Semisimple k-algebras

All A-modules are sums of simples

All A-modules are sums of simples

Thm.

All A-modules are sums of simples

Thm. \mathbb{A} is a semisimple k-algebra

All A-modules are sums of simples

Thm. \mathbb{A} is a semisimple k-algebra (or ring)

All A-modules are sums of simples

Thm. \mathbb{A} is a semisimple k-algebra (or ring) iff every \mathbb{A}-module is a direct sum of simple modules.

All A-modules are sums of simples

Thm. \mathbb{A} is a semisimple k-algebra (or ring) iff every \mathbb{A}-module is a direct sum of simple modules.
Proof of "only if":

All A-modules are sums of simples

Thm. \mathbb{A} is a semisimple k-algebra (or ring) iff every \mathbb{A}-module is a direct sum of simple modules.

Proof of "only if":

- Let M be an \mathbb{A}-module, and $0 \neq N \leq M$ be a f.g.-submodule.

All A-modules are sums of simples

Thm. \mathbb{A} is a semisimple k-algebra (or ring) iff every \mathbb{A}-module is a direct sum of simple modules.

Proof of "only if":

- Let M be an \mathbb{A}-module, and $0 \neq N \leq M$ be a f.g.-submodule.

All A-modules are sums of simples

Thm. \mathbb{A} is a semisimple k-algebra (or ring) iff every \mathbb{A}-module is a direct sum of simple modules.
Proof of "only if":

- Let M be an \mathbb{A}-module, and $0 \neq N \leq M$ be a f.g.-submodule.
- Any proper $P \lesseqgtr N$ may be extended to a maximal proper $P^{\prime} \prec N$.

All A-modules are sums of simples

Thm. \mathbb{A} is a semisimple k-algebra (or ring) iff every \mathbb{A}-module is a direct sum of simple modules.
Proof of "only if":

- Let M be an \mathbb{A}-module, and $0 \neq N \leq M$ be a f.g.-submodule.
- Any proper $P \lesseqgtr N$ may be extended to a maximal proper $P^{\prime} \prec N$.

All A-modules are sums of simples

Thm. \mathbb{A} is a semisimple k-algebra (or ring) iff every \mathbb{A}-module is a direct sum of simple modules.
Proof of "only if":

- Let M be an \mathbb{A}-module, and $0 \neq N \leq M$ be a f.g.-submodule.
- Any proper $P \lesseqgtr N$ may be extended to a maximal proper $P^{\prime} \prec N$.
- $\operatorname{Sub}(N)$ is complemented and modular,

All A-modules are sums of simples

Thm. \mathbb{A} is a semisimple k-algebra (or ring) iff every \mathbb{A}-module is a direct sum of simple modules.
Proof of "only if":

- Let M be an \mathbb{A}-module, and $0 \neq N \leq M$ be a f.g.-submodule.
- Any proper $P \lesseqgtr N$ may be extended to a maximal proper $P^{\prime} \prec N$.
- $\operatorname{Sub}(N)$ is complemented and modular,

All A-modules are sums of simples

Thm. \mathbb{A} is a semisimple k-algebra (or ring) iff every \mathbb{A}-module is a direct sum of simple modules.

Proof of "only if":

- Let M be an \mathbb{A}-module, and $0 \neq N \leq M$ be a f.g.-submodule.
- Any proper $P \lesseqgtr N$ may be extended to a maximal proper $P^{\prime} \prec N$.
- $\operatorname{Sub}(N)$ is complemented and modular, so \exists minimal $Q \leq N$ complementing P^{\prime}.

All A-modules are sums of simples

Thm. \mathbb{A} is a semisimple k-algebra (or ring) iff every \mathbb{A}-module is a direct sum of simple modules.

Proof of "only if":

- Let M be an \mathbb{A}-module, and $0 \neq N \leq M$ be a f.g.-submodule.
- Any proper $P \lesseqgtr N$ may be extended to a maximal proper $P^{\prime} \prec N$.
- $\operatorname{Sub}(N)$ is complemented and modular, so \exists minimal $Q \leq N$ complementing P^{\prime}. Q is simple and disjoint from P.

All A-modules are sums of simples

Thm. \mathbb{A} is a semisimple k-algebra (or ring) iff every \mathbb{A}-module is a direct sum of simple modules.

Proof of "only if":

- Let M be an \mathbb{A}-module, and $0 \neq N \leq M$ be a f.g.-submodule.
- Any proper $P \leq N$ may be extended to a maximal proper $P^{\prime} \prec N$.
- $\operatorname{Sub}(N)$ is complemented and modular, so \exists minimal $Q \leq N$ complementing $P^{\prime} . Q$ is simple and disjoint from P.
- Summary: If $0 \neq N^{\text {f.g. }} \leq M$, then $N=\sum Q_{i}^{N}$ is a sum of simple submodules.

All A-modules are sums of simples

Thm. \mathbb{A} is a semisimple k-algebra (or ring) iff every \mathbb{A}-module is a direct sum of simple modules.

Proof of "only if":

- Let M be an \mathbb{A}-module, and $0 \neq N \leq M$ be a f.g.-submodule.
- Any proper $P \leq N$ may be extended to a maximal proper $P^{\prime} \prec N$.
- $\operatorname{Sub}(N)$ is complemented and modular, so \exists minimal $Q \leq N$ complementing $P^{\prime} . Q$ is simple and disjoint from P.
- Summary: If $0 \neq N^{\text {f.g. }} \leq M$, then $N=\sum Q_{i}^{N}$ is a sum of simple submodules.

All A-modules are sums of simples

Thm. \mathbb{A} is a semisimple k-algebra (or ring) iff every \mathbb{A}-module is a direct sum of simple modules.

Proof of "only if":

- Let M be an \mathbb{A}-module, and $0 \neq N \leq M$ be a f.g.-submodule.
- Any proper $P \lesseqgtr N$ may be extended to a maximal proper $P^{\prime} \prec N$.
- $\operatorname{Sub}(N)$ is complemented and modular, so \exists minimal $Q \leq N$ complementing $P^{\prime} . Q$ is simple and disjoint from P.
- Summary: If $0 \neq N^{\text {f.g. }} \leq M$, then $N=\sum Q_{i}^{N}$ is a sum of simple submodules.
- $M=\sum N^{\mathrm{f} . \mathrm{g} .}$ is the sum of its f.g.-submodules,

All A-modules are sums of simples

Thm. \mathbb{A} is a semisimple k-algebra (or ring) iff every \mathbb{A}-module is a direct sum of simple modules.

Proof of "only if":

- Let M be an \mathbb{A}-module, and $0 \neq N \leq M$ be a f.g.-submodule.
- Any proper $P \lesseqgtr N$ may be extended to a maximal proper $P^{\prime} \prec N$.
- $\operatorname{Sub}(N)$ is complemented and modular, so \exists minimal $Q \leq N$ complementing $P^{\prime} . Q$ is simple and disjoint from P.
- Summary: If $0 \neq N^{\text {f.g. }} \leq M$, then $N=\sum Q_{i}^{N}$ is a sum of simple submodules.
- $M=\sum N^{\mathrm{f} . \mathrm{g} .}$ is the sum of its f.g.-submodules,

All A-modules are sums of simples

Thm. \mathbb{A} is a semisimple k-algebra (or ring) iff every \mathbb{A}-module is a direct sum of simple modules.

Proof of "only if":

- Let M be an \mathbb{A}-module, and $0 \neq N \leq M$ be a f.g.-submodule.
- Any proper $P \lesseqgtr N$ may be extended to a maximal proper $P^{\prime} \prec N$.
- $\operatorname{Sub}(N)$ is complemented and modular, so \exists minimal $Q \leq N$ complementing $P^{\prime} . Q$ is simple and disjoint from P.
- Summary: If $0 \neq N^{\text {f.g. }} \leq M$, then $N=\sum Q_{i}^{N}$ is a sum of simple submodules.
- $M=\sum N^{\mathrm{ffg} .}$ is the sum of its f.g.-submodules, so $M=\sum_{N} \sum Q_{i}^{N}$ is a sum of simple submodules.

All A-modules are sums of simples

Thm. \mathbb{A} is a semisimple k-algebra (or ring) iff every \mathbb{A}-module is a direct sum of simple modules.

Proof of "only if":

- Let M be an \mathbb{A}-module, and $0 \neq N \leq M$ be a f.g.-submodule.
- Any proper $P \lesseqgtr N$ may be extended to a maximal proper $P^{\prime} \prec N$.
- $\operatorname{Sub}(N)$ is complemented and modular, so \exists minimal $Q \leq N$ complementing $P^{\prime} . Q$ is simple and disjoint from P.
- Summary: If $0 \neq N^{\text {f.g. }} \leq M$, then $N=\sum Q_{i}^{N}$ is a sum of simple submodules.
- $M=\sum N^{\mathrm{f} . g}$. is the sum of its f.g.-submodules, so $M=\sum_{N} \sum Q_{i}^{N}$ is a sum of simple submodules.
- The sum can be made direct:

All A-modules are sums of simples

Thm. \mathbb{A} is a semisimple k-algebra (or ring) iff every \mathbb{A}-module is a direct sum of simple modules.

Proof of "only if":

- Let M be an \mathbb{A}-module, and $0 \neq N \leq M$ be a f.g.-submodule.
- Any proper $P \lesseqgtr N$ may be extended to a maximal proper $P^{\prime} \prec N$.
- $\operatorname{Sub}(N)$ is complemented and modular, so \exists minimal $Q \leq N$ complementing $P^{\prime} . Q$ is simple and disjoint from P.
- Summary: If $0 \neq N^{\text {f.g. }} \leq M$, then $N=\sum Q_{i}^{N}$ is a sum of simple submodules.
- $M=\sum N^{\mathrm{f} . g}$. is the sum of its f.g.-submodules, so $M=\sum_{N} \sum Q_{i}^{N}$ is a sum of simple submodules.
- The sum can be made direct:

All A-modules are sums of simples

Thm. \mathbb{A} is a semisimple k-algebra (or ring) iff every \mathbb{A}-module is a direct sum of simple modules.

Proof of "only if":

- Let M be an \mathbb{A}-module, and $0 \neq N \leq M$ be a f.g.-submodule.
- Any proper $P \lesseqgtr N$ may be extended to a maximal proper $P^{\prime} \prec N$.
- $\operatorname{Sub}(N)$ is complemented and modular, so \exists minimal $Q \leq N$ complementing $P^{\prime} . Q$ is simple and disjoint from P.
- Summary: If $0 \neq N^{\text {f.g. }} \leq M$, then $N=\sum Q_{i}^{N}$ is a sum of simple submodules.
- $M=\sum N^{\mathrm{f} \text { g. }}$ is the sum of its f.g.-submodules, so $M=\sum_{N} \sum Q_{i}^{N}$ is a sum of simple submodules.
- The sum can be made direct: define a set X of simple submodules to be independent if $\sum Y \neq \sum Z$

All A-modules are sums of simples

Thm. \mathbb{A} is a semisimple k-algebra (or ring) iff every \mathbb{A}-module is a direct sum of simple modules.

Proof of "only if":

- Let M be an \mathbb{A}-module, and $0 \neq N \leq M$ be a f.g.-submodule.
- Any proper $P \lesseqgtr N$ may be extended to a maximal proper $P^{\prime} \prec N$.
- $\operatorname{Sub}(N)$ is complemented and modular, so \exists minimal $Q \leq N$ complementing $P^{\prime} . Q$ is simple and disjoint from P.
- Summary: If $0 \neq N^{\text {f.g. }} \leq M$, then $N=\sum Q_{i}^{N}$ is a sum of simple submodules.
- $M=\sum N^{\mathrm{ffg} .}$ is the sum of its f.g.-submodules, so $M=\sum_{N} \sum Q_{i}^{N}$ is a sum of simple submodules.
- The sum can be made direct: define a set X of simple submodules to be independent if $\sum Y \neq \sum Z$ for any $Y, Z \subseteq X$,

All A-modules are sums of simples

Thm. \mathbb{A} is a semisimple k-algebra (or ring) iff every \mathbb{A}-module is a direct sum of simple modules.

