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All A-modules are sums of simples

Thm. A is a semisimple k-algebra (or ring) iff every A-module is a direct sum
of simple modules.

Proof of “only if”:

Let M be an A-module, and 0 6= N ≤ M be a f.g.-submodule.
Any proper P � N may be extended to a maximal proper P′ ≺ N.
Sub(N) is complemented and modular, so ∃ minimal Q ≤ N
complementing P′. Q is simple and disjoint from P.
Summary: If 0 6= Nf.g. ≤ M, then N =

∑
QN

i is a sum of simple
submodules.
M =

∑
Nf.g. is the sum of its f.g.-submodules, so M =

∑
N
∑

QN
i is a

sum of simple submodules.
The sum can be made direct: define a set X of simple submodules to be
independent if

∑
Y 6=

∑
Z for any Y,Z ⊆ X, Y 6= Z. Any sum of simple

submodules equals an independent sum (ZL), which is a direct sum.
2

Semisimple k-algebras 2 / 7



All A-modules are sums of simples

Thm.

A is a semisimple k-algebra (or ring) iff every A-module is a direct sum
of simple modules.

Proof of “only if”:

Let M be an A-module, and 0 6= N ≤ M be a f.g.-submodule.
Any proper P � N may be extended to a maximal proper P′ ≺ N.
Sub(N) is complemented and modular, so ∃ minimal Q ≤ N
complementing P′. Q is simple and disjoint from P.
Summary: If 0 6= Nf.g. ≤ M, then N =

∑
QN

i is a sum of simple
submodules.
M =

∑
Nf.g. is the sum of its f.g.-submodules, so M =

∑
N
∑

QN
i is a

sum of simple submodules.
The sum can be made direct: define a set X of simple submodules to be
independent if

∑
Y 6=

∑
Z for any Y,Z ⊆ X, Y 6= Z. Any sum of simple

submodules equals an independent sum (ZL), which is a direct sum.
2

Semisimple k-algebras 2 / 7



All A-modules are sums of simples

Thm. A is a semisimple k-algebra

(or ring) iff every A-module is a direct sum
of simple modules.

Proof of “only if”:

Let M be an A-module, and 0 6= N ≤ M be a f.g.-submodule.
Any proper P � N may be extended to a maximal proper P′ ≺ N.
Sub(N) is complemented and modular, so ∃ minimal Q ≤ N
complementing P′. Q is simple and disjoint from P.
Summary: If 0 6= Nf.g. ≤ M, then N =

∑
QN

i is a sum of simple
submodules.
M =

∑
Nf.g. is the sum of its f.g.-submodules, so M =

∑
N
∑

QN
i is a

sum of simple submodules.
The sum can be made direct: define a set X of simple submodules to be
independent if

∑
Y 6=

∑
Z for any Y,Z ⊆ X, Y 6= Z. Any sum of simple

submodules equals an independent sum (ZL), which is a direct sum.
2

Semisimple k-algebras 2 / 7



All A-modules are sums of simples

Thm. A is a semisimple k-algebra (or ring)

iff every A-module is a direct sum
of simple modules.

Proof of “only if”:

Let M be an A-module, and 0 6= N ≤ M be a f.g.-submodule.
Any proper P � N may be extended to a maximal proper P′ ≺ N.
Sub(N) is complemented and modular, so ∃ minimal Q ≤ N
complementing P′. Q is simple and disjoint from P.
Summary: If 0 6= Nf.g. ≤ M, then N =

∑
QN

i is a sum of simple
submodules.
M =

∑
Nf.g. is the sum of its f.g.-submodules, so M =

∑
N
∑

QN
i is a

sum of simple submodules.
The sum can be made direct: define a set X of simple submodules to be
independent if

∑
Y 6=

∑
Z for any Y,Z ⊆ X, Y 6= Z. Any sum of simple

submodules equals an independent sum (ZL), which is a direct sum.
2

Semisimple k-algebras 2 / 7



All A-modules are sums of simples

Thm. A is a semisimple k-algebra (or ring) iff every A-module is a direct sum
of simple modules.

