Representations and their characters

$$\rho_{V_i} \colon G \to \mathrm{GL}(V_i)$$

	1	k_2		k _r
G	1	<i>g</i> ₂	• • • •	<i>g</i> _r
χ_1	1	1	• • •	1
<i>χ</i> 2	d_2	$\chi_2(g_2)$	• • •	$\chi_2(g_r)$
÷	÷	:	·	:
χ_r	d_r	$\chi_r(g_2)$	• • •	$\chi_r(g_r)$

An action of group *G* on set *X* yields a representation $\rho: G \to \text{Sym}(X)$ called a "permutation representation" of *G*.

An action of group G on set X yields a representation $\rho: G \to \text{Sym}(X)$ called a "permutation representation" of G.

This induces a group homomorphism $\hat{\rho} \colon G \to GL(V)$ where $V = \mathbb{C}[X]$ is the \mathbb{C} -space with basis *X*.

An action of group *G* on set *X* yields a representation $\rho: G \to \text{Sym}(X)$ called a "permutation representation" of *G*.

This induces a group homomorphism $\hat{\rho} \colon G \to \operatorname{GL}(V)$ where $V = \mathbb{C}[X]$ is the \mathbb{C} -space with basis *X*. (Such $\hat{\rho}$ is also called a "permutation representation" of *G*).

An action of group *G* on set *X* yields a representation $\rho: G \to \text{Sym}(X)$ called a "permutation representation" of *G*.

This induces a group homomorphism $\hat{\rho} \colon G \to \operatorname{GL}(V)$ where $V = \mathbb{C}[X]$ is the \mathbb{C} -space with basis *X*. (Such $\hat{\rho}$ is also called a "permutation representation" of *G*).

With respect to the basis *X* each $[\hat{\rho}(g)]$ is a permutation matrix.

An action of group *G* on set *X* yields a representation $\rho: G \to \text{Sym}(X)$ called a "permutation representation" of *G*.

This induces a group homomorphism $\hat{\rho} \colon G \to \operatorname{GL}(V)$ where $V = \mathbb{C}[X]$ is the \mathbb{C} -space with basis *X*. (Such $\hat{\rho}$ is also called a "permutation representation" of *G*).

With respect to the basis *X* each $[\hat{\rho}(g)]$ is a permutation matrix.

 $\chi(g) = \operatorname{tr} \circ \widehat{\rho}(g)$

An action of group *G* on set *X* yields a representation $\rho: G \to \text{Sym}(X)$ called a "permutation representation" of *G*.

This induces a group homomorphism $\hat{\rho} \colon G \to \operatorname{GL}(V)$ where $V = \mathbb{C}[X]$ is the \mathbb{C} -space with basis *X*. (Such $\hat{\rho}$ is also called a "permutation representation" of *G*).

With respect to the basis *X* each $[\hat{\rho}(g)]$ is a permutation matrix.

 $\chi(g) = \operatorname{tr} \circ \widehat{\rho}(g)$ = number of 1's on the diagonal of $[\widehat{\rho}(g)]$

An action of group *G* on set *X* yields a representation $\rho: G \to \text{Sym}(X)$ called a "permutation representation" of *G*.

This induces a group homomorphism $\hat{\rho} \colon G \to \operatorname{GL}(V)$ where $V = \mathbb{C}[X]$ is the \mathbb{C} -space with basis *X*. (Such $\hat{\rho}$ is also called a "permutation representation" of *G*).

With respect to the basis *X* each $[\hat{\rho}(g)]$ is a permutation matrix.

 $\chi(g) = \operatorname{tr} \circ \widehat{\rho}(g)$ = number of 1's on the diagonal of $[\widehat{\rho}(g)]$ = number of fixed points of g on X.

