Representations and their characters

$$
\rho_{V_{i}}: G \rightarrow \mathrm{GL}\left(V_{i}\right)
$$

	1	k_{2}	\cdots	k_{r}
G	1	g_{2}	\cdots	g_{r}
χ_{1}	1	1	\cdots	1
χ_{2}	d_{2}	$\chi_{2}\left(g_{2}\right)$	\cdots	$\chi_{2}\left(g_{r}\right)$
\vdots	\vdots	\vdots	\ddots	\vdots
χ_{r}	d_{r}	$\chi_{r}\left(g_{2}\right)$	\cdots	$\chi_{r}\left(g_{r}\right)$

Permutation representations

Permutation representations

An action of group G on set X yields a representation $\rho: G \rightarrow \operatorname{Sym}(X)$ called a "permutation representation" of G.

Permutation representations

An action of group G on set X yields a representation $\rho: G \rightarrow \operatorname{Sym}(X)$ called a "permutation representation" of G.
This induces a group homomorphism $\widehat{\rho}: G \rightarrow \operatorname{GL}(V)$ where $V=\mathbb{C}[X]$ is the \mathbb{C}-space with basis X.

Permutation representations

An action of group G on set X yields a representation $\rho: G \rightarrow \operatorname{Sym}(X)$ called a "permutation representation" of G.
This induces a group homomorphism $\widehat{\rho}: G \rightarrow \mathrm{GL}(V)$ where $V=\mathbb{C}[X]$ is the \mathbb{C}-space with basis X. (Such $\widehat{\rho}$ is also called a "permutation representation" of G).

Permutation representations

An action of group G on set X yields a representation $\rho: G \rightarrow \operatorname{Sym}(X)$ called a "permutation representation" of G.
This induces a group homomorphism $\widehat{\rho}: G \rightarrow \operatorname{GL}(V)$ where $V=\mathbb{C}[X]$ is the \mathbb{C}-space with basis X. (Such $\widehat{\rho}$ is also called a "permutation representation" of G).
With respect to the basis X each $[\widehat{\rho}(g)]$ is a permutation matrix.

Permutation representations

An action of group G on set X yields a representation $\rho: G \rightarrow \operatorname{Sym}(X)$ called a "permutation representation" of G.
This induces a group homomorphism $\widehat{\rho}: G \rightarrow \operatorname{GL}(V)$ where $V=\mathbb{C}[X]$ is the \mathbb{C}-space with basis X. (Such $\widehat{\rho}$ is also called a "permutation representation" of G).
With respect to the basis X each $[\widehat{\rho}(g)]$ is a permutation matrix.
$\chi(g)=\operatorname{tr} \circ \widehat{\rho}(g)$

Permutation representations

An action of group G on set X yields a representation $\rho: G \rightarrow \operatorname{Sym}(X)$ called a "permutation representation" of G.
This induces a group homomorphism $\widehat{\rho}: G \rightarrow \operatorname{GL}(V)$ where $V=\mathbb{C}[X]$ is the \mathbb{C}-space with basis X. (Such $\widehat{\rho}$ is also called a "permutation representation" of $G)$.
With respect to the basis X each $[\widehat{\rho}(g)]$ is a permutation matrix.
$\chi(g)=\operatorname{tr} \circ \widehat{\rho}(g)=$ number of 1 's on the diagonal of $[\widehat{\rho}(g)]$

Permutation representations

An action of group G on set X yields a representation $\rho: G \rightarrow \operatorname{Sym}(X)$ called a "permutation representation" of G.
This induces a group homomorphism $\widehat{\rho}: G \rightarrow \operatorname{GL}(V)$ where $V=\mathbb{C}[X]$ is the \mathbb{C}-space with basis X. (Such $\widehat{\rho}$ is also called a "permutation representation" of $G)$.
With respect to the basis X each $[\widehat{\rho}(g)]$ is a permutation matrix.
$\chi(g)=\operatorname{tr} \circ \widehat{\rho}(g)=$ number of 1 's on the diagonal of $[\widehat{\rho}(g)]=$ number of fixed points of g on X.

Example

Example

$$
G=S_{3} .
$$

Example

$$
G=S_{3} . X=\{1,2,3\} .
$$

Example

$G=S_{3} . X=\{1,2,3\} . V=\mathbb{C}[X]$.