Proof of "only if":

- Let M be an \mathbb{A}-module, and $0 \neq N \leq M$ be a f.g.-submodule.
- Any proper $P \lesseqgtr N$ may be extended to a maximal proper $P^{\prime} \prec N$.
- $\operatorname{Sub}(N)$ is complemented and modular, so \exists minimal $Q \leq N$ complementing $P^{\prime} . Q$ is simple and disjoint from P.
- Summary: If $0 \neq N^{\text {f.g. }} \leq M$, then $N=\sum Q_{i}^{N}$ is a sum of simple submodules.
- $M=\sum N^{\mathrm{ffg} .}$ is the sum of its f.g.-submodules, so $M=\sum_{N} \sum Q_{i}^{N}$ is a sum of simple submodules.
- The sum can be made direct: define a set X of simple submodules to be independent if $\sum Y \neq \sum Z$ for any $Y, Z \subseteq X, Y \neq Z$.

All A-modules are sums of simples

Thm. \mathbb{A} is a semisimple k-algebra (or ring) iff every \mathbb{A}-module is a direct sum of simple modules.

Proof of "only if":

- Let M be an \mathbb{A}-module, and $0 \neq N \leq M$ be a f.g.-submodule.
- Any proper $P \lesseqgtr N$ may be extended to a maximal proper $P^{\prime} \prec N$.
- $\operatorname{Sub}(N)$ is complemented and modular, so \exists minimal $Q \leq N$ complementing $P^{\prime} . Q$ is simple and disjoint from P.
- Summary: If $0 \neq N^{\text {f.g. }} \leq M$, then $N=\sum Q_{i}^{N}$ is a sum of simple submodules.
- $M=\sum N^{\mathrm{ffg} .}$ is the sum of its f.g.-submodules, so $M=\sum_{N} \sum Q_{i}^{N}$ is a sum of simple submodules.
- The sum can be made direct: define a set X of simple submodules to be independent if $\sum Y \neq \sum Z$ for any $Y, Z \subseteq X, Y \neq Z$. Any sum of simple submodules equals an independent sum

All A-modules are sums of simples

Thm. \mathbb{A} is a semisimple k-algebra (or ring) iff every \mathbb{A}-module is a direct sum of simple modules.

Proof of "only if":

- Let M be an \mathbb{A}-module, and $0 \neq N \leq M$ be a f.g.-submodule.
- Any proper $P \lesseqgtr N$ may be extended to a maximal proper $P^{\prime} \prec N$.
- $\operatorname{Sub}(N)$ is complemented and modular, so \exists minimal $Q \leq N$ complementing $P^{\prime} . Q$ is simple and disjoint from P.
- Summary: If $0 \neq N^{\text {f.g. }} \leq M$, then $N=\sum Q_{i}^{N}$ is a sum of simple submodules.
- $M=\sum N^{\mathrm{ffg} .}$ is the sum of its f.g.-submodules, so $M=\sum_{N} \sum Q_{i}^{N}$ is a sum of simple submodules.
- The sum can be made direct: define a set X of simple submodules to be independent if $\sum Y \neq \sum Z$ for any $Y, Z \subseteq X, Y \neq Z$. Any sum of simple submodules equals an independent sum (ZL),

All A-modules are sums of simples

Thm. \mathbb{A} is a semisimple k-algebra (or ring) iff every \mathbb{A}-module is a direct sum of simple modules.

Proof of "only if":

- Let M be an \mathbb{A}-module, and $0 \neq N \leq M$ be a f.g.-submodule.
- Any proper $P \lesseqgtr N$ may be extended to a maximal proper $P^{\prime} \prec N$.
- $\operatorname{Sub}(N)$ is complemented and modular, so \exists minimal $Q \leq N$ complementing $P^{\prime} . Q$ is simple and disjoint from P.
- Summary: If $0 \neq N^{\text {f.g. }} \leq M$, then $N=\sum Q_{i}^{N}$ is a sum of simple submodules.
- $M=\sum N^{\mathrm{f} . g}$. is the sum of its f.g.-submodules, so $M=\sum_{N} \sum Q_{i}^{N}$ is a sum of simple submodules.
- The sum can be made direct: define a set X of simple submodules to be independent if $\sum Y \neq \sum Z$ for any $Y, Z \subseteq X, Y \neq Z$. Any sum of simple submodules equals an independent sum (ZL), which is a direct sum.

All A-modules are sums of simples

Thm. \mathbb{A} is a semisimple k-algebra (or ring) iff every \mathbb{A}-module is a direct sum of simple modules.

Proof of "only if":

- Let M be an \mathbb{A}-module, and $0 \neq N \leq M$ be a f.g.-submodule.
- Any proper $P \lesseqgtr N$ may be extended to a maximal proper $P^{\prime} \prec N$.
- $\operatorname{Sub}(N)$ is complemented and modular, so \exists minimal $Q \leq N$ complementing $P^{\prime} . Q$ is simple and disjoint from P.
- Summary: If $0 \neq N^{\text {f.g. }} \leq M$, then $N=\sum Q_{i}^{N}$ is a sum of simple submodules.
- $M=\sum N^{\mathrm{f} . g}$. is the sum of its f.g.-submodules, so $M=\sum_{N} \sum Q_{i}^{N}$ is a sum of simple submodules.
- The sum can be made direct: define a set X of simple submodules to be independent if $\sum Y \neq \sum Z$ for any $Y, Z \subseteq X, Y \neq Z$. Any sum of simple submodules equals an independent sum (ZL), which is a direct sum.
- \square

There are only finitely many isotypes of simples

There are only finitely many isotypes of simples

Thm.

There are only finitely many isotypes of simples

Thm. If \mathbb{A} is a semisimple k-algebra

There are only finitely many isotypes of simples

Thm. If \mathbb{A} is a semisimple k-algebra (or ring),

There are only finitely many isotypes of simples

Thm. If \mathbb{A} is a semisimple k-algebra (or ring), then \mathbb{A} has finitely many isotypes of simple modules.

There are only finitely many isotypes of simples

Thm. If \mathbb{A} is a semisimple k-algebra (or ring), then \mathbb{A} has finitely many isotypes of simple modules.
(This affords a quick proof that \mathbb{Z} is not semisimple.)

There are only finitely many isotypes of simples

Thm. If \mathbb{A} is a semisimple k-algebra (or ring), then \mathbb{A} has finitely many isotypes of simple modules.
(This affords a quick proof that \mathbb{Z} is not semisimple.)
Proof:

There are only finitely many isotypes of simples

Thm. If \mathbb{A} is a semisimple k-algebra (or ring), then \mathbb{A} has finitely many isotypes of simple modules.
(This affords a quick proof that \mathbb{Z} is not semisimple.)
Proof:

- The 1-generated free \mathbb{A}-module,

There are only finitely many isotypes of simples

Thm. If \mathbb{A} is a semisimple k-algebra (or ring), then \mathbb{A} has finitely many isotypes of simple modules.
(This affords a quick proof that \mathbb{Z} is not semisimple.)
Proof:

- The 1-generated free \mathbb{A}-module,

There are only finitely many isotypes of simples

Thm. If \mathbb{A} is a semisimple k-algebra (or ring), then \mathbb{A} has finitely many isotypes of simple modules.
(This affords a quick proof that \mathbb{Z} is not semisimple.)
Proof:

- The 1-generated free \mathbb{A}-module, $\mathbb{A}^{\mathbb{A}}$,

There are only finitely many isotypes of simples

Thm. If \mathbb{A} is a semisimple k-algebra (or ring), then \mathbb{A} has finitely many isotypes of simple modules.
(This affords a quick proof that \mathbb{Z} is not semisimple.)
Proof:

- The 1 -generated free \mathbb{A}-module, $\mathbb{A} \mathbb{A}$, is a sum of simples.

There are only finitely many isotypes of simples

Thm. If \mathbb{A} is a semisimple k-algebra (or ring), then \mathbb{A} has finitely many isotypes of simple modules.
(This affords a quick proof that \mathbb{Z} is not semisimple.)
Proof:

- The 1 -generated free \mathbb{A}-module, $\mathbb{A} \mathbb{A}$, is a sum of simples.
- Only finitely many summands are needed to generate the generator of $\mathbb{A}^{\mathbb{A}}$,

There are only finitely many isotypes of simples

Thm. If \mathbb{A} is a semisimple k-algebra (or ring), then \mathbb{A} has finitely many isotypes of simple modules.
(This affords a quick proof that \mathbb{Z} is not semisimple.)
Proof:

- The 1 -generated free \mathbb{A}-module, $\mathbb{A} \mathbb{A}$, is a sum of simples.
- Only finitely many summands are needed to generate the generator of $\mathbb{A}^{\mathbb{A}}$,

There are only finitely many isotypes of simples

Thm. If \mathbb{A} is a semisimple k-algebra (or ring), then \mathbb{A} has finitely many isotypes of simple modules.
(This affords a quick proof that \mathbb{Z} is not semisimple.)
Proof:

- The 1 -generated free \mathbb{A}-module, $\mathbb{A} \mathbb{A}$, is a sum of simples.
- Only finitely many summands are needed to generate the generator of $\mathbb{A} \mathbb{A}$, so $\mathbb{A} \mathbb{A} \cong \oplus_{i=1}^{n} Q_{i}$.

There are only finitely many isotypes of simples

Thm. If \mathbb{A} is a semisimple k-algebra (or ring), then \mathbb{A} has finitely many isotypes of simple modules.
(This affords a quick proof that \mathbb{Z} is not semisimple.)
Proof:

- The 1 -generated free \mathbb{A}-module, $\mathbb{A} \mathbb{A}$, is a sum of simples.
- Only finitely many summands are needed to generate the generator of $\mathbb{A} \mathbb{A}$, so $\mathbb{A}^{\mathbb{A}} \cong \oplus_{i=1}^{n} Q_{i}$.
- Any simple \mathbb{A}-module S is isomorphic to one of the Q_{i} 's.

There are only finitely many isotypes of simples

Thm. If \mathbb{A} is a semisimple k-algebra (or ring), then \mathbb{A} has finitely many isotypes of simple modules.
(This affords a quick proof that \mathbb{Z} is not semisimple.)
Proof:

- The 1 -generated free \mathbb{A}-module, $\mathbb{A} \mathbb{A}$, is a sum of simples.
- Only finitely many summands are needed to generate the generator of $\mathbb{A} \mathbb{A}$, so $\mathbb{A}^{\mathbb{A}} \cong \oplus_{i=1}^{n} Q_{i}$.
- Any simple \mathbb{A}-module S is isomorphic to one of the Q_{i} 's.

There are only finitely many isotypes of simples

Thm. If \mathbb{A} is a semisimple k-algebra (or ring), then \mathbb{A} has finitely many isotypes of simple modules.
(This affords a quick proof that \mathbb{Z} is not semisimple.)
Proof:

- The 1 -generated free \mathbb{A}-module, $\mathbb{A} \mathbb{A}$, is a sum of simples.
- Only finitely many summands are needed to generate the generator of $\mathbb{A} \mathbb{A}$, so $\mathbb{A}^{\mathbb{A}} \cong \oplus_{i=1}^{n} Q_{i}$.
- Any simple \mathbb{A}-module S is isomorphic to one of the Q_{i} 's.

There are only finitely many isotypes of simples

Thm. If \mathbb{A} is a semisimple k-algebra (or ring), then \mathbb{A} has finitely many isotypes of simple modules.
(This affords a quick proof that \mathbb{Z} is not semisimple.)
Proof:

- The 1 -generated free \mathbb{A}-module, $\mathbb{A} \mathbb{A}$, is a sum of simples.
- Only finitely many summands are needed to generate the generator of $\mathbb{A} \mathbb{A}$, so $\mathbb{A} \mathbb{A} \cong \oplus_{i=1}^{n} Q_{i}$.
- Any simple \mathbb{A}-module S is isomorphic to one of the Q_{i} 's. (Otherwise $|S|=\left|\operatorname{Hom}\left(\mathbb{A}^{A} \mathbb{A}, S\right)\right|=\left|\operatorname{Hom}\left(\oplus Q_{i}, S\right)\right|=\left|\prod \operatorname{Hom}\left(Q_{i}, S\right)\right|=1$.)