 $G = S_3$.

$$G = S_3$$
. $X = \{1, 2, 3\}$.

$$\rho(1) = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix},$$

$$\rho(1) = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}, \rho((1\ 2)) = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix},$$

$$\rho(1) = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}, \rho((1\ 2)) = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}, \rho((1\ 2\ 3)) = \begin{bmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}$$

$$\rho(1) = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}, \rho((1\ 2)) = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}, \rho((1\ 2\ 3)) = \begin{bmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}$$

The (left) regular representation

$$\rho \colon G \to \operatorname{Sym}(G) \colon g \mapsto (\lambda_g \colon x \mapsto gx)$$

is a permutation representation.

The (left) regular representation

$$\rho \colon G \to \operatorname{Sym}(G) \colon g \mapsto (\lambda_g \colon x \mapsto gx)$$

is a permutation representation. It yields the regular representation

$$\widehat{\rho} = \rho_{\mathrm{reg}} \colon G \to \mathrm{GL}(V), \ \ V = \mathbb{C}[G]$$

The (left) regular representation

$$\rho \colon G \to \operatorname{Sym}(G) \colon g \mapsto (\lambda_g \colon x \mapsto gx)$$

is a permutation representation. It yields the regular representation

$$\widehat{\rho} = \rho_{\mathrm{reg}} \colon G \to \mathrm{GL}(V), \ \ V = \mathbb{C}[G]$$

The group representation

$$\widehat{\rho} = \rho_{\text{reg}} \colon G \to \operatorname{GL}(V), \ V = \mathbb{C}[G]$$

The group representation

$$\widehat{\rho} = \rho_{\text{reg}} \colon G \to \operatorname{GL}(V), \ V = \mathbb{C}[G]$$

extends to an algebra representation

The group representation

$$\widehat{\rho} = \rho_{\text{reg}} \colon G \to \operatorname{GL}(V), \ V = \mathbb{C}[G]$$

extends to an algebra representation

$$\rho_{\operatorname{reg}} \colon \mathbb{C}[G] \to \operatorname{End}_{\mathbb{C}}(\mathbb{C}[G]).$$

The group representation

$$\widehat{\rho} = \rho_{\mathrm{reg}} \colon G \to \mathrm{GL}(V), \ \ V = \mathbb{C}[G]$$

extends to an algebra representation

$$\rho_{\operatorname{reg}} \colon \mathbb{C}[G] \to \operatorname{End}_{\mathbb{C}}(\mathbb{C}[G]).$$

Module-theoretically, this is the structure map for the free module $_{\mathbb{C}[G]}\mathbb{C}[G]$ on 1-generator

The group representation

$$\widehat{\rho} = \rho_{\mathrm{reg}} \colon G \to \mathrm{GL}(V), \ \ V = \mathbb{C}[G]$$

extends to an algebra representation

$$\rho_{\operatorname{reg}} \colon \mathbb{C}[G] \to \operatorname{End}_{\mathbb{C}}(\mathbb{C}[G]).$$

Module-theoretically, this is the structure map for the free module $_{\mathbb{C}[G]}\mathbb{C}[G]$ on 1-generator (the "regular $\mathbb{C}[G]$ -module").

The group representation

$$\widehat{\rho} = \rho_{\mathrm{reg}} \colon G \to \mathrm{GL}(V), \ \ V = \mathbb{C}[G]$$

extends to an algebra representation

$$\rho_{\operatorname{reg}} \colon \mathbb{C}[G] \to \operatorname{End}_{\mathbb{C}}(\mathbb{C}[G]).$$

Module-theoretically, this is the structure map for the free module $_{\mathbb{C}[G]}\mathbb{C}[G]$ on 1-generator (the "regular $\mathbb{C}[G]$ -module").

The isomorphism $\mathbb{C}[G] \cong M_{n_1}(\mathbb{C}) \times \cdots \times M_{n_r}(\mathbb{C})$ establishes that the regular module is a direct sum of simple summands: n_i isomorphic summands of dimension n_i for each $i = 1, \ldots, r$.

Assume that U and V are G-modules.

