-module M may be viewed as an R-module:
- The *k*-space $S = k^n$ of column vectors of length *n* is a simple $M_n(k)$ -module.
- $M_3(k) = \left\{ \begin{bmatrix} * & 0 & 0 \\ * & 0 & 0 \\ * & 0 & 0 \end{bmatrix} + \begin{bmatrix} 0 & * & 0 \\ 0 & * & 0 \\ 0 & * & 0 \end{bmatrix} + \begin{bmatrix} 0 & 0 & * \\ 0 & 0 & * \\ 0 & 0 & * \end{bmatrix} \right\}$, and more generally $M_n(k)$ is the direct sum of *n* left ideals, each isomorphic to k^n .
- The category of $M_n(k)$ -modules has a unique simple member $S = k^n$, and every $M_n(k)$ -module is isomorphic to $\bigoplus^{\kappa} S$ for uniquely determined κ .
- (Restriction of scalars) If φ: R → T is an algebra/ring hom, then any T-module M may be viewed as an R-module: r ∈ R,

- The *k*-space $S = k^n$ of column vectors of length *n* is a simple $M_n(k)$ -module.
- $M_3(k) = \left\{ \begin{bmatrix} * & 0 & 0 \\ * & 0 & 0 \\ * & 0 & 0 \end{bmatrix} + \begin{bmatrix} 0 & * & 0 \\ 0 & * & 0 \\ 0 & * & 0 \end{bmatrix} + \begin{bmatrix} 0 & 0 & * \\ 0 & 0 & * \\ 0 & 0 & * \end{bmatrix} \right\}$, and more generally $M_n(k)$ is the direct sum of *n* left ideals, each isomorphic to k^n .
- The category of $M_n(k)$ -modules has a unique simple member $S = k^n$, and every $M_n(k)$ -module is isomorphic to $\bigoplus^{\kappa} S$ for uniquely determined κ .
- (Restriction of scalars) If φ: R → T is an algebra/ring hom, then any T-module M may be viewed as an R-module: r ∈ R, m ∈ M,

- The *k*-space $S = k^n$ of column vectors of length *n* is a simple $M_n(k)$ -module.
- $M_3(k) = \left\{ \begin{bmatrix} * & 0 & 0 \\ * & 0 & 0 \\ * & 0 & 0 \end{bmatrix} + \begin{bmatrix} 0 & * & 0 \\ 0 & * & 0 \\ 0 & * & 0 \end{bmatrix} + \begin{bmatrix} 0 & 0 & * \\ 0 & 0 & * \\ 0 & 0 & * \end{bmatrix} \right\}$, and more generally $M_n(k)$ is the direct sum of *n* left ideals, each isomorphic to k^n .
- The category of $M_n(k)$ -modules has a unique simple member $S = k^n$, and every $M_n(k)$ -module is isomorphic to $\bigoplus^{\kappa} S$ for uniquely determined κ .
- (Restriction of scalars) If φ: R → T is an algebra/ring hom, then any T-module M may be viewed as an R-module: r ∈ R, m ∈ M, r ⋅ m := φ(r) ⋅ m.

- The *k*-space $S = k^n$ of column vectors of length *n* is a simple $M_n(k)$ -module.
- $M_3(k) = \left\{ \begin{bmatrix} * & 0 & 0 \\ * & 0 & 0 \\ * & 0 & 0 \end{bmatrix} + \begin{bmatrix} 0 & * & 0 \\ 0 & * & 0 \\ 0 & * & 0 \end{bmatrix} + \begin{bmatrix} 0 & 0 & * \\ 0 & 0 & * \\ 0 & 0 & * \end{bmatrix} \right\}$, and more generally $M_n(k)$ is the direct sum of *n* left ideals, each isomorphic to k^n .
- The category of $M_n(k)$ -modules has a unique simple member $S = k^n$, and every $M_n(k)$ -module is isomorphic to $\bigoplus^{\kappa} S$ for uniquely determined κ .
- (Restriction of scalars) If φ: R → T is an algebra/ring hom, then any T-module M may be viewed as an R-module: r ∈ R, m ∈ M, r ⋅ m := φ(r) ⋅ m.
- If *M* is an $R \times T$ -module, then $M \cong P \oplus Q$ where *P* is an *R*-module and *Q* is a *T*-module.