There are only finitely many isotypes of simples

Thm. If \mathbb{A} is a semisimple k-algebra (or ring), then \mathbb{A} has finitely many isotypes of simple modules.
(This affords a quick proof that \mathbb{Z} is not semisimple.)
Proof:

- The 1 -generated free \mathbb{A}-module, $\mathbb{A} \mathbb{A}$, is a sum of simples.
- Only finitely many summands are needed to generate the generator of $\mathbb{A} \mathbb{A}$, so $\mathbb{A} \mathbb{A} \cong \oplus_{i=1}^{n} Q_{i}$.
- Any simple \mathbb{A}-module S is isomorphic to one of the Q_{i} 's. (Otherwise $|S|=|\operatorname{Hom}(\mathbb{A} \mathbb{A}, S)|=\left|\operatorname{Hom}\left(\oplus Q_{i}, S\right)\right|=\left|\prod \operatorname{Hom}\left(Q_{i}, S\right)\right|=1$.)
- \square

Schur's Lemma

Schur's Lemma

Schur's Lm.

Schur's Lemma

Schur's Lm. If S is a simple \mathbb{A}-module,

Schur's Lemma

Schur's Lm. If S is a simple \mathbb{A}-module, then $\operatorname{End}_{\mathbb{A}}(S)=\operatorname{Hom}_{\mathbb{A}}(S, S)=D$ is a division ring.

Schur's Lemma

Schur's Lm. If S is a simple \mathbb{A}-module, then $\operatorname{End}_{\mathbb{A}}(S)=\operatorname{Hom}_{\mathbb{A}}(S, S)=D$ is a division ring.
Refinements.

Schur's Lemma

Schur's Lm. If S is a simple \mathbb{A}-module, then $\operatorname{End}_{\mathbb{A}}(S)=\operatorname{Hom}_{\mathbb{A}}(S, S)=D$ is a division ring.

Refinements.

(1) if \mathbb{A} is a k-algebra, then D has a canonical k-algebra structure.

Schur's Lemma

Schur's Lm. If S is a simple \mathbb{A}-module, then $\operatorname{End}_{\mathbb{A}}(S)=\operatorname{Hom}_{\mathbb{A}}(S, S)=D$ is a division ring.

Refinements.

(1) if \mathbb{A} is a k-algebra, then D has a canonical k-algebra structure.

Schur's Lemma

Schur's Lm. If S is a simple \mathbb{A}-module, then $\operatorname{End}_{\mathbb{A}}(S)=\operatorname{Hom}_{\mathbb{A}}(S, S)=D$ is a division ring.

Refinements.

(1) if \mathbb{A} is a k-algebra, then D has a canonical k-algebra structure.
(2) if \mathbb{A} is a k-algebra and S is a f.d. over k, then D is f.d. over k.

Schur's Lemma

Schur's Lm. If S is a simple \mathbb{A}-module, then $\operatorname{End}_{\mathbb{A}}(S)=\operatorname{Hom}_{\mathbb{A}}(S, S)=D$ is a division ring.

Refinements.

(1) if \mathbb{A} is a k-algebra, then D has a canonical k-algebra structure.
(2) if \mathbb{A} is a k-algebra and S is a f.d. over k, then D is f.d. over k.

Schur's Lemma

Schur's Lm. If S is a simple \mathbb{A}-module, then $\operatorname{End}_{\mathbb{A}}(S)=\operatorname{Hom}_{\mathbb{A}}(S, S)=D$ is a division ring.

Refinements.

(1) if \mathbb{A} is a k-algebra, then D has a canonical k-algebra structure.
(2) if \mathbb{A} is a k-algebra and S is a f.d. over k, then D is f.d. over k.
(3) if \mathbb{A} is a k-algebra, S is a f.d. over k, and k is alg. closed,

Schur's Lemma

Schur's Lm. If S is a simple \mathbb{A}-module, then $\operatorname{End}_{\mathbb{A}}(S)=\operatorname{Hom}_{\mathbb{A}}(S, S)=D$ is a division ring.

Refinements.

(1) if \mathbb{A} is a k-algebra, then D has a canonical k-algebra structure.
(2) if \mathbb{A} is a k-algebra and S is a f.d. over k, then D is f.d. over k.
(3) if \mathbb{A} is a k-algebra, S is a f.d. over k, and k is alg. closed,

Schur's Lemma

Schur's Lm. If S is a simple \mathbb{A}-module, then $\operatorname{End}_{\mathbb{A}}(S)=\operatorname{Hom}_{\mathbb{A}}(S, S)=D$ is a division ring.

Refinements.

(1) if \mathbb{A} is a k-algebra, then D has a canonical k-algebra structure.
(2) if \mathbb{A} is a k-algebra and S is a f.d. over k, then D is f.d. over k.
(3) if \mathbb{A} is a k-algebra, S is a f.d. over k, and k is alg. closed, then $D=k$.

Schur's Lemma

Schur's Lm. If S is a simple \mathbb{A}-module, then $\operatorname{End}_{\mathbb{A}}(S)=\operatorname{Hom}_{\mathbb{A}}(S, S)=D$ is a division ring.

Refinements.

(1) if \mathbb{A} is a k-algebra, then D has a canonical k-algebra structure.
(2) if \mathbb{A} is a k-algebra and S is a f.d. over k, then D is f.d. over k.
(3) if \mathbb{A} is a k-algebra, S is a f.d. over k, and k is alg. closed, then $D=k$.

Proof:

- If $\varphi \in \operatorname{Hom}(S, S)$ is nonzero,

Schur's Lemma

Schur's Lm. If S is a simple \mathbb{A}-module, then $\operatorname{End}_{\mathbb{A}}(S)=\operatorname{Hom}_{\mathbb{A}}(S, S)=D$ is a division ring.

Refinements.

(1) if \mathbb{A} is a k-algebra, then D has a canonical k-algebra structure.
(2) if \mathbb{A} is a k-algebra and S is a f.d. over k, then D is f.d. over k.
(3) if \mathbb{A} is a k-algebra, S is a f.d. over k, and k is alg. closed, then $D=k$.

Proof:

- If $\varphi \in \operatorname{Hom}(S, S)$ is nonzero,

Schur's Lemma

Schur's Lm. If S is a simple \mathbb{A}-module, then $\operatorname{End}_{\mathbb{A}}(S)=\operatorname{Hom}_{\mathbb{A}}(S, S)=D$ is a division ring.

Refinements.

(1) if \mathbb{A} is a k-algebra, then D has a canonical k-algebra structure.
(2) if \mathbb{A} is a k-algebra and S is a f.d. over k, then D is f.d. over k.
(3) if \mathbb{A} is a k-algebra, S is a f.d. over k, and k is alg. closed, then $D=k$.

Proof:

- If $\varphi \in \operatorname{Hom}(S, S)$ is nonzero, then $\operatorname{ker}(\varphi)=\{0\}$ and $\operatorname{im}(\varphi)=S$,

Schur's Lemma

Schur's Lm. If S is a simple \mathbb{A}-module, then $\operatorname{End}_{\mathbb{A}}(S)=\operatorname{Hom}_{\mathbb{A}}(S, S)=D$ is a division ring.

Refinements.

(1) if \mathbb{A} is a k-algebra, then D has a canonical k-algebra structure.
(2) if \mathbb{A} is a k-algebra and S is a f.d. over k, then D is f.d. over k.
(3) if \mathbb{A} is a k-algebra, S is a f.d. over k, and k is alg. closed, then $D=k$.

Proof:

- If $\varphi \in \operatorname{Hom}(S, S)$ is nonzero, then $\operatorname{ker}(\varphi)=\{0\}$ and $\operatorname{im}(\varphi)=S$, so φ is an isomorphism,

Schur's Lemma

Schur's Lm. If S is a simple \mathbb{A}-module, then $\operatorname{End}_{\mathbb{A}}(S)=\operatorname{Hom}_{\mathbb{A}}(S, S)=D$ is a division ring.

Refinements.

(1) if \mathbb{A} is a k-algebra, then D has a canonical k-algebra structure.
(2) if \mathbb{A} is a k-algebra and S is a f.d. over k, then D is f.d. over k.
(3) if \mathbb{A} is a k-algebra, S is a f.d. over k, and k is alg. closed, then $D=k$.

Proof:

- If $\varphi \in \operatorname{Hom}(S, S)$ is nonzero, then $\operatorname{ker}(\varphi)=\{0\}$ and $\operatorname{im}(\varphi)=S$, so φ is an isomorphism, so $\exists \varphi^{-1} \in \operatorname{Hom}(S, S)$.

Schur's Lemma

Schur's Lm. If S is a simple \mathbb{A}-module, then $\operatorname{End}_{\mathbb{A}}(S)=\operatorname{Hom}_{\mathbb{A}}(S, S)=D$ is a division ring.

Refinements.

(1) if \mathbb{A} is a k-algebra, then D has a canonical k-algebra structure.
(2) if \mathbb{A} is a k-algebra and S is a f.d. over k, then D is f.d. over k.
(3) if \mathbb{A} is a k-algebra, S is a f.d. over k, and k is alg. closed, then $D=k$.

Proof:

- If $\varphi \in \operatorname{Hom}(S, S)$ is nonzero, then $\operatorname{ker}(\varphi)=\{0\}$ and $\operatorname{im}(\varphi)=S$, so φ is an isomorphism, so $\exists \varphi^{-1} \in \operatorname{Hom}(S, S) .(\operatorname{End}(S) \subseteq\{0\} \cup\{$ units $\}$.)

Schur's Lemma

Schur's Lm. If S is a simple \mathbb{A}-module, then $\operatorname{End}_{\mathbb{A}}(S)=\operatorname{Hom}_{\mathbb{A}}(S, S)=D$ is a division ring.

Refinements.

(1) if \mathbb{A} is a k-algebra, then D has a canonical k-algebra structure.
(2) if \mathbb{A} is a k-algebra and S is a f.d. over k, then D is f.d. over k.
(3) if \mathbb{A} is a k-algebra, S is a f.d. over k, and k is alg. closed, then $D=k$.

Proof:

- If $\varphi \in \operatorname{Hom}(S, S)$ is nonzero, then $\operatorname{ker}(\varphi)=\{0\}$ and $\operatorname{im}(\varphi)=S$, so φ is an isomorphism, so $\exists \varphi^{-1} \in \operatorname{Hom}(S, S) .(\operatorname{End}(S) \subseteq\{0\} \cup\{$ units $\}$.)
- If $\alpha \in k$, and $\ell_{\alpha}(v):=\alpha \cdot v$,

Schur's Lemma

Schur's Lm. If S is a simple \mathbb{A}-module, then $\operatorname{End}_{\mathbb{A}}(S)=\operatorname{Hom}_{\mathbb{A}}(S, S)=D$ is a division ring.

Refinements.

(1) if \mathbb{A} is a k-algebra, then D has a canonical k-algebra structure.
(2) if \mathbb{A} is a k-algebra and S is a f.d. over k, then D is f.d. over k.
(3) if \mathbb{A} is a k-algebra, S is a f.d. over k, and k is alg. closed, then $D=k$.

Proof:

- If $\varphi \in \operatorname{Hom}(S, S)$ is nonzero, then $\operatorname{ker}(\varphi)=\{0\}$ and $\operatorname{im}(\varphi)=S$, so φ is an isomorphism, so $\exists \varphi^{-1} \in \operatorname{Hom}(S, S) .(\operatorname{End}(S) \subseteq\{0\} \cup\{$ units $\}$.)
- If $\alpha \in k$, and $\ell_{\alpha}(v):=\alpha \cdot v$,

Schur's Lemma

Schur's Lm. If S is a simple \mathbb{A}-module, then $\operatorname{End}_{\mathbb{A}}(S)=\operatorname{Hom}_{\mathbb{A}}(S, S)=D$ is a division ring.

Refinements.

(1) if \mathbb{A} is a k-algebra, then D has a canonical k-algebra structure.
(2) if \mathbb{A} is a k-algebra and S is a f.d. over k, then D is f.d. over k.
(3) if \mathbb{A} is a k-algebra, S is a f.d. over k, and k is alg. closed, then $D=k$.