Example

$$
G=S_{3} \cdot X=\{1,2,3\} . V=\mathbb{C}[X] .
$$

$$
\rho(1)=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right],
$$

Example

$$
G=S_{3} \cdot X=\{1,2,3\} . V=\mathbb{C}[X] .
$$

$$
\rho(1)=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right], \rho\left(\left(\begin{array}{ll}
1 & 2))=\left[\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right],, \text {, }, \text {, }
\end{array}\right.\right.
$$

Example

$$
G=S_{3} \cdot X=\{1,2,3\} . V=\mathbb{C}[X] .
$$

$$
\rho(1)=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right], \rho\left(\left(\begin{array}{ll}
1 & 2))=\left[\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right], \rho\left(\left(\begin{array}{llll}
1 & 2 & 3
\end{array}\right)\right)=\left[\begin{array}{lll}
0 & 0 & 1 \\
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right], ~
\end{array}\right.\right.
$$

Example

$$
G=S_{3} \cdot X=\{1,2,3\} . V=\mathbb{C}[X] .
$$

$$
\rho(1)=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right], \rho\left(\left(\begin{array}{ll}
1 & 2))=\left[\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right], \rho\left(\left(\begin{array}{llll}
1 & 2 & 3))=\left[\begin{array}{lll}
0 & 0 & 1 \\
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right]
\end{array}\right] .0 \begin{array}{ll}
\end{array}\right]
\end{array}\right.\right.
$$

S_{3}	1	3	2
1	(12)	$\left(\begin{array}{l}1 \\ 1\end{array} 2\right)$	
χ	3	1	0

The regular representation

The regular representation

The (left) regular representation

$$
\rho: G \rightarrow \operatorname{Sym}(G): g \mapsto\left(\lambda_{g}: x \mapsto g x\right)
$$

is a permutation representation.

The regular representation

The (left) regular representation

$$
\rho: G \rightarrow \operatorname{Sym}(G): g \mapsto\left(\lambda_{g}: x \mapsto g x\right)
$$

is a permutation representation.
It yields the regular representation

$$
\widehat{\rho}=\rho_{\text {reg }}: G \rightarrow \mathrm{GL}(V), \quad V=\mathbb{C}[G]
$$

The regular representation

The (left) regular representation

$$
\rho: G \rightarrow \operatorname{Sym}(G): g \mapsto\left(\lambda_{g}: x \mapsto g x\right)
$$

is a permutation representation.
It yields the regular representation

$$
\widehat{\rho}=\rho_{\mathrm{reg}}: G \rightarrow \mathrm{GL}(V), \quad V=\mathbb{C}[G]
$$

	1	k_{2}	\cdots	k_{r}
G	1	g_{2}	\cdots	g_{r}
$\chi_{\text {reg }}$	$\|G\|$	0	\cdots	0

The regular representation

The regular representation

The group representation

$$
\widehat{\rho}=\rho_{\mathrm{reg}}: G \rightarrow \mathrm{GL}(V), \quad V=\mathbb{C}[G]
$$

The regular representation

The group representation

$$
\widehat{\rho}=\rho_{\mathrm{reg}}: G \rightarrow \mathrm{GL}(V), \quad V=\mathbb{C}[G]
$$

extends to an algebra representation

The regular representation

The group representation

$$
\widehat{\rho}=\rho_{\mathrm{reg}}: G \rightarrow \mathrm{GL}(V), \quad V=\mathbb{C}[G]
$$

extends to an algebra representation

$$
\rho_{\mathrm{reg}}: \mathbb{C}[G] \rightarrow \operatorname{End}_{\mathbb{C}}(\mathbb{C}[G])
$$

The regular representation

The group representation

$$
\widehat{\rho}=\rho_{\text {reg }}: G \rightarrow \mathrm{GL}(V), \quad V=\mathbb{C}[G]
$$

extends to an algebra representation

$$
\rho_{\mathrm{reg}}: \mathbb{C}[G] \rightarrow \operatorname{End}_{\mathbb{C}}(\mathbb{C}[G])
$$

Module-theoretically, this is the structure map for the free module $\mathbb{C}_{[G]} \mathbb{C}[G]$ on 1-generator

The regular representation

The group representation

$$
\widehat{\rho}=\rho_{\mathrm{reg}}: G \rightarrow \mathrm{GL}(V), \quad V=\mathbb{C}[G]
$$

extends to an algebra representation

$$
\rho_{\mathrm{reg}}: \mathbb{C}[G] \rightarrow \operatorname{End}_{\mathbb{C}}(\mathbb{C}[G])
$$

Module-theoretically, this is the structure map for the free module $\mathbb{C}_{[G]} \mathbb{C}[G]$ on 1-generator (the "regular $\mathbb{C}[G]$-module").

The regular representation

The group representation

$$
\widehat{\rho}=\rho_{\mathrm{reg}}: G \rightarrow \mathrm{GL}(V), \quad V=\mathbb{C}[G]
$$

extends to an algebra representation

$$
\rho_{\mathrm{reg}}: \mathbb{C}[G] \rightarrow \operatorname{End}_{\mathbb{C}}(\mathbb{C}[G])
$$

Module-theoretically, this is the structure map for the free module $\mathbb{C}_{[G]} \mathbb{C}[G]$ on 1-generator (the "regular $\mathbb{C}[G]$-module").