- The *k*-space $S = k^n$ of column vectors of length *n* is a simple $M_n(k)$ -module.
- $M_3(k) = \left\{ \begin{bmatrix} * & 0 & 0 \\ * & 0 & 0 \\ * & 0 & 0 \end{bmatrix} + \begin{bmatrix} 0 & * & 0 \\ 0 & * & 0 \\ 0 & * & 0 \end{bmatrix} + \begin{bmatrix} 0 & 0 & * \\ 0 & 0 & * \\ 0 & 0 & * \end{bmatrix} \right\}$, and more generally $M_n(k)$ is the direct sum of *n* left ideals, each isomorphic to k^n .
- The category of $M_n(k)$ -modules has a unique simple member $S = k^n$, and every $M_n(k)$ -module is isomorphic to $\bigoplus^{\kappa} S$ for uniquely determined κ .
- (Restriction of scalars) If φ: R → T is an algebra/ring hom, then any T-module M may be viewed as an R-module: r ∈ R, m ∈ M, r ⋅ m := φ(r) ⋅ m.
- If *M* is an $R \times T$ -module, then $M \cong P \oplus Q$ where *P* is an *R*-module and *Q* is a *T*-module.

- The *k*-space $S = k^n$ of column vectors of length *n* is a simple $M_n(k)$ -module.
- $M_3(k) = \left\{ \begin{bmatrix} * & 0 & 0 \\ * & 0 & 0 \\ * & 0 & 0 \end{bmatrix} + \begin{bmatrix} 0 & * & 0 \\ 0 & * & 0 \\ 0 & * & 0 \end{bmatrix} + \begin{bmatrix} 0 & 0 & * \\ 0 & 0 & * \\ 0 & 0 & * \end{bmatrix} \right\}$, and more generally $M_n(k)$ is the direct sum of *n* left ideals, each isomorphic to k^n .
- The category of $M_n(k)$ -modules has a unique simple member $S = k^n$, and every $M_n(k)$ -module is isomorphic to $\bigoplus^{\kappa} S$ for uniquely determined κ .
- (Restriction of scalars) If φ: R → T is an algebra/ring hom, then any T-module M may be viewed as an R-module: r ∈ R, m ∈ M, r ⋅ m := φ(r) ⋅ m.
- If *M* is an $R \times T$ -module, then $M \cong P \oplus Q$ where *P* is an *R*-module and *Q* is a *T*-module. A hom $\varphi \colon M \to M'$ corresponds to a product hom $\varphi_R \times \varphi_T$ where $\varphi_R \colon P \to P'$ and $\varphi_T \colon Q \to Q'$.

- The *k*-space $S = k^n$ of column vectors of length *n* is a simple $M_n(k)$ -module.
- $M_3(k) = \left\{ \begin{bmatrix} * & 0 & 0 \\ * & 0 & 0 \\ * & 0 & 0 \end{bmatrix} + \begin{bmatrix} 0 & * & 0 \\ 0 & * & 0 \\ 0 & * & 0 \end{bmatrix} + \begin{bmatrix} 0 & 0 & * \\ 0 & 0 & * \\ 0 & 0 & * \end{bmatrix} \right\}$, and more generally $M_n(k)$ is the direct sum of *n* left ideals, each isomorphic to k^n .
- The category of $M_n(k)$ -modules has a unique simple member $S = k^n$, and every $M_n(k)$ -module is isomorphic to $\bigoplus^{\kappa} S$ for uniquely determined κ .
- (Restriction of scalars) If φ: R → T is an algebra/ring hom, then any T-module M may be viewed as an R-module: r ∈ R, m ∈ M, r ⋅ m := φ(r) ⋅ m.
- If *M* is an $R \times T$ -module, then $M \cong P \oplus Q$ where *P* is an *R*-module and *Q* is a *T*-module. A hom $\varphi \colon M \to M'$ corresponds to a product hom $\varphi_R \times \varphi_T$ where $\varphi_R \colon P \to P'$ and $\varphi_T \colon Q \to Q'$.
- The category of $\prod_{j=1}^{k} M_{n_j}(\mathbb{C})$ -modules has finitely many simple members,