Proof:

- If $\varphi \in \operatorname{Hom}(S, S)$ is nonzero, then $\operatorname{ker}(\varphi)=\{0\}$ and $\operatorname{im}(\varphi)=S$, so φ is an isomorphism, so $\exists \varphi^{-1} \in \operatorname{Hom}(S, S) .(\operatorname{End}(S) \subseteq\{0\} \cup\{$ units $\}$.)
- If $\alpha \in k$, and $\ell_{\alpha}(v):=\alpha \cdot v$, then $\ell_{\alpha} \in Z(D)$.

Schur's Lemma

Schur's Lm. If S is a simple \mathbb{A}-module, then $\operatorname{End}_{\mathbb{A}}(S)=\operatorname{Hom}_{\mathbb{A}}(S, S)=D$ is a division ring.

Refinements.

(1) if \mathbb{A} is a k-algebra, then D has a canonical k-algebra structure.
(2) if \mathbb{A} is a k-algebra and S is a f.d. over k, then D is f.d. over k.
(3) if \mathbb{A} is a k-algebra, S is a f.d. over k, and k is alg. closed, then $D=k$.

Proof:

- If $\varphi \in \operatorname{Hom}(S, S)$ is nonzero, then $\operatorname{ker}(\varphi)=\{0\}$ and $\operatorname{im}(\varphi)=S$, so φ is an isomorphism, so $\exists \varphi^{-1} \in \operatorname{Hom}(S, S)$. $(\operatorname{End}(S) \subseteq\{0\} \cup\{$ units $\}$.)
- If $\alpha \in k$, and $\ell_{\alpha}(v):=\alpha \cdot v$, then $\ell_{\alpha} \in Z(D)$. The map $\Lambda: k \rightarrow Z(D): \alpha \mapsto \ell_{\alpha}$ makes D a k-algebra.

Schur's Lemma

Schur's Lm. If S is a simple \mathbb{A}-module, then $\operatorname{End}_{\mathbb{A}}(S)=\operatorname{Hom}_{\mathbb{A}}(S, S)=D$ is a division ring.

Refinements.

(1) if \mathbb{A} is a k-algebra, then D has a canonical k-algebra structure.
(2) if \mathbb{A} is a k-algebra and S is a f.d. over k, then D is f.d. over k.
(3) if \mathbb{A} is a k-algebra, S is a f.d. over k, and k is alg. closed, then $D=k$.

Proof:

- If $\varphi \in \operatorname{Hom}(S, S)$ is nonzero, then $\operatorname{ker}(\varphi)=\{0\}$ and $\operatorname{im}(\varphi)=S$, so φ is an isomorphism, so $\exists \varphi^{-1} \in \operatorname{Hom}(S, S)$. $(\operatorname{End}(S) \subseteq\{0\} \cup\{$ units $\}$.)
- If $\alpha \in k$, and $\ell_{\alpha}(v):=\alpha \cdot v$, then $\ell_{\alpha} \in Z(D)$. The map $\Lambda: k \rightarrow Z(D): \alpha \mapsto \ell_{\alpha}$ makes D a k-algebra.
- If $\operatorname{dim}_{k}(S)=n$, then $\operatorname{End}_{k}(S)=\underline{M_{n}(k)}$

Schur's Lemma

Schur's Lm. If S is a simple \mathbb{A}-module, then $\operatorname{End}_{\mathbb{A}}(S)=\operatorname{Hom}_{\mathbb{A}}(S, S)=D$ is a division ring.

Refinements.

(1) if \mathbb{A} is a k-algebra, then D has a canonical k-algebra structure.
(2) if \mathbb{A} is a k-algebra and S is a f.d. over k, then D is f.d. over k.
(3) if \mathbb{A} is a k-algebra, S is a f.d. over k, and k is alg. closed, then $D=k$.

Proof:

- If $\varphi \in \operatorname{Hom}(S, S)$ is nonzero, then $\operatorname{ker}(\varphi)=\{0\}$ and $\operatorname{im}(\varphi)=S$, so φ is an isomorphism, so $\exists \varphi^{-1} \in \operatorname{Hom}(S, S)$. $(\operatorname{End}(S) \subseteq\{0\} \cup\{$ units $\}$.)
- If $\alpha \in k$, and $\ell_{\alpha}(v):=\alpha \cdot v$, then $\ell_{\alpha} \in Z(D)$. The map $\Lambda: k \rightarrow Z(D): \alpha \mapsto \ell_{\alpha}$ makes D a k-algebra.
- If $\operatorname{dim}_{k}(S)=n$, then $\operatorname{End}_{k}(S)=\underline{M_{n}(k)}$

Schur's Lemma

Schur's Lm. If S is a simple \mathbb{A}-module, then $\operatorname{End}_{\mathbb{A}}(S)=\operatorname{Hom}_{\mathbb{A}}(S, S)=D$ is a division ring.

Refinements.

(1) if \mathbb{A} is a k-algebra, then D has a canonical k-algebra structure.
(2) if \mathbb{A} is a k-algebra and S is a f.d. over k, then D is f.d. over k.
(3) if \mathbb{A} is a k-algebra, S is a f.d. over k, and k is alg. closed, then $D=k$.

Proof:

- If $\varphi \in \operatorname{Hom}(S, S)$ is nonzero, then $\operatorname{ker}(\varphi)=\{0\}$ and $\operatorname{im}(\varphi)=S$, so φ is an isomorphism, so $\exists \varphi^{-1} \in \operatorname{Hom}(S, S)$. $(\operatorname{End}(S) \subseteq\{0\} \cup\{$ units $\}$.)
- If $\alpha \in k$, and $\ell_{\alpha}(v):=\alpha \cdot v$, then $\ell_{\alpha} \in Z(D)$. The map $\Lambda: k \rightarrow Z(D): \alpha \mapsto \ell_{\alpha}$ makes D a k-algebra.
- If $\operatorname{dim}_{k}(S)=n$, then $\operatorname{End}_{k}(S)=\underline{\underline{M_{n}(k)}} \supseteq \operatorname{End}_{\mathbb{A}}(S)=\underline{\underline{D}}$

Schur's Lemma

Schur's Lm. If S is a simple \mathbb{A}-module, then $\operatorname{End}_{\mathbb{A}}(S)=\operatorname{Hom}_{\mathbb{A}}(S, S)=D$ is a division ring.

Refinements.

(1) if \mathbb{A} is a k-algebra, then D has a canonical k-algebra structure.
(2) if \mathbb{A} is a k-algebra and S is a f.d. over k, then D is f.d. over k.
(3) if \mathbb{A} is a k-algebra, S is a f.d. over k, and k is alg. closed, then $D=k$.

Proof:

- If $\varphi \in \operatorname{Hom}(S, S)$ is nonzero, then $\operatorname{ker}(\varphi)=\{0\}$ and $\operatorname{im}(\varphi)=S$, so φ is an isomorphism, so $\exists \varphi^{-1} \in \operatorname{Hom}(S, S)$. $(\operatorname{End}(S) \subseteq\{0\} \cup\{$ units $\}$.)
- If $\alpha \in k$, and $\ell_{\alpha}(v):=\alpha \cdot v$, then $\ell_{\alpha} \in Z(D)$. The map $\Lambda: k \rightarrow Z(D): \alpha \mapsto \ell_{\alpha}$ makes D a k-algebra.
- If $\operatorname{dim}_{k}(S)=n$, then $\operatorname{End}_{k}(S)=\underline{\underline{M_{n}(k)}} \supseteq \operatorname{End}_{\mathbb{A}}(S)=\underline{\underline{D}} \supseteq \Lambda(k)=\underline{\underline{k \cdot I}}$.

Schur's Lemma

Schur's Lm. If S is a simple \mathbb{A}-module, then $\operatorname{End}_{\mathbb{A}}(S)=\operatorname{Hom}_{\mathbb{A}}(S, S)=D$ is a division ring.

Refinements.

(1) if \mathbb{A} is a k-algebra, then D has a canonical k-algebra structure.
(2) if \mathbb{A} is a k-algebra and S is a f.d. over k, then D is f.d. over k.
(3) if \mathbb{A} is a k-algebra, S is a f.d. over k, and k is alg. closed, then $D=k$.

Proof:

- If $\varphi \in \operatorname{Hom}(S, S)$ is nonzero, then $\operatorname{ker}(\varphi)=\{0\}$ and $\operatorname{im}(\varphi)=S$, so φ is an isomorphism, so $\exists \varphi^{-1} \in \operatorname{Hom}(S, S)$. $(\operatorname{End}(S) \subseteq\{0\} \cup\{$ units $\}$.)
- If $\alpha \in k$, and $\ell_{\alpha}(v):=\alpha \cdot v$, then $\ell_{\alpha} \in Z(D)$. The map $\Lambda: k \rightarrow Z(D): \alpha \mapsto \ell_{\alpha}$ makes D a k-algebra.
- If $\operatorname{dim}_{k}(S)=n$, then $\operatorname{End}_{k}(S)=\underline{\underline{M_{n}(k)}} \supseteq \operatorname{End}_{\mathbb{A}}(S)=\underline{\underline{D}} \supseteq \Lambda(k)=\underline{\underline{k \cdot I}}$.

Schur's Lemma

Schur's Lm. If S is a simple \mathbb{A}-module, then $\operatorname{End}_{\mathbb{A}}(S)=\operatorname{Hom}_{\mathbb{A}}(S, S)=D$ is a division ring.

Refinements.

(1) if \mathbb{A} is a k-algebra, then D has a canonical k-algebra structure.
(2) if \mathbb{A} is a k-algebra and S is a f.d. over k, then D is f.d. over k.
(3) if \mathbb{A} is a k-algebra, S is a f.d. over k, and k is alg. closed, then $D=k$.

Proof:

- If $\varphi \in \operatorname{Hom}(S, S)$ is nonzero, then $\operatorname{ker}(\varphi)=\{0\}$ and $\operatorname{im}(\varphi)=S$, so φ is an isomorphism, so $\exists \varphi^{-1} \in \operatorname{Hom}(S, S)$. $(\operatorname{End}(S) \subseteq\{0\} \cup\{$ units $\}$.)
- If $\alpha \in k$, and $\ell_{\alpha}(v):=\alpha \cdot v$, then $\ell_{\alpha} \in Z(D)$. The map $\Lambda: k \rightarrow Z(D): \alpha \mapsto \ell_{\alpha}$ makes D a k-algebra.
- If $\operatorname{dim}_{k}(S)=n$, then $\operatorname{End}_{k}(S)=\underline{\underline{M_{n}(k)}} \supseteq \operatorname{End}_{\mathbb{A}}(S)=\underline{\underline{D}} \supseteq \Lambda(k)=\underline{\underline{k \cdot I}}$. Hence $\operatorname{dim}_{k}(D) \leq \operatorname{dim}_{k}(S)^{2}$.

Schur's Lemma

Schur's Lm. If S is a simple \mathbb{A}-module, then $\operatorname{End}_{\mathbb{A}}(S)=\operatorname{Hom}_{\mathbb{A}}(S, S)=D$ is a division ring.

Refinements.

(1) if \mathbb{A} is a k-algebra, then D has a canonical k-algebra structure.
(2) if \mathbb{A} is a k-algebra and S is a f.d. over k, then D is f.d. over k.
(3) if \mathbb{A} is a k-algebra, S is a f.d. over k, and k is alg. closed, then $D=k$.

Proof:

- If $\varphi \in \operatorname{Hom}(S, S)$ is nonzero, then $\operatorname{ker}(\varphi)=\{0\}$ and $\operatorname{im}(\varphi)=S$, so φ is an isomorphism, so $\exists \varphi^{-1} \in \operatorname{Hom}(S, S)$. $(\operatorname{End}(S) \subseteq\{0\} \cup\{$ units $\}$.)
- If $\alpha \in k$, and $\ell_{\alpha}(v):=\alpha \cdot v$, then $\ell_{\alpha} \in Z(D)$. The map $\Lambda: k \rightarrow Z(D): \alpha \mapsto \ell_{\alpha}$ makes D a k-algebra.
- If $\operatorname{dim}_{k}(S)=n$, then $\operatorname{End}_{k}(S)=\underline{\underline{M_{n}(k)}} \supseteq \operatorname{End}_{\mathbb{A}}(S)=\underline{\underline{D}} \supseteq \Lambda(k)=\underline{\underline{k \cdot I}}$. Hence $\operatorname{dim}_{k}(D) \leq \operatorname{dim}_{k}(S)^{2}$.
- Assume $k=\bar{k}$ and D is a f.d. k-division algebra.