The isomorphism $\mathbb{C}[G] \cong M_{n_{1}}(\mathbb{C}) \times \cdots \times M_{n_{r}}(\mathbb{C})$ establishes that the regular module is a direct sum of simple summands: n_{i} isomorphic summands of dimension n_{i} for each $i=1, \ldots, r$.

Direct sums

Direct sums

Assume that U and V are G-modules.

Direct sums

Assume that U and V are G-modules. (Module structure afforded by $\rho_{U}: G \rightarrow \mathrm{GL}(U)$ and $\rho_{V}: G \rightarrow \mathrm{GL}(V)$ respectively.)

Direct sums

Assume that U and V are G-modules. (Module structure afforded by $\rho_{U}: G \rightarrow \mathrm{GL}(U)$ and $\rho_{V}: G \rightarrow \mathrm{GL}(V)$ respectively.)
$U \oplus V$ is a G-module under the action $g(u, v)=(g u, g v)$,

Direct sums

Assume that U and V are G-modules. (Module structure afforded by $\rho_{U}: G \rightarrow \mathrm{GL}(U)$ and $\rho_{V}: G \rightarrow \mathrm{GL}(V)$ respectively.)
$U \oplus V$ is a G-module under the action $g(u, v)=(g u, g v)$, $\left(\rho_{U \oplus V}(g)(u, v)=\left(\rho_{U}(g)(u), \rho_{V}(g)(v)\right)\right)$.

Direct sums

Assume that U and V are G-modules. (Module structure afforded by $\rho_{U}: G \rightarrow \mathrm{GL}(U)$ and $\rho_{V}: G \rightarrow \mathrm{GL}(V)$ respectively.)
$U \oplus V$ is a G-module under the action $g(u, v)=(g u, g v)$, $\left(\rho_{U \oplus V}(g)(u, v)=\left(\rho_{U}(g)(u), \rho_{V}(g)(v)\right)\right)$.
To calculate $\chi_{U \oplus V}$,

Direct sums

Assume that U and V are G-modules. (Module structure afforded by $\rho_{U}: G \rightarrow \mathrm{GL}(U)$ and $\rho_{V}: G \rightarrow \mathrm{GL}(V)$ respectively.)
$U \oplus V$ is a G-module under the action $g(u, v)=(g u, g v)$,
$\left(\rho_{U \oplus V}(g)(u, v)=\left(\rho_{U}(g)(u), \rho_{V}(g)(v)\right)\right)$.
To calculate $\chi_{U \oplus V}$, concatenate ordered bases $\left(u_{1}, \ldots, u_{m}\right)$ and $\left(v_{1}, \ldots, v_{n}\right)$ for U and V to obtain an ordered basis $\left(u_{1}, \ldots, u_{m}, v_{1}, \ldots, v_{n}\right)$ for $U \oplus V$

Direct sums

Assume that U and V are G-modules. (Module structure afforded by $\rho_{U}: G \rightarrow \mathrm{GL}(U)$ and $\rho_{V}: G \rightarrow \mathrm{GL}(V)$ respectively.)
$U \oplus V$ is a G-module under the action $g(u, v)=(g u, g v)$,
$\left(\rho_{U \oplus V}(g)(u, v)=\left(\rho_{U}(g)(u), \rho_{V}(g)(v)\right)\right)$.
To calculate $\chi_{U \oplus V}$, concatenate ordered bases $\left(u_{1}, \ldots, u_{m}\right)$ and $\left(v_{1}, \ldots, v_{n}\right)$ for U and V to obtain an ordered basis $\left(u_{1}, \ldots, u_{m}, v_{1}, \ldots, v_{n}\right)$ for $U \oplus V$ and compute

Direct sums

Assume that U and V are G-modules. (Module structure afforded by $\rho_{U}: G \rightarrow \mathrm{GL}(U)$ and $\rho_{V}: G \rightarrow \mathrm{GL}(V)$ respectively.)
$U \oplus V$ is a G-module under the action $g(u, v)=(g u, g v)$,
$\left(\rho_{U \oplus V}(g)(u, v)=\left(\rho_{U}(g)(u), \rho_{V}(g)(v)\right)\right)$.
To calculate $\chi_{U \oplus V}$, concatenate ordered bases $\left(u_{1}, \ldots, u_{m}\right)$ and $\left(v_{1}, \ldots, v_{n}\right)$ for U and V to obtain an ordered basis $\left(u_{1}, \ldots, u_{m}, v_{1}, \ldots, v_{n}\right)$ for $U \oplus V$ and compute

$$
\rho_{U \oplus V}(g)=\left[\begin{array}{c|c}
\rho_{U}(g) & 0 \\
\hline 0 & \rho_{V}(g)
\end{array}\right]
$$