Proof of “only if”:

Let M be an A-module, and 0 6= N ≤ M be a f.g.-submodule.
Any proper P � N may be extended to a maximal proper P′ ≺ N.
Sub(N) is complemented and modular, so ∃ minimal Q ≤ N
complementing P′. Q is simple and disjoint from P.
Summary: If 0 6= Nf.g. ≤ M, then N =

∑
QN

i is a sum of simple
submodules.
M =

∑
Nf.g. is the sum of its f.g.-submodules, so M =

∑
N
∑

QN
i is a

sum of simple submodules.
The sum can be made direct: define a set X of simple submodules to be
independent if

∑
Y 6=

∑
Z for any Y,Z ⊆ X, Y 6= Z. Any sum of simple

submodules equals an independent sum (ZL), which is a direct sum.
2

Semisimple k-algebras 2 / 7



All A-modules are sums of simples

Thm. A is a semisimple k-algebra (or ring) iff every A-module is a direct sum
of simple modules.

Proof of “only if”:

Let M be an A-module, and 0 6= N ≤ M be a f.g.-submodule.
Any proper P � N may be extended to a maximal proper P′ ≺ N.
Sub(N) is complemented and modular, so ∃ minimal Q ≤ N
complementing P′. Q is simple and disjoint from P.
Summary: If 0 6= Nf.g. ≤ M, then N =

∑
QN

i is a sum of simple
submodules.
M =

∑
Nf.g. is the sum of its f.g.-submodules, so M =

∑
N
∑

QN
i is a

sum of simple submodules.
The sum can be made direct: define a set X of simple submodules to be
independent if

∑
Y 6=

∑
Z for any Y,Z ⊆ X, Y 6= Z. Any sum of simple

submodules equals an independent sum (ZL), which is a direct sum.
2

Semisimple k-algebras 2 / 7



All A-modules are sums of simples

Thm. A is a semisimple k-algebra (or ring) iff every A-module is a direct sum
of simple modules.

Proof of “only if”:
Let M be an A-module, and 0 6= N ≤ M be a f.g.-submodule.

Any proper P � N may be extended to a maximal proper P′ ≺ N.
Sub(N) is complemented and modular, so ∃ minimal Q ≤ N
complementing P′. Q is simple and disjoint from P.
Summary: If 0 6= Nf.g. ≤ M, then N =

∑
QN

i is a sum of simple
submodules.
M =

∑
Nf.g. is the sum of its f.g.-submodules, so M =

∑
N
∑

QN
i is a

sum of simple submodules.
The sum can be made direct: define a set X of simple submodules to be
independent if

∑
Y 6=

∑
Z for any Y,Z ⊆ X, Y 6= Z. Any sum of simple

submodules equals an independent sum (ZL), which is a direct sum.
2

Semisimple k-algebras 2 / 7



All A-modules are sums of simples

Thm. A is a semisimple k-algebra (or ring) iff every A-module is a direct sum
of simple modules.

Proof of “only if”:
Let M be an A-module, and 0 6= N ≤ M be a f.g.-submodule.

Any proper P � N may be extended to a maximal proper P′ ≺ N.
Sub(N) is complemented and modular, so ∃ minimal Q ≤ N
complementing P′. Q is simple and disjoint from P.
Summary: If 0 6= Nf.g. ≤ M, then N =

∑
QN

i is a sum of simple
submodules.
M =

∑
Nf.g. is the sum of its f.g.-submodules, so M =

∑
N
∑

QN
i is a

sum of simple submodules.
The sum can be made direct: define a set X of simple submodules to be
independent if

∑
Y 6=

∑
Z for any Y,Z ⊆ X, Y 6= Z. Any sum of simple

submodules equals an independent sum (ZL), which is a direct sum.
2

Semisimple k-algebras 2 / 7



All A-modules are sums of simples

Thm. A is a semisimple k-algebra (or ring) iff every A-module is a direct sum
of simple modules.