Schur's Lemma

Schur's Lm. If S is a simple \mathbb{A}-module, then $\operatorname{End}_{\mathbb{A}}(S)=\operatorname{Hom}_{\mathbb{A}}(S, S)=D$ is a division ring.

Refinements.

(1) if \mathbb{A} is a k-algebra, then D has a canonical k-algebra structure.
(2) if \mathbb{A} is a k-algebra and S is a f.d. over k, then D is f.d. over k.
(3) if \mathbb{A} is a k-algebra, S is a f.d. over k, and k is alg. closed, then $D=k$.

Proof:

- If $\varphi \in \operatorname{Hom}(S, S)$ is nonzero, then $\operatorname{ker}(\varphi)=\{0\}$ and $\operatorname{im}(\varphi)=S$, so φ is an isomorphism, so $\exists \varphi^{-1} \in \operatorname{Hom}(S, S)$. $(\operatorname{End}(S) \subseteq\{0\} \cup\{$ units $\}$.)
- If $\alpha \in k$, and $\ell_{\alpha}(v):=\alpha \cdot v$, then $\ell_{\alpha} \in Z(D)$. The map $\Lambda: k \rightarrow Z(D): \alpha \mapsto \ell_{\alpha}$ makes D a k-algebra.
- If $\operatorname{dim}_{k}(S)=n$, then $\operatorname{End}_{k}(S)=\underline{\underline{M_{n}(k)}} \supseteq \operatorname{End}_{\mathbb{A}}(S)=\underline{\underline{D}} \supseteq \Lambda(k)=\underline{\underline{k \cdot I}}$. Hence $\operatorname{dim}_{k}(D) \leq \operatorname{dim}_{k}(S)^{2}$.
- Assume $k=\bar{k}$ and D is a f.d. k-division algebra.

Schur's Lemma

Schur's Lm. If S is a simple \mathbb{A}-module, then $\operatorname{End}_{\mathbb{A}}(S)=\operatorname{Hom}_{\mathbb{A}}(S, S)=D$ is a division ring.

Refinements.

(1) if \mathbb{A} is a k-algebra, then D has a canonical k-algebra structure.
(2) if \mathbb{A} is a k-algebra and S is a f.d. over k, then D is f.d. over k.
(3) if \mathbb{A} is a k-algebra, S is a f.d. over k, and k is alg. closed, then $D=k$.

Proof:

- If $\varphi \in \operatorname{Hom}(S, S)$ is nonzero, then $\operatorname{ker}(\varphi)=\{0\}$ and $\operatorname{im}(\varphi)=S$, so φ is an isomorphism, so $\exists \varphi^{-1} \in \operatorname{Hom}(S, S)$. $(\operatorname{End}(S) \subseteq\{0\} \cup\{$ units $\}$.)
- If $\alpha \in k$, and $\ell_{\alpha}(v):=\alpha \cdot v$, then $\ell_{\alpha} \in Z(D)$. The map $\Lambda: k \rightarrow Z(D): \alpha \mapsto \ell_{\alpha}$ makes D a k-algebra.
- If $\operatorname{dim}_{k}(S)=n$, then $\operatorname{End}_{k}(S)=\underline{\underline{M_{n}(k)}} \supseteq \operatorname{End}_{\mathbb{A}}(S)=\underline{\underline{D}} \supseteq \Lambda(k)=\underline{\underline{k \cdot I}}$. Hence $\operatorname{dim}_{k}(D) \leq \operatorname{dim}_{k}(S)^{2}$.
- Assume $k=\bar{k}$ and D is a f.d. k-division algebra. Assume $k=k \cdot 1_{D}$ is a subfield of $Z(D)$.

Schur's Lemma

Schur's Lm. If S is a simple \mathbb{A}-module, then $\operatorname{End}_{\mathbb{A}}(S)=\operatorname{Hom}_{\mathbb{A}}(S, S)=D$ is a division ring.

Refinements.

(1) if \mathbb{A} is a k-algebra, then D has a canonical k-algebra structure.
(2) if \mathbb{A} is a k-algebra and S is a f.d. over k, then D is f.d. over k.
(3) if \mathbb{A} is a k-algebra, S is a f.d. over k, and k is alg. closed, then $D=k$.

Proof:

- If $\varphi \in \operatorname{Hom}(S, S)$ is nonzero, then $\operatorname{ker}(\varphi)=\{0\}$ and $\operatorname{im}(\varphi)=S$, so φ is an isomorphism, so $\exists \varphi^{-1} \in \operatorname{Hom}(S, S)$. $(\operatorname{End}(S) \subseteq\{0\} \cup\{$ units $\}$.)
- If $\alpha \in k$, and $\ell_{\alpha}(v):=\alpha \cdot v$, then $\ell_{\alpha} \in Z(D)$. The map $\Lambda: k \rightarrow Z(D): \alpha \mapsto \ell_{\alpha}$ makes D a k-algebra.
- If $\operatorname{dim}_{k}(S)=n$, then $\operatorname{End}_{k}(S)=\underline{\underline{M_{n}(k)}} \supseteq \operatorname{End}_{\mathbb{A}}(S)=\underline{\underline{D}} \supseteq \Lambda(k)=\underline{\underline{k \cdot I}}$. Hence $\operatorname{dim}_{k}(D) \leq \operatorname{dim}_{k}(S)^{2}$.
- Assume $k=\bar{k}$ and D is a f.d. k-division algebra. Assume $k=k \cdot 1_{D}$ is a subfield of $Z(D)$. If $d \in D$, then $k[d]$ is an algebraic field extension of k.

Schur's Lemma

Schur's Lm. If S is a simple \mathbb{A}-module, then $\operatorname{End}_{\mathbb{A}}(S)=\operatorname{Hom}_{\mathbb{A}}(S, S)=D$ is a division ring.

Refinements.

(1) if \mathbb{A} is a k-algebra, then D has a canonical k-algebra structure.
(2) if \mathbb{A} is a k-algebra and S is a f.d. over k, then D is f.d. over k.
(3) if \mathbb{A} is a k-algebra, S is a f.d. over k, and k is alg. closed, then $D=k$.

Proof:

- If $\varphi \in \operatorname{Hom}(S, S)$ is nonzero, then $\operatorname{ker}(\varphi)=\{0\}$ and $\operatorname{im}(\varphi)=S$, so φ is an isomorphism, so $\exists \varphi^{-1} \in \operatorname{Hom}(S, S)$. $(\operatorname{End}(S) \subseteq\{0\} \cup\{$ units $\}$.)
- If $\alpha \in k$, and $\ell_{\alpha}(v):=\alpha \cdot v$, then $\ell_{\alpha} \in Z(D)$. The map $\Lambda: k \rightarrow Z(D): \alpha \mapsto \ell_{\alpha}$ makes D a k-algebra.
- If $\operatorname{dim}_{k}(S)=n$, then $\operatorname{End}_{k}(S)=\underline{\underline{M_{n}(k)}} \supseteq \operatorname{End}_{\mathbb{A}}(S)=\underline{\underline{D}} \supseteq \Lambda(k)=\underline{\underline{k \cdot I}}$. Hence $\operatorname{dim}_{k}(D) \leq \operatorname{dim}_{k}(S)^{2}$.
- Assume $k=\bar{k}$ and D is a f.d. k-division algebra. Assume $k=k \cdot 1_{D}$ is a subfield of $Z(D)$. If $d \in D$, then $k[d]$ is an algebraic field extension of k. Hence $k \subseteq Z(D) \subseteq D \subseteq k$.

Schur's Lemma

Schur's Lm. If S is a simple \mathbb{A}-module, then $\operatorname{End}_{\mathbb{A}}(S)=\operatorname{Hom}_{\mathbb{A}}(S, S)=D$ is a division ring.

Refinements.

(1) if \mathbb{A} is a k-algebra, then D has a canonical k-algebra structure.
(2) if \mathbb{A} is a k-algebra and S is a f.d. over k, then D is f.d. over k.
(3) if \mathbb{A} is a k-algebra, S is a f.d. over k, and k is alg. closed, then $D=k$.

Proof:

- If $\varphi \in \operatorname{Hom}(S, S)$ is nonzero, then $\operatorname{ker}(\varphi)=\{0\}$ and $\operatorname{im}(\varphi)=S$, so φ is an isomorphism, so $\exists \varphi^{-1} \in \operatorname{Hom}(S, S)$. $(\operatorname{End}(S) \subseteq\{0\} \cup\{$ units $\}$.)
- If $\alpha \in k$, and $\ell_{\alpha}(v):=\alpha \cdot v$, then $\ell_{\alpha} \in Z(D)$. The map $\Lambda: k \rightarrow Z(D): \alpha \mapsto \ell_{\alpha}$ makes D a k-algebra.
- If $\operatorname{dim}_{k}(S)=n$, then $\operatorname{End}_{k}(S)=\underline{\underline{M_{n}(k)}} \supseteq \operatorname{End}_{\mathbb{A}}(S)=\underline{\underline{D}} \supseteq \Lambda(k)=\underline{\underline{k \cdot I}}$. Hence $\operatorname{dim}_{k}(D) \leq \operatorname{dim}_{k}(S)^{2}$.
- Assume $k=\bar{k}$ and D is a f.d. k-division algebra. Assume $k=k \cdot 1_{D}$ is a subfield of $Z(D)$. If $d \in D$, then $k[d]$ is an algebraic field extension of k. Hence $k \subseteq Z(D) \subseteq D \subseteq k$.

The endomorphism ring of a 1 -generated free module

The endomorphism ring of a 1-generated free module

Assume that $\mathbb{A}_{\mathbb{A}} \cong S_{1}^{n_{1}} \oplus \cdots \oplus S_{k}^{n_{k}}$.

The endomorphism ring of a 1-generated free module

Assume that ${ }_{\mathbb{A}} \mathbb{A} \cong S_{1}^{n_{1}} \oplus \cdots \oplus S_{k}^{n_{k}}$.
On the one hand,

The endomorphism ring of a 1-generated free module

Assume that $\mathbb{A}_{\mathbb{A}} \cong S_{1}^{n_{1}} \oplus \cdots \oplus S_{k}^{n_{k}}$.
On the one hand, $\operatorname{End}_{\mathbb{A}}(\mathbb{A} \mathbb{A})$ consists of the right multiplications $r_{a}: x \mapsto x \cdot a$.

The endomorphism ring of a 1-generated free module

Assume that ${ }_{\mathbb{A}} \mathbb{A} \cong S_{1}^{n_{1}} \oplus \cdots \oplus S_{k}^{n_{k}}$.
On the one hand, $\operatorname{End}_{\mathbb{A}}(\mathbb{A} \mathbb{A})$ consists of the right multiplications $r_{a}: x \mapsto x \cdot a$. Since $r_{a} \circ r_{b}=r_{b a}, \operatorname{End}_{\mathbb{A}}(\mathbb{A} \mathbb{A}) \cong \mathbb{A}^{\mathrm{op}}$.

The endomorphism ring of a 1-generated free module

Assume that $\mathbb{A}_{\mathbb{A}} \cong S_{1}^{n_{1}} \oplus \cdots \oplus S_{k}^{n_{k}}$.
On the one hand, $\operatorname{End}_{\mathbb{A}}(\mathbb{A} \mathbb{A})$ consists of the right multiplications $r_{a}: x \mapsto x \cdot a$. Since $r_{a} \circ r_{b}=r_{b a}, \operatorname{End}_{\mathbb{A}}(\mathbb{A} \mathbb{A}) \cong \mathbb{A}^{\mathrm{op}}$.

On the other hand,

The endomorphism ring of a 1-generated free module

Assume that ${ }_{\mathbb{A}} \mathbb{A} \cong S_{1}^{n_{1}} \oplus \cdots \oplus S_{k}^{n_{k}}$.
On the one hand, $\operatorname{End}_{\mathbb{A}}(\mathbb{A} \mathbb{A})$ consists of the right multiplications $r_{a}: x \mapsto x \cdot a$. Since $r_{a} \circ r_{b}=r_{b a}, \operatorname{End}_{\mathbb{A}}(\mathbb{A} \mathbb{A}) \cong \mathbb{A}^{\mathrm{op}}$.