Direct sums

Assume that U and V are G-modules. (Module structure afforded by $\rho_{U}: G \rightarrow \mathrm{GL}(U)$ and $\rho_{V}: G \rightarrow \mathrm{GL}(V)$ respectively.)
$U \oplus V$ is a G-module under the action $g(u, v)=(g u, g v)$,
$\left(\rho_{U \oplus V}(g)(u, v)=\left(\rho_{U}(g)(u), \rho_{V}(g)(v)\right)\right)$.
To calculate $\chi_{U \oplus V}$, concatenate ordered bases $\left(u_{1}, \ldots, u_{m}\right)$ and $\left(v_{1}, \ldots, v_{n}\right)$ for U and V to obtain an ordered basis $\left(u_{1}, \ldots, u_{m}, v_{1}, \ldots, v_{n}\right)$ for $U \oplus V$ and compute

$$
\rho_{U \oplus V}(g)=\left[\begin{array}{c|c}
\rho_{U}(g) & 0 \\
\hline 0 & \rho_{V}(g)
\end{array}\right]
$$

Hence $\chi_{U \oplus V}(g)=\chi_{U}(g)+\chi_{V}(g)$.

Direct sums

Assume that U and V are G-modules. (Module structure afforded by $\rho_{U}: G \rightarrow \mathrm{GL}(U)$ and $\rho_{V}: G \rightarrow \mathrm{GL}(V)$ respectively.)
$U \oplus V$ is a G-module under the action $g(u, v)=(g u, g v)$,
$\left(\rho_{U \oplus V}(g)(u, v)=\left(\rho_{U}(g)(u), \rho_{V}(g)(v)\right)\right)$.
To calculate $\chi_{U \oplus V}$, concatenate ordered bases $\left(u_{1}, \ldots, u_{m}\right)$ and $\left(v_{1}, \ldots, v_{n}\right)$ for U and V to obtain an ordered basis $\left(u_{1}, \ldots, u_{m}, v_{1}, \ldots, v_{n}\right)$ for $U \oplus V$ and compute

$$
\rho_{U \oplus V}(g)=\left[\begin{array}{c|c}
\rho_{U}(g) & 0 \\
\hline 0 & \rho_{V}(g)
\end{array}\right]
$$

Hence $\chi_{U \oplus V}(g)=\chi_{U}(g)+\chi_{V}(g)$.
(In particular, $\chi_{\mathrm{reg}}=\sum_{i=1}^{r} n_{i} \cdot \chi_{i}$.)

Permutation representations decompose as direct sums

Permutation representations decompose as direct sums

If G acts on X with orbit decomposition $X=Y_{1} \sqcup \cdots \sqcup Y_{k}$, then,

Permutation representations decompose as direct sums

If G acts on X with orbit decomposition $X=Y_{1} \sqcup \cdots \sqcup Y_{k}$, then, as G-modules,

Permutation representations decompose as direct sums

If G acts on X with orbit decomposition $X=Y_{1} \sqcup \cdots \sqcup Y_{k}$, then, as G-modules,

$$
\mathbb{C}[X] \cong \mathbb{C}\left[Y_{1}\right] \oplus \cdots \oplus \mathbb{C}\left[Y_{k}\right]
$$

Permutation representations decompose as direct sums

If G acts on X with orbit decomposition $X=Y_{1} \sqcup \cdots \sqcup Y_{k}$, then, as G-modules,

$$
\mathbb{C}[X] \cong \mathbb{C}\left[Y_{1}\right] \oplus \cdots \oplus \mathbb{C}\left[Y_{k}\right]
$$

Hence $\chi_{X}=\sum_{i=1}^{k} \chi_{Y_{i}}$.

Permutation representations decompose as direct sums

If G acts on X with orbit decomposition $X=Y_{1} \sqcup \cdots \sqcup Y_{k}$, then, as G-modules,

$$
\mathbb{C}[X] \cong \mathbb{C}\left[Y_{1}\right] \oplus \cdots \oplus \mathbb{C}\left[Y_{k}\right] .
$$

Hence $\chi_{X}=\sum_{i=1}^{k} \chi_{Y_{i}}$. This just says that the number of fixed points of g on X is the sum of the numbers of fixed points over all Y_{i}.

Permutation representations decompose as direct sums

If G acts on X with orbit decomposition $X=Y_{1} \sqcup \cdots \sqcup Y_{k}$, then, as G-modules,

$$
\mathbb{C}[X] \cong \mathbb{C}\left[Y_{1}\right] \oplus \cdots \oplus \mathbb{C}\left[Y_{k}\right] .
$$

Hence $\chi_{X}=\sum_{i=1}^{k} \chi_{Y_{i}}$. This just says that the number of fixed points of g on X is the sum of the numbers of fixed points over all Y_{i}.

The observation on this page reduces the problem of determining the characters of permutation representations to the subcase of transitive actions.

Tensor product over \mathbb{C}

Tensor product over \mathbb{C}

Assume that U and V are G-modules.