Proof of “only if”:
Let M be an A-module, and 0 6= N ≤ M be a f.g.-submodule.
Any proper P � N may be extended to a maximal proper P′ ≺ N.

Sub(N) is complemented and modular, so ∃ minimal Q ≤ N
complementing P′. Q is simple and disjoint from P.
Summary: If 0 6= Nf.g. ≤ M, then N =

∑
QN

i is a sum of simple
submodules.
M =

∑
Nf.g. is the sum of its f.g.-submodules, so M =

∑
N
∑

QN
i is a

sum of simple submodules.
The sum can be made direct: define a set X of simple submodules to be
independent if

∑
Y 6=

∑
Z for any Y,Z ⊆ X, Y 6= Z. Any sum of simple

submodules equals an independent sum (ZL), which is a direct sum.
2

Semisimple k-algebras 2 / 7



All A-modules are sums of simples

Thm. A is a semisimple k-algebra (or ring) iff every A-module is a direct sum
of simple modules.

Proof of “only if”:
Let M be an A-module, and 0 6= N ≤ M be a f.g.-submodule.
Any proper P � N may be extended to a maximal proper P′ ≺ N.

Sub(N) is complemented and modular, so ∃ minimal Q ≤ N
complementing P′. Q is simple and disjoint from P.
Summary: If 0 6= Nf.g. ≤ M, then N =

∑
QN

i is a sum of simple
submodules.
M =

∑
Nf.g. is the sum of its f.g.-submodules, so M =

∑
N
∑

QN
i is a

sum of simple submodules.
The sum can be made direct: define a set X of simple submodules to be
independent if

∑
Y 6=

∑
Z for any Y,Z ⊆ X, Y 6= Z. Any sum of simple

submodules equals an independent sum (ZL), which is a direct sum.
2

Semisimple k-algebras 2 / 7



All A-modules are sums of simples

Thm. A is a semisimple k-algebra (or ring) iff every A-module is a direct sum
of simple modules.

Proof of “only if”:
Let M be an A-module, and 0 6= N ≤ M be a f.g.-submodule.
Any proper P � N may be extended to a maximal proper P′ ≺ N.
Sub(N) is complemented and modular,

so ∃ minimal Q ≤ N
complementing P′. Q is simple and disjoint from P.

Summary: If 0 6= Nf.g. ≤ M, then N =
∑

QN
i is a sum of simple

submodules.
M =

∑
Nf.g. is the sum of its f.g.-submodules, so M =

∑
N
∑

QN
i is a

sum of simple submodules.
The sum can be made direct: define a set X of simple submodules to be
independent if

∑
Y 6=

∑
Z for any Y,Z ⊆ X, Y 6= Z. Any sum of simple

submodules equals an independent sum (ZL), which is a direct sum.
2

Semisimple k-algebras 2 / 7



All A-modules are sums of simples

Thm. A is a semisimple k-algebra (or ring) iff every A-module is a direct sum
of simple modules.

Proof of “only if”:
Let M be an A-module, and 0 6= N ≤ M be a f.g.-submodule.
Any proper P � N may be extended to a maximal proper P′ ≺ N.
Sub(N) is complemented and modular,

so ∃ minimal Q ≤ N
complementing P′. Q is simple and disjoint from P.

Summary: If 0 6= Nf.g. ≤ M, then N =
∑

QN
i is a sum of simple

submodules.
M =

∑
Nf.g. is the sum of its f.g.-submodules, so M =

∑
N
∑

QN
i is a

sum of simple submodules.
The sum can be made direct: define a set X of simple submodules to be
independent if

∑
Y 6=

∑
Z for any Y,Z ⊆ X, Y 6= Z. Any sum of simple

submodules equals an independent sum (ZL), which is a direct sum.
2

Semisimple k-algebras 2 / 7



All A-modules are sums of simples

Thm. A is a semisimple k-algebra (or ring) iff every A-module is a direct sum
of simple modules.