On the other hand, the elements of $\operatorname{End}_{\mathbb{A}}\left(\begin{array}{c}n_{1}+\cdots+n_{k} \\ \oplus_{i=1} \\ S_{i}\end{array}\right)$ may be represented by matrices $\left[\operatorname{Hom}\left(S_{j}, S_{i}\right)\right]$.

The endomorphism ring of a 1-generated free module

Assume that ${ }_{\mathbb{A}} \mathbb{A} \cong S_{1}^{n_{1}} \oplus \cdots \oplus S_{k}^{n_{k}}$.
On the one hand, $\operatorname{End}_{\mathbb{A}}(\mathbb{A} \mathbb{A})$ consists of the right multiplications $r_{a}: x \mapsto x \cdot a$. Since $r_{a} \circ r_{b}=r_{b a}, \operatorname{End}_{\mathbb{A}}(\mathbb{A} \mathbb{A}) \cong \mathbb{A}^{\mathrm{op}}$.
On the other hand, the elements of $\operatorname{End}_{\mathbb{A}}\left(\begin{array}{c}n_{1}+\cdots+n_{k} \\ \oplus_{i=1}\end{array} S_{i}\right)$ may be represented by matrices $\left[\operatorname{Hom}\left(S_{j}, S_{i}\right)\right]$. Thus,

The endomorphism ring of a 1-generated free module

Assume that ${ }_{\mathbb{A}} \mathbb{A} \cong S_{1}^{n_{1}} \oplus \cdots \oplus S_{k}^{n_{k}}$.
On the one hand, $\operatorname{End}_{\mathbb{A}}(\mathbb{A} \mathbb{A})$ consists of the right multiplications $r_{a}: x \mapsto x \cdot a$. Since $r_{a} \circ r_{b}=r_{b a}, \operatorname{End}_{\mathbb{A}}(\mathbb{A} \mathbb{A}) \cong \mathbb{A}^{\mathrm{op}}$.
On the other hand, the elements of $\operatorname{End}_{\mathbb{A}}\left(\begin{array}{c}n_{1}+\cdots+n_{k} \\ \oplus_{i=1}\end{array} S_{i}\right)$ may be represented by matrices $\left[\operatorname{Hom}\left(S_{j}, S_{i}\right)\right]$. Thus,

$$
\mathbb{A}^{\mathrm{op}} \cong
$$

The endomorphism ring of a 1-generated free module

Assume that $\mathbb{A}_{\mathbb{A}} \cong S_{1}^{n_{1}} \oplus \cdots \oplus S_{k}^{n_{k}}$.
On the one hand, $\operatorname{End}_{\mathbb{A}}(\mathbb{A} \mathbb{A})$ consists of the right multiplications $r_{a}: x \mapsto x \cdot a$. Since $r_{a} \circ r_{b}=r_{b a}, \operatorname{End}_{\mathbb{A}}(\mathbb{A} \mathbb{A}) \cong \mathbb{A}^{\mathrm{op}}$.
On the other hand, the elements of $\operatorname{End}_{\mathbb{A}}\left(\begin{array}{c}n_{1}+\cdots+n_{k} \\ \oplus_{i=1} \\ S_{i}\end{array}\right)$ may be represented by matrices $\left[\operatorname{Hom}\left(S_{j}, S_{i}\right)\right]$. Thus,

$$
\mathbb{A}^{\mathrm{op}} \cong\left\{\left[\begin{array}{c|c|c|c}
M_{n_{1}}\left(D_{1}\right) & 0 & \cdots & 0 \\
\hline 0 & M_{n_{2}}\left(D_{2}\right) & & 0 \\
\hline \vdots & & \ddots & \vdots \\
\hline 0 & 0 \cdots & 0 & M_{n_{k}}\left(D_{k}\right)
\end{array}\right]\right\} \cong
$$

The endomorphism ring of a 1-generated free module

Assume that $\mathbb{A}_{\mathbb{A}} \cong S_{1}^{n_{1}} \oplus \cdots \oplus S_{k}^{n_{k}}$.
On the one hand, $\operatorname{End}_{\mathbb{A}}(\mathbb{A} \mathbb{A})$ consists of the right multiplications $r_{a}: x \mapsto x \cdot a$. Since $r_{a} \circ r_{b}=r_{b a}, \operatorname{End}_{\mathbb{A}}(\mathbb{A} \mathbb{A}) \cong \mathbb{A}^{\mathrm{op}}$.
On the other hand, the elements of $\operatorname{End}_{\mathbb{A}}\left(\begin{array}{c}n_{1}+\cdots+n_{k} \\ \oplus_{i=1} \\ S_{i}\end{array}\right)$ may be represented by matrices $\left[\operatorname{Hom}\left(S_{j}, S_{i}\right)\right]$. Thus,

$$
\mathbb{A}^{\mathrm{op}} \cong\left\{\left[\begin{array}{c|c|c|c}
M_{n_{1}}\left(D_{1}\right) & 0 & \cdots & 0 \\
\hline 0 & M_{n_{2}}\left(D_{2}\right) & & 0 \\
\hline \vdots & & \ddots & \vdots \\
\hline 0 & 0 \cdots & 0 & M_{n_{k}}\left(D_{k}\right)
\end{array}\right]\right\} \cong \prod_{j=1}^{k} M_{n_{j}}\left(D_{j}\right)
$$

The endomorphism ring of a 1-generated free module

Assume that $\mathbb{A}_{\mathbb{A}} \cong S_{1}^{n_{1}} \oplus \cdots \oplus S_{k}^{n_{k}}$.
On the one hand, $\operatorname{End}_{\mathbb{A}}(\mathbb{A} \mathbb{A})$ consists of the right multiplications $r_{a}: x \mapsto x \cdot a$. Since $r_{a} \circ r_{b}=r_{b a}, \operatorname{End}_{\mathbb{A}}\left(\mathbb{A}_{\mathbb{A}}\right) \cong \mathbb{A}^{\mathrm{op}}$.
On the other hand, the elements of $\operatorname{End}_{\mathbb{A}}\binom{{ }^{n_{1}+\cdots+n_{k}} \oplus_{i=1}}{S_{i}}$ may be represented by matrices $\left[\operatorname{Hom}\left(S_{j}, S_{i}\right)\right]$. Thus,

$$
\left.\mathbb{A}^{\mathrm{op}} \cong\left\{\begin{array}{c|c|c|c}
M_{n_{1}}\left(D_{1}\right) & 0 & \cdots & 0 \\
\hline 0 & M_{n_{2}}\left(D_{2}\right) & & 0 \\
\hline \vdots & & \ddots & \vdots \\
\hline 0 & 0 \cdots & 0 & M_{n_{k}}\left(D_{k}\right)
\end{array}\right]\right\} \cong \prod_{j=1}^{k} M_{n_{j}}\left(D_{j}\right) .
$$

Hence $\mathbb{A} \cong \prod_{j=1}^{k} M_{n_{j}}\left(D_{j}^{\mathrm{op}}\right)$.

The endomorphism ring of a 1-generated free module

Assume that $\mathbb{A}_{\mathbb{A}} \cong S_{1}^{n_{1}} \oplus \cdots \oplus S_{k}^{n_{k}}$.
On the one hand, $\operatorname{End}_{\mathbb{A}}(\mathbb{A} \mathbb{A})$ consists of the right multiplications $r_{a}: x \mapsto x \cdot a$. Since $r_{a} \circ r_{b}=r_{b a}, \operatorname{End}_{\mathbb{A}}\left(\mathbb{A}_{\mathbb{A}}\right) \cong \mathbb{A}^{\mathrm{op}}$.
On the other hand, the elements of $\operatorname{End}_{\mathbb{A}}\left({ }^{n_{1}+\cdots+n_{k}}{ }_{i=1} S_{i}\right)$ may be represented by matrices $\left[\operatorname{Hom}\left(S_{j}, S_{i}\right)\right]$. Thus,

$$
\left.\mathbb{A}^{\mathrm{op}} \cong\left\{\begin{array}{c|c|c|c}
M_{n_{1}}\left(D_{1}\right) & 0 & \cdots & 0 \\
\hline 0 & M_{n_{2}}\left(D_{2}\right) & & 0 \\
\hline \vdots & & \ddots & \vdots \\
\hline 0 & 0 \cdots & 0 & M_{n_{k}}\left(D_{k}\right)
\end{array}\right]\right\} \cong \prod_{j=1}^{k} M_{n_{j}}\left(D_{j}\right) .
$$

Hence $\mathbb{A} \cong \prod_{j=1}^{k} M_{n_{j}}\left(D_{j}^{\mathrm{op}}\right)$.
If G is finite, then $\mathbb{C}[G] \cong \prod_{j=1}^{k} M_{n_{j}}(\mathbb{C})$ where k is the number of isotypes of simple $\mathbb{C}[G]$-modules,

The endomorphism ring of a 1-generated free module

Assume that $\mathbb{A}_{\mathbb{A}} \cong S_{1}^{n_{1}} \oplus \cdots \oplus S_{k}^{n_{k}}$.
On the one hand, $\operatorname{End}_{\mathbb{A}}(\mathbb{A} \mathbb{A})$ consists of the right multiplications $r_{a}: x \mapsto x \cdot a$. Since $r_{a} \circ r_{b}=r_{b a}, \operatorname{End}_{\mathbb{A}}\left(\mathbb{A}_{\mathbb{A}}\right) \cong \mathbb{A}^{\mathrm{op}}$.
On the other hand, the elements of $\operatorname{End}_{\mathbb{A}}\left({ }^{n_{1}+\cdots+n_{k}}{ }_{i=1} S_{i}\right)$ may be represented by matrices $\left[\operatorname{Hom}\left(S_{j}, S_{i}\right)\right]$. Thus,

$$
\left.\mathbb{A}^{\mathrm{op}} \cong\left\{\begin{array}{c|c|c|c}
M_{n_{1}}\left(D_{1}\right) & 0 & \cdots & 0 \\
\hline 0 & M_{n_{2}}\left(D_{2}\right) & & 0 \\
\hline \vdots & & \ddots & \vdots \\
\hline 0 & 0 \cdots & 0 & M_{n_{k}}\left(D_{k}\right)
\end{array}\right]\right\} \cong \prod_{j=1}^{k} M_{n_{j}}\left(D_{j}\right) .
$$

Hence $\mathbb{A} \cong \prod_{j=1}^{k} M_{n_{j}}\left(D_{j}^{\mathrm{op}}\right)$.
If G is finite, then $\mathbb{C}[G] \cong \prod_{j=1}^{k} M_{n_{j}}(\mathbb{C})$ where k is the number of isotypes of simple $\mathbb{C}[G]$-modules, as n_{j} is the k-dimension of S_{j}.

Modules over $\prod_{j=1}^{k} M_{n_{j}}(\mathbb{C})$

Modules over $\prod_{j=1}^{k} M_{n_{j}}(\mathbb{C})$

- The k-space $S=k^{n}$ of column vectors of length n is a simple $M_{n}(k)$-module.

Modules over $\prod_{j=1}^{k} M_{n_{j}}(\mathbb{C})$

- The k-space $S=k^{n}$ of column vectors of length n is a simple $M_{n}(k)$-module.