Tensor product over \mathbb{C}

Assume that U and V are G-modules. Let $\mathcal{B}=\left(u_{1}, \ldots, u_{r}\right)$ and $\mathcal{C}=\left(v_{1}, \ldots, v_{s}\right)$ be ordered bases for these spaces.

Tensor product over \mathbb{C}

Assume that U and V are G-modules. Let $\mathcal{B}=\left(u_{1}, \ldots, u_{r}\right)$ and $\mathcal{C}=\left(v_{1}, \ldots, v_{s}\right)$ be ordered bases for these spaces. $\mathcal{B} \times \mathcal{C}=\left(u_{1} \otimes v_{1}, u_{1} \otimes v_{2}, \ldots, u_{r} \otimes v_{s}\right)$ is an ordered basis for $U \otimes V$.

Tensor product over \mathbb{C}

Assume that U and V are G-modules. Let $\mathcal{B}=\left(u_{1}, \ldots, u_{r}\right)$ and $\mathcal{C}=\left(v_{1}, \ldots, v_{s}\right)$ be ordered bases for these spaces. $\mathcal{B} \times \mathcal{C}=\left(u_{1} \otimes v_{1}, u_{1} \otimes v_{2}, \ldots, u_{r} \otimes v_{s}\right)$ is an ordered basis for $U \otimes V$.

Make $U \otimes V$ a G-module by defining $g\left(u_{i} \otimes v_{j}\right)=g u_{i} \otimes g v_{j}$.

Tensor product over \mathbb{C}

Assume that U and V are G-modules. Let $\mathcal{B}=\left(u_{1}, \ldots, u_{r}\right)$ and $\mathcal{C}=\left(v_{1}, \ldots, v_{s}\right)$ be ordered bases for these spaces. $\mathcal{B} \times \mathcal{C}=\left(u_{1} \otimes v_{1}, u_{1} \otimes v_{2}, \ldots, u_{r} \otimes v_{s}\right)$ is an ordered basis for $U \otimes V$.

Make $U \otimes V$ a G-module by defining $g\left(u_{i} \otimes v_{j}\right)=g u_{i} \otimes g v_{j}$. (More precisely, $\left.\rho_{U \otimes V}(g)\left(u_{i} \otimes v_{j}\right)=\rho_{U}(g)\left(u_{i}\right) \otimes \rho_{V}(g)\left(v_{j}\right).\right)$

Tensor product over \mathbb{C}

Assume that U and V are G-modules. Let $\mathcal{B}=\left(u_{1}, \ldots, u_{r}\right)$ and $\mathcal{C}=\left(v_{1}, \ldots, v_{s}\right)$ be ordered bases for these spaces. $\mathcal{B} \times \mathcal{C}=\left(u_{1} \otimes v_{1}, u_{1} \otimes v_{2}, \ldots, u_{r} \otimes v_{s}\right)$ is an ordered basis for $U \otimes V$.

Make $U \otimes V$ a G-module by defining $g\left(u_{i} \otimes v_{j}\right)=g u_{i} \otimes g v_{j}$. (More precisely, $\left.\rho_{U \otimes V}(g)\left(u_{i} \otimes v_{j}\right)=\rho_{U}(g)\left(u_{i}\right) \otimes \rho_{V}(g)\left(v_{j}\right).\right)$

Suppose that $\left[\rho_{U}(g)\right]_{\mathcal{B}}=M,\left[\rho_{V}(g)\right]_{\mathcal{C}}=N$.

Tensor product over \mathbb{C}

Assume that U and V are G-modules. Let $\mathcal{B}=\left(u_{1}, \ldots, u_{r}\right)$ and $\mathcal{C}=\left(v_{1}, \ldots, v_{s}\right)$ be ordered bases for these spaces. $\mathcal{B} \times \mathcal{C}=\left(u_{1} \otimes v_{1}, u_{1} \otimes v_{2}, \ldots, u_{r} \otimes v_{s}\right)$ is an ordered basis for $U \otimes V$.

Make $U \otimes V$ a G-module by defining $g\left(u_{i} \otimes v_{j}\right)=g u_{i} \otimes g v_{j}$. (More precisely, $\left.\rho_{U \otimes V}(g)\left(u_{i} \otimes v_{j}\right)=\rho_{U}(g)\left(u_{i}\right) \otimes \rho_{V}(g)\left(v_{j}\right).\right)$

Suppose that $\left[\rho_{U}(g)\right]_{\mathcal{B}}=M,\left[\rho_{V}(g)\right]_{\mathcal{C}}=N$.
Claim.

Tensor product over \mathbb{C}

Assume that U and V are G-modules. Let $\mathcal{B}=\left(u_{1}, \ldots, u_{r}\right)$ and $\mathcal{C}=\left(v_{1}, \ldots, v_{s}\right)$ be ordered bases for these spaces. $\mathcal{B} \times \mathcal{C}=\left(u_{1} \otimes v_{1}, u_{1} \otimes v_{2}, \ldots, u_{r} \otimes v_{s}\right)$ is an ordered basis for $U \otimes V$.