Proof of “only if”:
Let M be an A-module, and 0 6= N ≤ M be a f.g.-submodule.
Any proper P � N may be extended to a maximal proper P′ ≺ N.
Sub(N) is complemented and modular, so ∃ minimal Q ≤ N
complementing P′.

Q is simple and disjoint from P.

Summary: If 0 6= Nf.g. ≤ M, then N =
∑

QN
i is a sum of simple

submodules.
M =

∑
Nf.g. is the sum of its f.g.-submodules, so M =

∑
N
∑

QN
i is a

sum of simple submodules.
The sum can be made direct: define a set X of simple submodules to be
independent if

∑
Y 6=

∑
Z for any Y,Z ⊆ X, Y 6= Z. Any sum of simple

submodules equals an independent sum (ZL), which is a direct sum.
2

Semisimple k-algebras 2 / 7



All A-modules are sums of simples

Thm. A is a semisimple k-algebra (or ring) iff every A-module is a direct sum
of simple modules.

Proof of “only if”:
Let M be an A-module, and 0 6= N ≤ M be a f.g.-submodule.
Any proper P � N may be extended to a maximal proper P′ ≺ N.
Sub(N) is complemented and modular, so ∃ minimal Q ≤ N
complementing P′. Q is simple and disjoint from P.

Summary: If 0 6= Nf.g. ≤ M, then N =
∑

QN
i is a sum of simple

submodules.
M =

∑
Nf.g. is the sum of its f.g.-submodules, so M =

∑
N
∑

QN
i is a

sum of simple submodules.
The sum can be made direct: define a set X of simple submodules to be
independent if

∑
Y 6=

∑
Z for any Y,Z ⊆ X, Y 6= Z. Any sum of simple

submodules equals an independent sum (ZL), which is a direct sum.
2

Semisimple k-algebras 2 / 7



All A-modules are sums of simples

Thm. A is a semisimple k-algebra (or ring) iff every A-module is a direct sum
of simple modules.

Proof of “only if”:
Let M be an A-module, and 0 6= N ≤ M be a f.g.-submodule.
Any proper P � N may be extended to a maximal proper P′ ≺ N.
Sub(N) is complemented and modular, so ∃ minimal Q ≤ N
complementing P′. Q is simple and disjoint from P.
Summary: If 0 6= Nf.g. ≤ M, then N =

∑
QN

i is a sum of simple
submodules.

M =
∑

Nf.g. is the sum of its f.g.-submodules, so M =
∑

N
∑

QN
i is a

sum of simple submodules.
The sum can be made direct: define a set X of simple submodules to be
independent if

∑
Y 6=

∑
Z for any Y,Z ⊆ X, Y 6= Z. Any sum of simple

submodules equals an independent sum (ZL), which is a direct sum.
2

Semisimple k-algebras 2 / 7



All A-modules are sums of simples

Thm. A is a semisimple k-algebra (or ring) iff every A-module is a direct sum
of simple modules.

Proof of “only if”:
Let M be an A-module, and 0 6= N ≤ M be a f.g.-submodule.
Any proper P � N may be extended to a maximal proper P′ ≺ N.
Sub(N) is complemented and modular, so ∃ minimal Q ≤ N
complementing P′. Q is simple and disjoint from P.
Summary: If 0 6= Nf.g. ≤ M, then N =

∑
QN

i is a sum of simple
submodules.

M =
∑

Nf.g. is the sum of its f.g.-submodules, so M =
∑

N
∑

QN
i is a

sum of simple submodules.
The sum can be made direct: define a set X of simple submodules to be
independent if

∑
Y 6=

∑
Z for any Y,Z ⊆ X, Y 6= Z. Any sum of simple

submodules equals an independent sum (ZL), which is a direct sum.
2

Semisimple k-algebras 2 / 7



All A-modules are sums of simples

Thm. A is a semisimple k-algebra (or ring) iff every A-module is a direct sum
of simple modules.