Modules over $\prod_{j=1}^{k} M_{n_{j}}(\mathbb{C})$

- The k-space $S=k^{n}$ of column vectors of length n is a simple $M_{n}(k)$-module.
- $M_{3}(k)=\left\{\left[\begin{array}{ccc}* & 0 & 0 \\ * & 0 & 0 \\ * & 0 & 0\end{array}\right]+\left[\begin{array}{lll}0 & * & 0 \\ 0 & * & 0 \\ 0 & * & 0\end{array}\right]+\left[\begin{array}{ccc}0 & 0 & * \\ 0 & 0 & * \\ 0 & 0 & *\end{array}\right]\right\}$,

Modules over $\prod_{j=1}^{k} M_{n_{j}}(\mathbb{C})$

- The k-space $S=k^{n}$ of column vectors of length n is a simple $M_{n}(k)$-module.
- $M_{3}(k)=\left\{\left[\begin{array}{ccc}* & 0 & 0 \\ * & 0 & 0 \\ * & 0 & 0\end{array}\right]+\left[\begin{array}{lll}0 & * & 0 \\ 0 & * & 0 \\ 0 & * & 0\end{array}\right]+\left[\begin{array}{ccc}0 & 0 & * \\ 0 & 0 & * \\ 0 & 0 & *\end{array}\right]\right\}$,

Modules over $\prod_{j=1}^{k} M_{n_{j}}(\mathbb{C})$

- The k-space $S=k^{n}$ of column vectors of length n is a simple $M_{n}(k)$-module.
- $M_{3}(k)=\left\{\left[\begin{array}{ccc}* & 0 & 0 \\ * & 0 & 0 \\ * & 0 & 0\end{array}\right]+\left[\begin{array}{lll}0 & * & 0 \\ 0 & * & 0 \\ 0 & * & 0\end{array}\right]+\left[\begin{array}{lll}0 & 0 & * \\ 0 & 0 & * \\ 0 & 0 & *\end{array}\right]\right\}$, and more generally $M_{n}(k)$ is the direct sum of n left ideals, each isomorphic to k^{n}.

Modules over $\prod_{j=1}^{k} M_{n_{j}}(\mathbb{C})$

- The k-space $S=k^{n}$ of column vectors of length n is a simple $M_{n}(k)$-module.
- $M_{3}(k)=\left\{\left[\begin{array}{ccc}* & 0 & 0 \\ * & 0 & 0 \\ * & 0 & 0\end{array}\right]+\left[\begin{array}{lll}0 & * & 0 \\ 0 & * & 0 \\ 0 & * & 0\end{array}\right]+\left[\begin{array}{lll}0 & 0 & * \\ 0 & 0 & * \\ 0 & 0 & *\end{array}\right]\right\}$, and more generally $M_{n}(k)$ is the direct sum of n left ideals, each isomorphic to k^{n}.
- The category of $M_{n}(k)$-modules has a unique simple member $S=k^{n}$,

Modules over $\prod_{j=1}^{k} M_{n_{j}}(\mathbb{C})$

- The k-space $S=k^{n}$ of column vectors of length n is a simple $M_{n}(k)$-module.
- $M_{3}(k)=\left\{\left[\begin{array}{ccc}* & 0 & 0 \\ * & 0 & 0 \\ * & 0 & 0\end{array}\right]+\left[\begin{array}{lll}0 & * & 0 \\ 0 & * & 0 \\ 0 & * & 0\end{array}\right]+\left[\begin{array}{lll}0 & 0 & * \\ 0 & 0 & * \\ 0 & 0 & *\end{array}\right]\right\}$, and more generally $M_{n}(k)$ is the direct sum of n left ideals, each isomorphic to k^{n}.
- The category of $M_{n}(k)$-modules has a unique simple member $S=k^{n}$,

Modules over $\prod_{j=1}^{k} M_{n_{j}}(\mathbb{C})$

- The k-space $S=k^{n}$ of column vectors of length n is a simple $M_{n}(k)$-module.
- $M_{3}(k)=\left\{\left[\begin{array}{ccc}* & 0 & 0 \\ * & 0 & 0 \\ * & 0 & 0\end{array}\right]+\left[\begin{array}{lll}0 & * & 0 \\ 0 & * & 0 \\ 0 & * & 0\end{array}\right]+\left[\begin{array}{ccc}0 & 0 & * \\ 0 & 0 & * \\ 0 & 0 & *\end{array}\right]\right\}$, and more generally $M_{n}(k)$ is the direct sum of n left ideals, each isomorphic to k^{n}.
- The category of $M_{n}(k)$-modules has a unique simple member $S=k^{n}$, and every $M_{n}(k)$-module is isomorphic to $\oplus^{\kappa} S$ for uniquely determined κ.
- (Restriction of scalars)

Modules over $\prod_{j=1}^{k} M_{n_{j}}(\mathbb{C})$

- The k-space $S=k^{n}$ of column vectors of length n is a simple $M_{n}(k)$-module.
- $M_{3}(k)=\left\{\left[\begin{array}{ccc}* & 0 & 0 \\ * & 0 & 0 \\ * & 0 & 0\end{array}\right]+\left[\begin{array}{lll}0 & * & 0 \\ 0 & * & 0 \\ 0 & * & 0\end{array}\right]+\left[\begin{array}{ccc}0 & 0 & * \\ 0 & 0 & * \\ 0 & 0 & *\end{array}\right]\right\}$, and more generally $M_{n}(k)$ is the direct sum of n left ideals, each isomorphic to k^{n}.
- The category of $M_{n}(k)$-modules has a unique simple member $S=k^{n}$, and every $M_{n}(k)$-module is isomorphic to $\oplus^{\kappa} S$ for uniquely determined κ.
- (Restriction of scalars)

Modules over $\prod_{j=1}^{k} M_{n_{j}}(\mathbb{C})$

- The k-space $S=k^{n}$ of column vectors of length n is a simple $M_{n}(k)$-module.
- $M_{3}(k)=\left\{\left[\begin{array}{ccc}* & 0 & 0 \\ * & 0 & 0 \\ * & 0 & 0\end{array}\right]+\left[\begin{array}{ccc}0 & * & 0 \\ 0 & * & 0 \\ 0 & * & 0\end{array}\right]+\left[\begin{array}{ccc}0 & 0 & * \\ 0 & 0 & * \\ 0 & 0 & *\end{array}\right]\right\}$, and more generally $M_{n}(k)$ is the direct sum of n left ideals, each isomorphic to k^{n}.
- The category of $M_{n}(k)$-modules has a unique simple member $S=k^{n}$, and every $M_{n}(k)$-module is isomorphic to $\oplus^{\kappa} S$ for uniquely determined κ.
- (Restriction of scalars) If $\varphi: R \rightarrow T$ is an algebra/ring hom,

Modules over $\prod_{j=1}^{k} M_{n_{j}}(\mathbb{C})$

- The k-space $S=k^{n}$ of column vectors of length n is a simple $M_{n}(k)$-module.
- $M_{3}(k)=\left\{\left[\begin{array}{ccc}* & 0 & 0 \\ * & 0 & 0 \\ * & 0 & 0\end{array}\right]+\left[\begin{array}{lll}0 & * & 0 \\ 0 & * & 0 \\ 0 & * & 0\end{array}\right]+\left[\begin{array}{lll}0 & 0 & * \\ 0 & 0 & * \\ 0 & 0 & *\end{array}\right]\right\}$, and more generally $M_{n}(k)$ is the direct sum of n left ideals, each isomorphic to k^{n}.
- The category of $M_{n}(k)$-modules has a unique simple member $S=k^{n}$, and every $M_{n}(k)$-module is isomorphic to $\oplus^{\kappa} S$ for uniquely determined κ.
- (Restriction of scalars) If $\varphi: R \rightarrow T$ is an algebra/ring hom, then any T-module M may be viewed as an R-module:

Modules over $\prod_{j=1}^{k} M_{n_{j}}(\mathbb{C})$

- The k-space $S=k^{n}$ of column vectors of length n is a simple $M_{n}(k)$-module.
- $M_{3}(k)=\left\{\left[\begin{array}{ccc}* & 0 & 0 \\ * & 0 & 0 \\ * & 0 & 0\end{array}\right]+\left[\begin{array}{lll}0 & * & 0 \\ 0 & * & 0 \\ 0 & * & 0\end{array}\right]+\left[\begin{array}{ccc}0 & 0 & * \\ 0 & 0 & * \\ 0 & 0 & *\end{array}\right]\right\}$, and more generally $M_{n}(k)$ is the direct sum of n left ideals, each isomorphic to k^{n}.
- The category of $M_{n}(k)$-modules has a unique simple member $S=k^{n}$, and every $M_{n}(k)$-module is isomorphic to $\oplus^{\kappa} S$ for uniquely determined κ.
- (Restriction of scalars) If $\varphi: R \rightarrow T$ is an algebra/ring hom, then any T-module M may be viewed as an R-module: $r \in R$,

Modules over $\prod_{j=1}^{k} M_{n_{j}}(\mathbb{C})$

- The k-space $S=k^{n}$ of column vectors of length n is a simple $M_{n}(k)$-module.
- $M_{3}(k)=\left\{\left[\begin{array}{ccc}* & 0 & 0 \\ * & 0 & 0 \\ * & 0 & 0\end{array}\right]+\left[\begin{array}{lll}0 & * & 0 \\ 0 & * & 0 \\ 0 & * & 0\end{array}\right]+\left[\begin{array}{ccc}0 & 0 & * \\ 0 & 0 & * \\ 0 & 0 & *\end{array}\right]\right\}$, and more generally $M_{n}(k)$ is the direct sum of n left ideals, each isomorphic to k^{n}.
- The category of $M_{n}(k)$-modules has a unique simple member $S=k^{n}$, and every $M_{n}(k)$-module is isomorphic to $\oplus^{\kappa} S$ for uniquely determined κ.
- (Restriction of scalars) If $\varphi: R \rightarrow T$ is an algebra/ring hom, then any T-module M may be viewed as an R-module: $r \in R, m \in M$,

Modules over $\prod_{j=1}^{k} M_{n_{j}}(\mathbb{C})$

- The k-space $S=k^{n}$ of column vectors of length n is a simple $M_{n}(k)$-module.
- $M_{3}(k)=\left\{\left[\begin{array}{ccc}* & 0 & 0 \\ * & 0 & 0 \\ * & 0 & 0\end{array}\right]+\left[\begin{array}{lll}0 & * & 0 \\ 0 & * & 0 \\ 0 & * & 0\end{array}\right]+\left[\begin{array}{ccc}0 & 0 & * \\ 0 & 0 & * \\ 0 & 0 & *\end{array}\right]\right\}$, and more generally $M_{n}(k)$ is the direct sum of n left ideals, each isomorphic to k^{n}.
- The category of $M_{n}(k)$-modules has a unique simple member $S=k^{n}$, and every $M_{n}(k)$-module is isomorphic to $\oplus^{\kappa} S$ for uniquely determined κ.
- (Restriction of scalars) If $\varphi: R \rightarrow T$ is an algebra/ring hom, then any T-module M may be viewed as an R-module: $r \in R, m \in M, r \cdot m:=\varphi(r) \cdot m$.

Modules over $\prod_{j=1}^{k} M_{n_{j}}(\mathbb{C})$

- The k-space $S=k^{n}$ of column vectors of length n is a simple $M_{n}(k)$-module.
- $M_{3}(k)=\left\{\left[\begin{array}{ccc}* & 0 & 0 \\ * & 0 & 0 \\ * & 0 & 0\end{array}\right]+\left[\begin{array}{ccc}0 & * & 0 \\ 0 & * & 0 \\ 0 & * & 0\end{array}\right]+\left[\begin{array}{ccc}0 & 0 & * \\ 0 & 0 & * \\ 0 & 0 & *\end{array}\right]\right\}$, and more generally $M_{n}(k)$ is the direct sum of n left ideals, each isomorphic to k^{n}.
- The category of $M_{n}(k)$-modules has a unique simple member $S=k^{n}$, and every $M_{n}(k)$-module is isomorphic to $\oplus^{\kappa} S$ for uniquely determined κ.
- (Restriction of scalars) If $\varphi: R \rightarrow T$ is an algebra/ring hom, then any T-module M may be viewed as an R-module: $r \in R, m \in M, r \cdot m:=\varphi(r) \cdot m$.
- If M is an $R \times T$-module, then $M \cong P \oplus Q$ where P is an R-module and Q is a T-module.