Make $U \otimes V$ a G-module by defining $g\left(u_{i} \otimes v_{j}\right)=g u_{i} \otimes g v_{j}$. (More precisely, $\left.\rho_{U \otimes V}(g)\left(u_{i} \otimes v_{j}\right)=\rho_{U}(g)\left(u_{i}\right) \otimes \rho_{V}(g)\left(v_{j}\right).\right)$

Suppose that $\left[\rho_{U}(g)\right]_{\mathcal{B}}=M,\left[\rho_{V}(g)\right]_{\mathcal{C}}=N$.
Claim. $\left[\rho_{U \otimes V}(g)\right]_{\mathcal{B} \times \mathcal{C}}=M \otimes N$

Tensor product over \mathbb{C}

Assume that U and V are G-modules. Let $\mathcal{B}=\left(u_{1}, \ldots, u_{r}\right)$ and $\mathcal{C}=\left(v_{1}, \ldots, v_{s}\right)$ be ordered bases for these spaces. $\mathcal{B} \times \mathcal{C}=\left(u_{1} \otimes v_{1}, u_{1} \otimes v_{2}, \ldots, u_{r} \otimes v_{s}\right)$ is an ordered basis for $U \otimes V$.

Make $U \otimes V$ a G-module by defining $g\left(u_{i} \otimes v_{j}\right)=g u_{i} \otimes g v_{j}$. (More precisely, $\left.\rho_{U \otimes V}(g)\left(u_{i} \otimes v_{j}\right)=\rho_{U}(g)\left(u_{i}\right) \otimes \rho_{V}(g)\left(v_{j}\right).\right)$

Suppose that $\left[\rho_{U}(g)\right]_{\mathcal{B}}=M,\left[\rho_{V}(g)\right]_{\mathcal{C}}=N$.
Claim. $\left[\rho_{U \otimes V}(g)\right]_{\mathcal{B} \times \mathcal{C}}=M \otimes N$ (Kronecker product).

Tensor product over \mathbb{C}

Assume that U and V are G-modules. Let $\mathcal{B}=\left(u_{1}, \ldots, u_{r}\right)$ and $\mathcal{C}=\left(v_{1}, \ldots, v_{s}\right)$ be ordered bases for these spaces. $\mathcal{B} \times \mathcal{C}=\left(u_{1} \otimes v_{1}, u_{1} \otimes v_{2}, \ldots, u_{r} \otimes v_{s}\right)$ is an ordered basis for $U \otimes V$.

Make $U \otimes V$ a G-module by defining $g\left(u_{i} \otimes v_{j}\right)=g u_{i} \otimes g v_{j}$. (More precisely, $\left.\rho_{U \otimes V}(g)\left(u_{i} \otimes v_{j}\right)=\rho_{U}(g)\left(u_{i}\right) \otimes \rho_{V}(g)\left(v_{j}\right).\right)$

Suppose that $\left[\rho_{U}(g)\right]_{\mathcal{B}}=M,\left[\rho_{V}(g)\right]_{\mathcal{C}}=N$.
Claim. $\left[\rho_{U \otimes V}(g)\right]_{\mathcal{B} \times \mathcal{C}}=M \otimes N$ (Kronecker product). (Check!)

Tensor product over \mathbb{C}

Assume that U and V are G-modules. Let $\mathcal{B}=\left(u_{1}, \ldots, u_{r}\right)$ and $\mathcal{C}=\left(v_{1}, \ldots, v_{s}\right)$ be ordered bases for these spaces. $\mathcal{B} \times \mathcal{C}=\left(u_{1} \otimes v_{1}, u_{1} \otimes v_{2}, \ldots, u_{r} \otimes v_{s}\right)$ is an ordered basis for $U \otimes V$.

Make $U \otimes V$ a G-module by defining $g\left(u_{i} \otimes v_{j}\right)=g u_{i} \otimes g v_{j}$. (More precisely, $\left.\rho_{U \otimes V}(g)\left(u_{i} \otimes v_{j}\right)=\rho_{U}(g)\left(u_{i}\right) \otimes \rho_{V}(g)\left(v_{j}\right).\right)$

Suppose that $\left[\rho_{U}(g)\right]_{\mathcal{B}}=M,\left[\rho_{V}(g)\right]_{\mathcal{C}}=N$.
Claim. $\left[\rho_{U \otimes V}(g)\right]_{\mathcal{B} \times \mathcal{C}}=M \otimes N$ (Kronecker product). (Check!)

$$
M \otimes N=\left[\begin{array}{ccc}
m_{11} N & \cdots & m_{1 r} N \\
\vdots & \ddots & \vdots \\
m_{r 1} N & \cdots & m_{r r} N
\end{array}\right]
$$

Tensor product over \mathbb{C}

Assume that U and V are G-modules. Let $\mathcal{B}=\left(u_{1}, \ldots, u_{r}\right)$ and $\mathcal{C}=\left(v_{1}, \ldots, v_{s}\right)$ be ordered bases for these spaces. $\mathcal{B} \times \mathcal{C}=\left(u_{1} \otimes v_{1}, u_{1} \otimes v_{2}, \ldots, u_{r} \otimes v_{s}\right)$ is an ordered basis for $U \otimes V$.