Proof of “only if”:
Let M be an A-module, and 0 6= N ≤ M be a f.g.-submodule.
Any proper P � N may be extended to a maximal proper P′ ≺ N.
Sub(N) is complemented and modular, so ∃ minimal Q ≤ N
complementing P′. Q is simple and disjoint from P.
Summary: If 0 6= Nf.g. ≤ M, then N =

∑
QN

i is a sum of simple
submodules.
M =

∑
Nf.g. is the sum of its f.g.-submodules,

so M =
∑

N
∑

QN
i is a

sum of simple submodules.

The sum can be made direct: define a set X of simple submodules to be
independent if

∑
Y 6=

∑
Z for any Y,Z ⊆ X, Y 6= Z. Any sum of simple

submodules equals an independent sum (ZL), which is a direct sum.
2

Semisimple k-algebras 2 / 7



All A-modules are sums of simples

Thm. A is a semisimple k-algebra (or ring) iff every A-module is a direct sum
of simple modules.

Proof of “only if”:
Let M be an A-module, and 0 6= N ≤ M be a f.g.-submodule.
Any proper P � N may be extended to a maximal proper P′ ≺ N.
Sub(N) is complemented and modular, so ∃ minimal Q ≤ N
complementing P′. Q is simple and disjoint from P.
Summary: If 0 6= Nf.g. ≤ M, then N =

∑
QN

i is a sum of simple
submodules.
M =

∑
Nf.g. is the sum of its f.g.-submodules,

so M =
∑

N
∑

QN
i is a

sum of simple submodules.

The sum can be made direct: define a set X of simple submodules to be
independent if

∑
Y 6=

∑
Z for any Y,Z ⊆ X, Y 6= Z. Any sum of simple

submodules equals an independent sum (ZL), which is a direct sum.
2

Semisimple k-algebras 2 / 7



All A-modules are sums of simples

Thm. A is a semisimple k-algebra (or ring) iff every A-module is a direct sum
of simple modules.

Proof of “only if”:
Let M be an A-module, and 0 6= N ≤ M be a f.g.-submodule.
Any proper P � N may be extended to a maximal proper P′ ≺ N.
Sub(N) is complemented and modular, so ∃ minimal Q ≤ N
complementing P′. Q is simple and disjoint from P.
Summary: If 0 6= Nf.g. ≤ M, then N =

∑
QN

i is a sum of simple
submodules.
M =

∑
Nf.g. is the sum of its f.g.-submodules, so M =

∑
N
∑

QN
i is a

sum of simple submodules.

The sum can be made direct: define a set X of simple submodules to be
independent if

∑
Y 6=

∑
Z for any Y,Z ⊆ X, Y 6= Z. Any sum of simple

submodules equals an independent sum (ZL), which is a direct sum.
2

Semisimple k-algebras 2 / 7



All A-modules are sums of simples

Thm. A is a semisimple k-algebra (or ring) iff every A-module is a direct sum
of simple modules.

Proof of “only if”:
Let M be an A-module, and 0 6= N ≤ M be a f.g.-submodule.
Any proper P � N may be extended to a maximal proper P′ ≺ N.
Sub(N) is complemented and modular, so ∃ minimal Q ≤ N
complementing P′. Q is simple and disjoint from P.
Summary: If 0 6= Nf.g. ≤ M, then N =

∑
QN

i is a sum of simple
submodules.
M =

∑
Nf.g. is the sum of its f.g.-submodules, so M =

∑
N
∑

QN
i is a

sum of simple submodules.
The sum can be made direct:

define a set X of simple submodules to be
independent if

∑
Y 6=

∑
Z for any Y,Z ⊆ X, Y 6= Z. Any sum of simple

submodules equals an independent sum (ZL), which is a direct sum.

2

Semisimple k-algebras 2 / 7



All A-modules are sums of simples

Thm. A is a semisimple k-algebra (or ring) iff every A-module is a direct sum
of simple modules.

