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If G is finite, then C[G] = HJ].;I M,,(C) where k is the number of isotypes of simple
C[G]-modules, as n; is the k-dimension of ;.
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@ The k-space S = k" of column vectors of length 7 is a simple M, (k)-module.

*x 0 0 0 = 0 0 0 =
o Ms(k)=<|* 0 0|+ 1|0 «= O+ |0 O x| »,and more generally
* 0 0 0 %« O 0 0 =
M, (k) is the direct sum of n left ideals, each isomorphic to k".

@ The category of M, (k)-modules has a unique simple member S = k", and every
M,,(k)-module is isomorphic to &"S for uniquely determined .

@ (Restriction of scalars) If ¢: R — T is an algebra/ring hom, then any 7T-module
M may be viewed as an R-module:
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o For modules/representations, “reducible” means not simple and not
trivial (= not a singleton module).

o The 0-dimensional representation is neither “reducible” nor
“irreducible”.

o A “trivial” representation of a group is a 1-dimensional and each group
element acts like the identity element.

o For modules/representations, “completely reducible” or “semisimple”
means a direct sum of simples.

e If p: G — Sym(X) is a permutation representation of G on the set X,
then there is a corresponding linear representation p: G — End (V) for

V = @®yex kx defined by p(g) (> ay - x) = > axp(g)(x). pis also called
a “permutation representation”.
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