- The *k*-space $S = k^n$ of column vectors of length *n* is a simple $M_n(k)$ -module.
- $M_3(k) = \left\{ \begin{bmatrix} * & 0 & 0 \\ * & 0 & 0 \\ * & 0 & 0 \end{bmatrix} + \begin{bmatrix} 0 & * & 0 \\ 0 & * & 0 \\ 0 & * & 0 \end{bmatrix} + \begin{bmatrix} 0 & 0 & * \\ 0 & 0 & * \\ 0 & 0 & * \end{bmatrix} \right\}$, and more generally $M_n(k)$ is the direct sum of *n* left ideals, each isomorphic to k^n .
- The category of $M_n(k)$ -modules has a unique simple member $S = k^n$, and every $M_n(k)$ -module is isomorphic to $\bigoplus^{\kappa} S$ for uniquely determined κ .
- (Restriction of scalars) If φ: R → T is an algebra/ring hom, then any T-module M may be viewed as an R-module: r ∈ R, m ∈ M, r ⋅ m := φ(r) ⋅ m.
- If *M* is an $R \times T$ -module, then $M \cong P \oplus Q$ where *P* is an *R*-module and *Q* is a *T*-module. A hom $\varphi \colon M \to M'$ corresponds to a product hom $\varphi_R \times \varphi_T$ where $\varphi_R \colon P \to P'$ and $\varphi_T \colon Q \to Q'$.
- The category of $\prod_{j=1}^{k} M_{n_j}(\mathbb{C})$ -modules has finitely many simple members,

- The *k*-space $S = k^n$ of column vectors of length *n* is a simple $M_n(k)$ -module.
- $M_3(k) = \left\{ \begin{bmatrix} * & 0 & 0 \\ * & 0 & 0 \\ * & 0 & 0 \end{bmatrix} + \begin{bmatrix} 0 & * & 0 \\ 0 & * & 0 \\ 0 & * & 0 \end{bmatrix} + \begin{bmatrix} 0 & 0 & * \\ 0 & 0 & * \\ 0 & 0 & * \end{bmatrix} \right\}$, and more generally $M_n(k)$ is the direct sum of *n* left ideals, each isomorphic to k^n .
- The category of $M_n(k)$ -modules has a unique simple member $S = k^n$, and every $M_n(k)$ -module is isomorphic to $\bigoplus^{\kappa} S$ for uniquely determined κ .
- (Restriction of scalars) If φ: R → T is an algebra/ring hom, then any T-module M may be viewed as an R-module: r ∈ R, m ∈ M, r ⋅ m := φ(r) ⋅ m.
- If *M* is an $R \times T$ -module, then $M \cong P \oplus Q$ where *P* is an *R*-module and *Q* is a *T*-module. A hom $\varphi \colon M \to M'$ corresponds to a product hom $\varphi_R \times \varphi_T$ where $\varphi_R \colon P \to P'$ and $\varphi_T \colon Q \to Q'$.
- The category of $\prod_{j=1}^{k} M_{n_j}(\mathbb{C})$ -modules has finitely many simple members, every module is a direct sum of simple modules,