Proof of “only if”:
Let M be an A-module, and 0 6= N ≤ M be a f.g.-submodule.
Any proper P � N may be extended to a maximal proper P′ ≺ N.
Sub(N) is complemented and modular, so ∃ minimal Q ≤ N
complementing P′. Q is simple and disjoint from P.
Summary: If 0 6= Nf.g. ≤ M, then N =

∑
QN

i is a sum of simple
submodules.
M =

∑
Nf.g. is the sum of its f.g.-submodules, so M =

∑
N
∑

QN
i is a

sum of simple submodules.
The sum can be made direct:

define a set X of simple submodules to be
independent if

∑
Y 6=

∑
Z for any Y,Z ⊆ X, Y 6= Z. Any sum of simple

submodules equals an independent sum (ZL), which is a direct sum.

2

Semisimple k-algebras 2 / 7



All A-modules are sums of simples

Thm. A is a semisimple k-algebra (or ring) iff every A-module is a direct sum
of simple modules.

Proof of “only if”:
Let M be an A-module, and 0 6= N ≤ M be a f.g.-submodule.
Any proper P � N may be extended to a maximal proper P′ ≺ N.
Sub(N) is complemented and modular, so ∃ minimal Q ≤ N
complementing P′. Q is simple and disjoint from P.
Summary: If 0 6= Nf.g. ≤ M, then N =

∑
QN

i is a sum of simple
submodules.
M =

∑
Nf.g. is the sum of its f.g.-submodules, so M =

∑
N
∑

QN
i is a

sum of simple submodules.
The sum can be made direct: define a set X of simple submodules to be
independent if

∑
Y 6=

∑
Z

for any Y,Z ⊆ X, Y 6= Z. Any sum of simple
submodules equals an independent sum (ZL), which is a direct sum.

2

Semisimple k-algebras 2 / 7



All A-modules are sums of simples

Thm. A is a semisimple k-algebra (or ring) iff every A-module is a direct sum
of simple modules.

Proof of “only if”:
Let M be an A-module, and 0 6= N ≤ M be a f.g.-submodule.
Any proper P � N may be extended to a maximal proper P′ ≺ N.
Sub(N) is complemented and modular, so ∃ minimal Q ≤ N
complementing P′. Q is simple and disjoint from P.
Summary: If 0 6= Nf.g. ≤ M, then N =

∑
QN

i is a sum of simple
submodules.
M =

∑
Nf.g. is the sum of its f.g.-submodules, so M =

∑
N
∑

QN
i is a

sum of simple submodules.
The sum can be made direct: define a set X of simple submodules to be
independent if

∑
Y 6=

∑
Z for any Y,Z ⊆ X,

Y 6= Z. Any sum of simple
submodules equals an independent sum (ZL), which is a direct sum.

2

Semisimple k-algebras 2 / 7



All A-modules are sums of simples

Thm. A is a semisimple k-algebra (or ring) iff every A-module is a direct sum
of simple modules.

Proof of “only if”:
Let M be an A-module, and 0 6= N ≤ M be a f.g.-submodule.
Any proper P � N may be extended to a maximal proper P′ ≺ N.
Sub(N) is complemented and modular, so ∃ minimal Q ≤ N
complementing P′. Q is simple and disjoint from P.
Summary: If 0 6= Nf.g. ≤ M, then N =

∑
QN

i is a sum of simple
submodules.
M =

∑
Nf.g. is the sum of its f.g.-submodules, so M =

∑
N
∑

QN
i is a

sum of simple submodules.
The sum can be made direct: define a set X of simple submodules to be
independent if

∑
Y 6=

∑
Z for any Y,Z ⊆ X, Y 6= Z.

Any sum of simple
submodules equals an independent sum (ZL), which is a direct sum.

2

Semisimple k-algebras 2 / 7



All A-modules are sums of simples

Thm. A is a semisimple k-algebra (or ring) iff every A-module is a direct sum
of simple modules.