Make $U \otimes V$ a G-module by defining $g\left(u_{i} \otimes v_{j}\right)=g u_{i} \otimes g v_{j}$. (More precisely, $\left.\rho_{U \otimes V}(g)\left(u_{i} \otimes v_{j}\right)=\rho_{U}(g)\left(u_{i}\right) \otimes \rho_{V}(g)\left(v_{j}\right).\right)$

Suppose that $\left[\rho_{U}(g)\right]_{\mathcal{B}}=M,\left[\rho_{V}(g)\right]_{\mathcal{C}}=N$.
Claim. $\left[\rho_{U \otimes V}(g)\right]_{\mathcal{B} \times \mathcal{C}}=M \otimes N$ (Kronecker product). (Check!)

$$
M \otimes N=\left[\begin{array}{ccc}
m_{11} N & \cdots & m_{1 r} N \\
\vdots & \ddots & \vdots \\
m_{r 1} N & \cdots & m_{r r} N
\end{array}\right]
$$

$\chi_{U \otimes V}(g)=\chi_{U}(g) \chi_{V}(g)$

Dual module

Dual module

If U is a G-module, then $U^{*}:=\operatorname{Hom}_{\mathcal{C}}(U, \mathbb{C})$ is a G-module under the action $g(f)=f \circ g^{-1}$.

Dual module

If U is a G-module, then $U^{*}:=\operatorname{Hom}_{\mathcal{C}}(U, \mathbb{C})$ is a G-module under the action $g(f)=f \circ g^{-1}$. If one fixes an ordered basis for U, then takes the dual basis for U^{*}, one obtains

Dual module

If U is a G-module, then $U^{*}:=\operatorname{Hom}_{\mathcal{C}}(U, \mathbb{C})$ is a G-module under the action $g(f)=f \circ g^{-1}$. If one fixes an ordered basis for U, then takes the dual basis for U^{*}, one obtains
$\left[\rho_{U^{*}}(g)\right]=\left(\left[\rho_{U}(g)\right]^{-1}\right)^{t}$.

Dual module

If U is a G-module, then $U^{*}:=\operatorname{Hom}_{\mathcal{C}}(U, \mathbb{C})$ is a G-module under the action $g(f)=f \circ g^{-1}$. If one fixes an ordered basis for U, then takes the dual basis for U^{*}, one obtains
$\left[\rho_{U^{*}}(g)\right]=\left(\left[\rho_{U}(g)\right]^{-1}\right)^{t}$.
Hence $\chi_{U^{*}}(g)=\overline{\chi_{U}(g)}$.

Hom

Hom

If U, V are G-modules, then $\operatorname{Hom}_{\mathbb{C}}(U, V)$ is a G-module under the action $g(f)=g \circ f \circ g^{-1}$.

Hom

If U, V are G-modules, then $\operatorname{Hom}_{\mathbb{C}}(U, V)$ is a G-module under the action $g(f)=g \circ f \circ g^{-1}$.

The vector space isomorphism $\operatorname{Hom}_{\mathbb{C}}(U, V) \cong V \otimes U^{*}$ is a G-module isomorphism.

Hom

If U, V are G-modules, then $\operatorname{Hom}_{\mathbb{C}}(U, V)$ is a G-module under the action $g(f)=g \circ f \circ g^{-1}$.

The vector space isomorphism $\operatorname{Hom}_{\mathbb{C}}(U, V) \cong V \otimes U^{*}$ is a G-module isomorphism.

Hence $\chi_{\operatorname{Hom}_{\mathbb{C}}(U, V)}=\chi_{V \otimes U^{*}}=\chi_{V} \chi_{U^{*}}=\overline{\chi_{U}} \chi_{V}$.

Fixed-point submodule

Fixed-point submodule

Let $e=\frac{1}{|G|} \sum_{g \in G} g \in \mathbb{C}[G]$ be the average of the group elements.

Fixed-point submodule

Let $e=\frac{1}{|G|} \sum_{g \in G} g \in \mathbb{C}[G]$ be the average of the group elements. This element is a central idempotent of $\mathbb{C}[G]$.

Fixed-point submodule

Let $e=\frac{1}{|G|} \sum_{g \in G} g \in \mathbb{C}[G]$ be the average of the group elements. This element is a central idempotent of $\mathbb{C}[G]$.