- The *k*-space $S = k^n$ of column vectors of length *n* is a simple $M_n(k)$ -module.
- $M_3(k) = \left\{ \begin{bmatrix} * & 0 & 0 \\ * & 0 & 0 \\ * & 0 & 0 \end{bmatrix} + \begin{bmatrix} 0 & * & 0 \\ 0 & * & 0 \\ 0 & * & 0 \end{bmatrix} + \begin{bmatrix} 0 & 0 & * \\ 0 & 0 & * \\ 0 & 0 & * \end{bmatrix} \right\}$, and more generally $M_n(k)$ is the direct sum of *n* left ideals, each isomorphic to k^n .
- The category of $M_n(k)$ -modules has a unique simple member $S = k^n$, and every $M_n(k)$ -module is isomorphic to $\bigoplus^{\kappa} S$ for uniquely determined κ .
- (Restriction of scalars) If φ: R → T is an algebra/ring hom, then any T-module M may be viewed as an R-module: r ∈ R, m ∈ M, r ⋅ m := φ(r) ⋅ m.
- If *M* is an $R \times T$ -module, then $M \cong P \oplus Q$ where *P* is an *R*-module and *Q* is a *T*-module. A hom $\varphi \colon M \to M'$ corresponds to a product hom $\varphi_R \times \varphi_T$ where $\varphi_R \colon P \to P'$ and $\varphi_T \colon Q \to Q'$.
- The category of $\prod_{j=1}^{k} M_{n_j}(\mathbb{C})$ -modules has finitely many simple members, every module is a direct sum of simple modules, and the number of summands isomorphic to given simple module is uniquely determined.

• For modules/representations, "irreducible" means simple.

- For modules/representations, "irreducible" means simple.
- For modules/representations, "reducible" means not simple

- For modules/representations, "irreducible" means simple.
- For modules/representations, "reducible" means not simple

- For modules/representations, "irreducible" means simple.
- For modules/representations, "reducible" means not simple and not trivial (= not a singleton module).

- For modules/representations, "irreducible" means simple.
- For modules/representations, "reducible" means not simple and not trivial (= not a singleton module).
- The 0-dimensional representation is neither "reducible" nor "irreducible".

- For modules/representations, "irreducible" means simple.
- For modules/representations, "reducible" means not simple and not trivial (= not a singleton module).
- The 0-dimensional representation is neither "reducible" nor "irreducible".

- For modules/representations, "irreducible" means simple.
- For modules/representations, "reducible" means not simple and not trivial (= not a singleton module).
- The 0-dimensional representation is neither "reducible" nor "irreducible".
- A "trivial" representation of a group is a 1-dimensional and each group element acts like the identity element.

- For modules/representations, "irreducible" means simple.
- For modules/representations, "reducible" means not simple and not trivial (= not a singleton module).
- The 0-dimensional representation is neither "reducible" nor "irreducible".
- A "trivial" representation of a group is a 1-dimensional and each group element acts like the identity element.

- For modules/representations, "irreducible" means simple.
- For modules/representations, "reducible" means not simple and not trivial (= not a singleton module).
- The 0-dimensional representation is neither "reducible" nor "irreducible".
- A "trivial" representation of a group is a 1-dimensional and each group element acts like the identity element.
- For modules/representations, "completely reducible" or "semisimple" means a direct sum of simples.

- For modules/representations, "irreducible" means simple.
- For modules/representations, "reducible" means not simple and not trivial (= not a singleton module).
- The 0-dimensional representation is neither "reducible" nor "irreducible".
- A "trivial" representation of a group is a 1-dimensional and each group element acts like the identity element.
- For modules/representations, "completely reducible" or "semisimple" means a direct sum of simples.

- For modules/representations, "irreducible" means simple.
- For modules/representations, "reducible" means not simple and not trivial (= not a singleton module).
- The 0-dimensional representation is neither "reducible" nor "irreducible".
- A "trivial" representation of a group is a 1-dimensional and each group element acts like the identity element.
- For modules/representations, "completely reducible" or "semisimple" means a direct sum of simples.
- If ρ: G → Sym(X) is a permutation representation of G on the set X, then there is a corresponding linear representation ρ̂: G → End_k(V) for V = ⊕_{x∈X} kx defined by ρ̂(g)(∑ α_x ⋅ x) = ∑ α_xρ(g)(x). ρ̂ is also called a "permutation representation".