Proof of “only if”:
Let M be an A-module, and 0 6= N ≤ M be a f.g.-submodule.
Any proper P � N may be extended to a maximal proper P′ ≺ N.
Sub(N) is complemented and modular, so ∃ minimal Q ≤ N
complementing P′. Q is simple and disjoint from P.
Summary: If 0 6= Nf.g. ≤ M, then N =

∑
QN

i is a sum of simple
submodules.
M =

∑
Nf.g. is the sum of its f.g.-submodules, so M =

∑
N
∑

QN
i is a

sum of simple submodules.
The sum can be made direct: define a set X of simple submodules to be
independent if

∑
Y 6=

∑
Z for any Y,Z ⊆ X, Y 6= Z. Any sum of simple

submodules equals an independent sum

(ZL), which is a direct sum.

2

Semisimple k-algebras 2 / 7



All A-modules are sums of simples

Thm. A is a semisimple k-algebra (or ring) iff every A-module is a direct sum
of simple modules.

Proof of “only if”:
Let M be an A-module, and 0 6= N ≤ M be a f.g.-submodule.
Any proper P � N may be extended to a maximal proper P′ ≺ N.
Sub(N) is complemented and modular, so ∃ minimal Q ≤ N
complementing P′. Q is simple and disjoint from P.
Summary: If 0 6= Nf.g. ≤ M, then N =

∑
QN

i is a sum of simple
submodules.
M =

∑
Nf.g. is the sum of its f.g.-submodules, so M =

∑
N
∑

QN
i is a

sum of simple submodules.
The sum can be made direct: define a set X of simple submodules to be
independent if

∑
Y 6=

∑
Z for any Y,Z ⊆ X, Y 6= Z. Any sum of simple

submodules equals an independent sum (ZL),

which is a direct sum.

2

Semisimple k-algebras 2 / 7



All A-modules are sums of simples

Thm. A is a semisimple k-algebra (or ring) iff every A-module is a direct sum
of simple modules.

Proof of “only if”:
Let M be an A-module, and 0 6= N ≤ M be a f.g.-submodule.
Any proper P � N may be extended to a maximal proper P′ ≺ N.
Sub(N) is complemented and modular, so ∃ minimal Q ≤ N
complementing P′. Q is simple and disjoint from P.
Summary: If 0 6= Nf.g. ≤ M, then N =

∑
QN

i is a sum of simple
submodules.
M =

∑
Nf.g. is the sum of its f.g.-submodules, so M =

∑
N
∑

QN
i is a

sum of simple submodules.
The sum can be made direct: define a set X of simple submodules to be
independent if

∑
Y 6=

∑
Z for any Y,Z ⊆ X, Y 6= Z. Any sum of simple

submodules equals an independent sum (ZL), which is a direct sum.
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There are only finitely many isotypes of simples

Thm. If A is a semisimple k-algebra (or ring), then A has finitely many
isotypes of simple modules.
(This affords a quick proof that Z is not semisimple.)

Proof:

The 1-generated free A-module, AA, is a sum of simples.

Only finitely many summands are needed to generate the generator of
AA, so AA ∼= ⊕n

i=1Qi.

Any simple A-module S is isomorphic to one of the Qi’s. (Otherwise
|S| = |Hom(AA, S)| = |Hom(⊕Qi, S)| = |

∏
Hom(Qi, S)| = 1.)
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Schur’s Lemma

Schur’s Lm. If S is a simple A-module, then EndA(S) = HomA(S, S) = D is a
division ring.
Refinements.

1 if A is a k-algebra, then D has a canonical k-algebra structure.
2 if A is a k-algebra and S is a f.d. over k, then D is f.d. over k.
3 if A is a k-algebra, S is a f.d. over k, and k is alg. closed, then D = k.