Modules over $\prod_{j=1}^{k} M_{n_{j}}(\mathbb{C})$

- The k-space $S=k^{n}$ of column vectors of length n is a simple $M_{n}(k)$-module.
- $M_{3}(k)=\left\{\left[\begin{array}{ccc}* & 0 & 0 \\ * & 0 & 0 \\ * & 0 & 0\end{array}\right]+\left[\begin{array}{ccc}0 & * & 0 \\ 0 & * & 0 \\ 0 & * & 0\end{array}\right]+\left[\begin{array}{ccc}0 & 0 & * \\ 0 & 0 & * \\ 0 & 0 & *\end{array}\right]\right\}$, and more generally $M_{n}(k)$ is the direct sum of n left ideals, each isomorphic to k^{n}.
- The category of $M_{n}(k)$-modules has a unique simple member $S=k^{n}$, and every $M_{n}(k)$-module is isomorphic to $\oplus^{\kappa} S$ for uniquely determined κ.
- (Restriction of scalars) If $\varphi: R \rightarrow T$ is an algebra/ring hom, then any T-module M may be viewed as an R-module: $r \in R, m \in M, r \cdot m:=\varphi(r) \cdot m$.
- If M is an $R \times T$-module, then $M \cong P \oplus Q$ where P is an R-module and Q is a T-module.

Modules over $\prod_{j=1}^{k} M_{n_{j}}(\mathbb{C})$

- The k-space $S=k^{n}$ of column vectors of length n is a simple $M_{n}(k)$-module.
- $M_{3}(k)=\left\{\left[\begin{array}{ccc}* & 0 & 0 \\ * & 0 & 0 \\ * & 0 & 0\end{array}\right]+\left[\begin{array}{ccc}0 & * & 0 \\ 0 & * & 0 \\ 0 & * & 0\end{array}\right]+\left[\begin{array}{ccc}0 & 0 & * \\ 0 & 0 & * \\ 0 & 0 & *\end{array}\right]\right\}$, and more generally $M_{n}(k)$ is the direct sum of n left ideals, each isomorphic to k^{n}.
- The category of $M_{n}(k)$-modules has a unique simple member $S=k^{n}$, and every $M_{n}(k)$-module is isomorphic to $\oplus^{\kappa} S$ for uniquely determined κ.
- (Restriction of scalars) If $\varphi: R \rightarrow T$ is an algebra/ring hom, then any T-module M may be viewed as an R-module: $r \in R, m \in M, r \cdot m:=\varphi(r) \cdot m$.
- If M is an $R \times T$-module, then $M \cong P \oplus Q$ where P is an R-module and Q is a T-module. A hom $\varphi: M \rightarrow M^{\prime}$ corresponds to a product hom $\varphi_{R} \times \varphi_{T}$ where $\varphi_{R}: P \rightarrow P^{\prime}$ and $\varphi_{T}: Q \rightarrow Q^{\prime}$.

Modules over $\prod_{j=1}^{k} M_{n_{j}}(\mathbb{C})$

- The k-space $S=k^{n}$ of column vectors of length n is a simple $M_{n}(k)$-module.
- $M_{3}(k)=\left\{\left[\begin{array}{ccc}* & 0 & 0 \\ * & 0 & 0 \\ * & 0 & 0\end{array}\right]+\left[\begin{array}{ccc}0 & * & 0 \\ 0 & * & 0 \\ 0 & * & 0\end{array}\right]+\left[\begin{array}{ccc}0 & 0 & * \\ 0 & 0 & * \\ 0 & 0 & *\end{array}\right]\right\}$, and more generally $M_{n}(k)$ is the direct sum of n left ideals, each isomorphic to k^{n}.
- The category of $M_{n}(k)$-modules has a unique simple member $S=k^{n}$, and every $M_{n}(k)$-module is isomorphic to $\oplus^{\kappa} S$ for uniquely determined κ.
- (Restriction of scalars) If $\varphi: R \rightarrow T$ is an algebra/ring hom, then any T-module M may be viewed as an R-module: $r \in R, m \in M, r \cdot m:=\varphi(r) \cdot m$.
- If M is an $R \times T$-module, then $M \cong P \oplus Q$ where P is an R-module and Q is a T-module. A hom $\varphi: M \rightarrow M^{\prime}$ corresponds to a product hom $\varphi_{R} \times \varphi_{T}$ where $\varphi_{R}: P \rightarrow P^{\prime}$ and $\varphi_{T}: Q \rightarrow Q^{\prime}$.
- The category of $\prod_{j=1}^{k} M_{n_{j}}(\mathbb{C})$-modules has finitely many simple members,

Modules over $\prod_{j=1}^{k} M_{n_{j}}(\mathbb{C})$

- The k-space $S=k^{n}$ of column vectors of length n is a simple $M_{n}(k)$-module.
- $M_{3}(k)=\left\{\left[\begin{array}{ccc}* & 0 & 0 \\ * & 0 & 0 \\ * & 0 & 0\end{array}\right]+\left[\begin{array}{ccc}0 & * & 0 \\ 0 & * & 0 \\ 0 & * & 0\end{array}\right]+\left[\begin{array}{ccc}0 & 0 & * \\ 0 & 0 & * \\ 0 & 0 & *\end{array}\right]\right\}$, and more generally $M_{n}(k)$ is the direct sum of n left ideals, each isomorphic to k^{n}.
- The category of $M_{n}(k)$-modules has a unique simple member $S=k^{n}$, and every $M_{n}(k)$-module is isomorphic to $\oplus^{\kappa} S$ for uniquely determined κ.
- (Restriction of scalars) If $\varphi: R \rightarrow T$ is an algebra/ring hom, then any T-module M may be viewed as an R-module: $r \in R, m \in M, r \cdot m:=\varphi(r) \cdot m$.
- If M is an $R \times T$-module, then $M \cong P \oplus Q$ where P is an R-module and Q is a T-module. A hom $\varphi: M \rightarrow M^{\prime}$ corresponds to a product hom $\varphi_{R} \times \varphi_{T}$ where $\varphi_{R}: P \rightarrow P^{\prime}$ and $\varphi_{T}: Q \rightarrow Q^{\prime}$.
- The category of $\prod_{j=1}^{k} M_{n_{j}}(\mathbb{C})$-modules has finitely many simple members,

Modules over $\prod_{j=1}^{k} M_{n_{j}}(\mathbb{C})$

- The k-space $S=k^{n}$ of column vectors of length n is a simple $M_{n}(k)$-module.
- $M_{3}(k)=\left\{\left[\begin{array}{ccc}* & 0 & 0 \\ * & 0 & 0 \\ * & 0 & 0\end{array}\right]+\left[\begin{array}{ccc}0 & * & 0 \\ 0 & * & 0 \\ 0 & * & 0\end{array}\right]+\left[\begin{array}{ccc}0 & 0 & * \\ 0 & 0 & * \\ 0 & 0 & *\end{array}\right]\right\}$, and more generally $M_{n}(k)$ is the direct sum of n left ideals, each isomorphic to k^{n}.
- The category of $M_{n}(k)$-modules has a unique simple member $S=k^{n}$, and every $M_{n}(k)$-module is isomorphic to $\oplus^{\kappa} S$ for uniquely determined κ.
- (Restriction of scalars) If $\varphi: R \rightarrow T$ is an algebra/ring hom, then any T-module M may be viewed as an R-module: $r \in R, m \in M, r \cdot m:=\varphi(r) \cdot m$.
- If M is an $R \times T$-module, then $M \cong P \oplus Q$ where P is an R-module and Q is a T-module. A hom $\varphi: M \rightarrow M^{\prime}$ corresponds to a product hom $\varphi_{R} \times \varphi_{T}$ where $\varphi_{R}: P \rightarrow P^{\prime}$ and $\varphi_{T}: Q \rightarrow Q^{\prime}$.
- The category of $\prod_{j=1}^{k} M_{n_{j}}(\mathbb{C})$-modules has finitely many simple members, every module is a direct sum of simple modules,

Modules over $\prod_{j=1}^{k} M_{n_{j}}(\mathbb{C})$

- The k-space $S=k^{n}$ of column vectors of length n is a simple $M_{n}(k)$-module.
- $M_{3}(k)=\left\{\left[\begin{array}{ccc}* & 0 & 0 \\ * & 0 & 0 \\ * & 0 & 0\end{array}\right]+\left[\begin{array}{lll}0 & * & 0 \\ 0 & * & 0 \\ 0 & * & 0\end{array}\right]+\left[\begin{array}{ccc}0 & 0 & * \\ 0 & 0 & * \\ 0 & 0 & *\end{array}\right]\right\}$, and more generally $M_{n}(k)$ is the direct sum of n left ideals, each isomorphic to k^{n}.
- The category of $M_{n}(k)$-modules has a unique simple member $S=k^{n}$, and every $M_{n}(k)$-module is isomorphic to $\oplus^{\kappa} S$ for uniquely determined κ.
- (Restriction of scalars) If $\varphi: R \rightarrow T$ is an algebra/ring hom, then any T-module M may be viewed as an R-module: $r \in R, m \in M, r \cdot m:=\varphi(r) \cdot m$.
- If M is an $R \times T$-module, then $M \cong P \oplus Q$ where P is an R-module and Q is a T-module. A hom $\varphi: M \rightarrow M^{\prime}$ corresponds to a product hom $\varphi_{R} \times \varphi_{T}$ where $\varphi_{R}: P \rightarrow P^{\prime}$ and $\varphi_{T}: Q \rightarrow Q^{\prime}$.
- The category of $\prod_{j=1}^{k} M_{n_{j}}(\mathbb{C})$-modules has finitely many simple members, every module is a direct sum of simple modules, and the number of summands isomorphic to given simple module is uniquely determined.

Some terminology

Some terminology

- For modules/representations, "irreducible" means simple.

Some terminology

- For modules/representations, "irreducible" means simple.
- For modules/representations, "reducible" means not simple

Some terminology

- For modules/representations, "irreducible" means simple.
- For modules/representations, "reducible" means not simple

Some terminology

- For modules/representations, "irreducible" means simple.
- For modules/representations, "reducible" means not simple and not trivial (= not a singleton module).

Some terminology

- For modules/representations, "irreducible" means simple.
- For modules/representations, "reducible" means not simple and not trivial (= not a singleton module).
- The 0-dimensional representation is neither "reducible" nor "irreducible".

Some terminology

- For modules/representations, "irreducible" means simple.
- For modules/representations, "reducible" means not simple and not trivial (= not a singleton module).
- The 0-dimensional representation is neither "reducible" nor "irreducible".

Some terminology

- For modules/representations, "irreducible" means simple.
- For modules/representations, "reducible" means not simple and not trivial (= not a singleton module).
- The 0-dimensional representation is neither "reducible" nor "irreducible".
- A "trivial" representation of a group is a 1-dimensional and each group element acts like the identity element.

Some terminology

- For modules/representations, "irreducible" means simple.
- For modules/representations, "reducible" means not simple and not trivial (= not a singleton module).
- The 0-dimensional representation is neither "reducible" nor "irreducible".
- A "trivial" representation of a group is a 1-dimensional and each group element acts like the identity element.

Some terminology

- For modules/representations, "irreducible" means simple.
- For modules/representations, "reducible" means not simple and not trivial (= not a singleton module).
- The 0-dimensional representation is neither "reducible" nor "irreducible".
- A "trivial" representation of a group is a 1-dimensional and each group element acts like the identity element.
- For modules/representations, "completely reducible" or "semisimple" means a direct sum of simples.

Some terminology

- For modules/representations, "irreducible" means simple.
- For modules/representations, "reducible" means not simple and not trivial (= not a singleton module).
- The 0-dimensional representation is neither "reducible" nor "irreducible".
- A "trivial" representation of a group is a 1-dimensional and each group element acts like the identity element.
- For modules/representations, "completely reducible" or "semisimple" means a direct sum of simples.

Some terminology

- For modules/representations, "irreducible" means simple.
- For modules/representations, "reducible" means not simple and not trivial (= not a singleton module).
- The 0-dimensional representation is neither "reducible" nor "irreducible".
- A "trivial" representation of a group is a 1-dimensional and each group element acts like the identity element.
- For modules/representations, "completely reducible" or "semisimple" means a direct sum of simples.
- If $\rho: G \rightarrow \operatorname{Sym}(X)$ is a permutation representation of G on the set X, then there is a corresponding linear representation $\widehat{\rho}: G \rightarrow \operatorname{End}_{k}(V)$ for $V=\oplus_{x \in X} k x$ defined by $\widehat{\rho}(g)\left(\sum \alpha_{x} \cdot x\right)=\sum \alpha_{x} \rho(g)(x) . \widehat{\rho}$ is also called a "permutation representation".