Assume that U and V are G-modules. (Module structure afforded by $\rho_U \colon G \to \operatorname{GL}(U)$ and $\rho_V \colon G \to \operatorname{GL}(V)$ respectively.)

Assume that *U* and *V* are *G*-modules. (Module structure afforded by $\rho_U : G \to GL(U)$ and $\rho_V : G \to GL(V)$ respectively.) $U \oplus V$ is a *G*-module under the action g(u, v) = (gu, gv),

Assume that *U* and *V* are *G*-modules. (Module structure afforded by $\rho_U \colon G \to \operatorname{GL}(U)$ and $\rho_V \colon G \to \operatorname{GL}(V)$ respectively.) $U \oplus V$ is a *G*-module under the action g(u, v) = (gu, gv), $(\rho_{U \oplus V}(g)(u, v) = (\rho_U(g)(u), \rho_V(g)(v)))$.

Assume that *U* and *V* are *G*-modules. (Module structure afforded by $\rho_U: G \to \operatorname{GL}(U)$ and $\rho_V: G \to \operatorname{GL}(V)$ respectively.) $U \oplus V$ is a *G*-module under the action g(u, v) = (gu, gv), $(\rho_{U \oplus V}(g)(u, v) = (\rho_U(g)(u), \rho_V(g)(v)))$. To calculate $\chi_{U \oplus V}$,

Assume that *U* and *V* are *G*-modules. (Module structure afforded by $\rho_U: G \to \operatorname{GL}(U)$ and $\rho_V: G \to \operatorname{GL}(V)$ respectively.) $U \oplus V$ is a *G*-module under the action g(u, v) = (gu, gv), $(\rho_{U \oplus V}(g)(u, v) = (\rho_U(g)(u), \rho_V(g)(v)))$. To calculate $\chi_{U \oplus V}$, concatenate ordered bases (u_1, \ldots, u_m) and (v_1, \ldots, v_n) for *U* and *V* to obtain an ordered basis $(u_1, \ldots, u_m, v_1, \ldots, v_n)$ for $U \oplus V$

Assume that *U* and *V* are *G*-modules. (Module structure afforded by $\rho_U: G \to \operatorname{GL}(U)$ and $\rho_V: G \to \operatorname{GL}(V)$ respectively.) $U \oplus V$ is a *G*-module under the action g(u, v) = (gu, gv), $(\rho_{U \oplus V}(g)(u, v) = (\rho_U(g)(u), \rho_V(g)(v)))$. To calculate $\chi_{U \oplus V}$, concatenate ordered bases (u_1, \ldots, u_m) and (v_1, \ldots, v_n) for *U* and *V* to obtain an ordered basis $(u_1, \ldots, u_m, v_1, \ldots, v_n)$ for $U \oplus V$ and compute
Direct sums

Assume that *U* and *V* are *G*-modules. (Module structure afforded by $\rho_U: G \to \operatorname{GL}(U)$ and $\rho_V: G \to \operatorname{GL}(V)$ respectively.) $U \oplus V$ is a *G*-module under the action g(u, v) = (gu, gv), $(\rho_{U \oplus V}(g)(u, v) = (\rho_U(g)(u), \rho_V(g)(v)))$. To calculate $\chi_{U \oplus V}$, concatenate ordered bases (u_1, \ldots, u_m) and (v_1, \ldots, v_n) for *U* and *V* to obtain an ordered basis $(u_1, \ldots, u_m, v_1, \ldots, v_n)$ for $U \oplus V$ and compute

$$\rho_{U\oplus V}(g) = \frac{\left[\rho_U(g) \mid 0\right]}{\left[0 \mid \rho_V(g)\right]}$$