Proof:

If ϕ ∈ Hom(S, S) is nonzero, then ker(ϕ) = {0} and im(ϕ) = S, so ϕ is an
isomorphism, so ∃ϕ−1 ∈ Hom(S, S). (End(S) ⊆ {0} ∪ {units}.)
If α ∈ k, and `α(v) := α · v, then `α ∈ Z(D). The map Λ: k→ Z(D) : α 7→ `α
makes D a k-algebra.
If dimk(S) = n, then Endk(S) = Mn(k) ⊇ EndA(S) = D ⊇ Λ(k) = k · I. Hence

dimk(D) ≤ dimk(S)2.
Assume k = k and D is a f.d. k-division algebra. Assume k = k · 1D is a subfield
of Z(D). If d ∈ D, then k[d] is an algebraic field extension of k. Hence
k ⊆ Z(D) ⊆ D ⊆ k.
2
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The endomorphism ring of a 1-generated free module

Assume that AA ∼= Sn1
1 ⊕ · · · ⊕ Snk

k .

On the one hand, EndA(AA) consists of the right multiplications ra : x 7→ x · a.
Since ra ◦ rb = rba, EndA(AA) ∼= Aop.

On the other hand, the elements of EndA

(
n1+···+nk
⊕i=1 Si

)
may be represented

by matrices [Hom(Sj, Si)]. Thus,

Aop ∼=




Mn1(D1) 0 · · · 0
0 Mn2(D2) 0
...

. . .
...

0 0 · · · 0 Mnk (Dk)


 ∼=

k∏
j=1

Mnj(Dj).

Hence A ∼=
∏k

j=1 Mnj(Dop
j ).

If G is finite, then C[G] ∼=
∏k

j=1 Mnj(C) where k is the number of isotypes of simple
C[G]-modules, as nj is the k-dimension of Sj.
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Modules over
∏k

j=1 Mnj(C)

The k-space S = kn of column vectors of length n is a simple Mn(k)-module.

M3(k) =


∗ 0 0
∗ 0 0
∗ 0 0

+

0 ∗ 0
0 ∗ 0
0 ∗ 0

+

0 0 ∗
0 0 ∗
0 0 ∗

, and more generally

Mn(k) is the direct sum of n left ideals, each isomorphic to kn.

The category of Mn(k)-modules has a unique simple member S = kn, and every
Mn(k)-module is isomorphic to ⊕κS for uniquely determined κ.

(Restriction of scalars) If ϕ : R→ T is an algebra/ring hom, then any T-module
M may be viewed as an R-module: r ∈ R, m ∈ M, r · m := ϕ(r) · m.

If M is an R× T-module, then M ∼= P⊕ Q where P is an R-module and Q is a
T-module. A hom ϕ : M → M′ corresponds to a product hom ϕR × ϕT where
ϕR : P→ P′ and ϕT : Q→ Q′.
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The category of Mn(k)-modules has a unique simple member S = kn, and every
Mn(k)-module is isomorphic to ⊕κS for uniquely determined κ.

(Restriction of scalars) If ϕ : R→ T is an algebra/ring hom, then any T-module
M may be viewed as an R-module: r ∈ R, m ∈ M, r · m := ϕ(r) · m.

If M is an R× T-module, then M ∼= P⊕ Q where P is an R-module and Q is a
T-module. A hom ϕ : M → M′ corresponds to a product hom ϕR × ϕT where
ϕR : P→ P′ and ϕT : Q→ Q′.

The category of
∏k

j=1 Mnj(C)-modules has finitely many simple members,

every module is a direct sum of simple modules, and the number of summands
isomorphic to given simple module is uniquely determined.
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Some terminology

For modules/representations, “irreducible” means simple.

For modules/representations, “reducible” means not simple and not
trivial (= not a singleton module).

The 0-dimensional representation is neither “reducible” nor
“irreducible”.

A “trivial” representation of a group is a 1-dimensional and each group
element acts like the identity element.

For modules/representations, “completely reducible” or “semisimple”
means a direct sum of simples.

If ρ : G→ Sym(X) is a permutation representation of G on the set X,
then there is a corresponding linear representation ρ̂ : G→ Endk(V) for
V = ⊕x∈X kx defined by ρ̂(g)(

∑
αx · x) =

∑
αxρ(g)(x). ρ̂ is also called

a “permutation representation”.
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