If V is a G-module, then scalar multiplication by $e, V \rightarrow V: v \mapsto e v$, is a module retraction.

Fixed-point submodule

Let $e=\frac{1}{|G|} \sum_{g \in G} g \in \mathbb{C}[G]$ be the average of the group elements. This element is a central idempotent of $\mathbb{C}[G]$.

If V is a G-module, then scalar multiplication by $e, V \rightarrow V: v \mapsto e v$, is a module retraction.

The image of this map is the submodule V^{G} of elements $v \in V$ fixed by every group element:

Fixed-point submodule

Let $e=\frac{1}{|G|} \sum_{g \in G} g \in \mathbb{C}[G]$ be the average of the group elements. This element is a central idempotent of $\mathbb{C}[G]$.

If V is a G-module, then scalar multiplication by $e, V \rightarrow V: v \mapsto e v$, is a module retraction.

The image of this map is the submodule V^{G} of elements $v \in V$ fixed by every group element: $v \in V^{G}$ means $g v=v$ for every $g \in G$.

Fixed-point submodule

Let $e=\frac{1}{|G|} \sum_{g \in G} g \in \mathbb{C}[G]$ be the average of the group elements. This element is a central idempotent of $\mathbb{C}[G]$.

If V is a G-module, then scalar multiplication by $e, V \rightarrow V: v \mapsto e v$, is a module retraction.

The image of this map is the submodule V^{G} of elements $v \in V$ fixed by every group element: $v \in V^{G}$ means $g v=v$ for every $g \in G$.

$$
\operatorname{dim}\left(V^{G}\right)
$$

Fixed-point submodule

Let $e=\frac{1}{|G|} \sum_{g \in G} g \in \mathbb{C}[G]$ be the average of the group elements. This element is a central idempotent of $\mathbb{C}[G]$.

If V is a G-module, then scalar multiplication by $e, V \rightarrow V: v \mapsto e v$, is a module retraction.

The image of this map is the submodule V^{G} of elements $v \in V$ fixed by every group element: $v \in V^{G}$ means $g v=v$ for every $g \in G$.

$$
\operatorname{dim}\left(V^{G}\right)=\operatorname{tr}([e])
$$

Fixed-point submodule

Let $e=\frac{1}{|G|} \sum_{g \in G} g \in \mathbb{C}[G]$ be the average of the group elements. This element is a central idempotent of $\mathbb{C}[G]$.

If V is a G-module, then scalar multiplication by $e, V \rightarrow V: v \mapsto e v$, is a module retraction.

The image of this map is the submodule V^{G} of elements $v \in V$ fixed by every group element: $v \in V^{G}$ means $g v=v$ for every $g \in G$.

$$
\begin{aligned}
\operatorname{dim}\left(V^{G}\right) & =\operatorname{tr}([e]) \\
& =\frac{1}{|G|} \sum_{G} \operatorname{tr}\left(\left[\rho_{V}(g)\right]\right)
\end{aligned}
$$

Fixed-point submodule

Let $e=\frac{1}{|G|} \sum_{g \in G} g \in \mathbb{C}[G]$ be the average of the group elements. This element is a central idempotent of $\mathbb{C}[G]$.

If V is a G-module, then scalar multiplication by $e, V \rightarrow V: v \mapsto e v$, is a module retraction.

The image of this map is the submodule V^{G} of elements $v \in V$ fixed by every group element: $v \in V^{G}$ means $g v=v$ for every $g \in G$.

$$
\begin{aligned}
\operatorname{dim}\left(V^{G}\right) & =\operatorname{tr}([e]) \\
& =\frac{1}{|G|} \sum_{G} \operatorname{tr}\left(\left[\rho_{V}(g)\right]\right) \\
& =\frac{1}{|G|} \sum_{G} \chi_{V}(g) \\
& =\int_{G} \chi_{V}(g) d g
\end{aligned}
$$

Fixed-point submodule

Let $e=\frac{1}{|G|} \sum_{g \in G} g \in \mathbb{C}[G]$ be the average of the group elements. This element is a central idempotent of $\mathbb{C}[G]$.

If V is a G-module, then scalar multiplication by $e, V \rightarrow V: v \mapsto e v$, is a module retraction.

The image of this map is the submodule V^{G} of elements $v \in V$ fixed by every group element: $v \in V^{G}$ means $g v=v$ for every $g \in G$.

$$
\begin{aligned}
\operatorname{dim}\left(V^{G}\right) & =\operatorname{tr}([e]) \\
& =\frac{1}{|G|} \sum_{G} \operatorname{tr}\left(\left[\rho_{V}(g)\right]\right) \\
& =\frac{1}{|G|} \sum_{G} \chi_{V}(g) \\
& =\int_{G} \chi_{V}(g) d g
\end{aligned}
$$

In particular, this shows that, for a given character, the average of its values over G is an integer.