Direct sums

Assume that *U* and *V* are *G*-modules. (Module structure afforded by $\rho_U: G \to \operatorname{GL}(U)$ and $\rho_V: G \to \operatorname{GL}(V)$ respectively.) $U \oplus V$ is a *G*-module under the action g(u, v) = (gu, gv), $(\rho_{U \oplus V}(g)(u, v) = (\rho_U(g)(u), \rho_V(g)(v)))$. To calculate $\chi_{U \oplus V}$, concatenate ordered bases (u_1, \ldots, u_m) and (v_1, \ldots, v_n) for *U* and *V* to obtain an ordered basis $(u_1, \ldots, u_m, v_1, \ldots, v_n)$ for $U \oplus V$ and compute

$$\rho_{U\oplus V}(g) = egin{bmatrix}
ho_U(g) & \mid & 0 \ \hline 0 & \mid &
ho_V(g) \end{bmatrix}$$

Hence $\chi_{U\oplus V}(g) = \chi_U(g) + \chi_V(g)$.

Direct sums

Assume that *U* and *V* are *G*-modules. (Module structure afforded by $\rho_U: G \to \operatorname{GL}(U)$ and $\rho_V: G \to \operatorname{GL}(V)$ respectively.) $U \oplus V$ is a *G*-module under the action g(u, v) = (gu, gv), $(\rho_{U \oplus V}(g)(u, v) = (\rho_U(g)(u), \rho_V(g)(v)))$. To calculate $\chi_{U \oplus V}$, concatenate ordered bases (u_1, \ldots, u_m) and (v_1, \ldots, v_n) for *U* and *V* to obtain an ordered basis $(u_1, \ldots, u_m, v_1, \ldots, v_n)$ for $U \oplus V$ and compute

$$\rho_{U\oplus V}(g) = rac{\left[
ho_U(g) \mid 0
ight]}{\left[0 \mid
ho_V(g)
ight]}$$

Hence $\chi_{U\oplus V}(g) = \chi_U(g) + \chi_V(g)$.

(In particular, $\chi_{\text{reg}} = \sum_{i=1}^{r} n_i \cdot \chi_i$.)

If *G* acts on *X* with orbit decomposition $X = Y_1 \sqcup \cdots \sqcup Y_k$, then,

If *G* acts on *X* with orbit decomposition $X = Y_1 \sqcup \cdots \sqcup Y_k$, then, as *G*-modules,

If *G* acts on *X* with orbit decomposition $X = Y_1 \sqcup \cdots \sqcup Y_k$, then, as *G*-modules,

 $\mathbb{C}[X] \cong \mathbb{C}[Y_1] \oplus \cdots \oplus \mathbb{C}[Y_k].$

If *G* acts on *X* with orbit decomposition $X = Y_1 \sqcup \cdots \sqcup Y_k$, then, as *G*-modules,

 $\mathbb{C}[X] \cong \mathbb{C}[Y_1] \oplus \cdots \oplus \mathbb{C}[Y_k].$

Hence $\chi_X = \sum_{i=1}^k \chi_{Y_i}$.

If *G* acts on *X* with orbit decomposition $X = Y_1 \sqcup \cdots \sqcup Y_k$, then, as *G*-modules,

$$\mathbb{C}[X] \cong \mathbb{C}[Y_1] \oplus \cdots \oplus \mathbb{C}[Y_k].$$

Hence $\chi_X = \sum_{i=1}^k \chi_{Y_i}$. This just says that the number of fixed points of g on X is the sum of the numbers of fixed points over all Y_i .

If *G* acts on *X* with orbit decomposition $X = Y_1 \sqcup \cdots \sqcup Y_k$, then, as *G*-modules,

$$\mathbb{C}[X] \cong \mathbb{C}[Y_1] \oplus \cdots \oplus \mathbb{C}[Y_k].$$

Hence $\chi_X = \sum_{i=1}^k \chi_{Y_i}$. This just says that the number of fixed points of g on X is the sum of the numbers of fixed points over all Y_i .

The observation on this page reduces the problem of determining the characters of permutation representations to the subcase of transitive actions.

Assume that U and V are G-modules.

Assume that *U* and *V* are *G*-modules. Let $\mathcal{B} = (u_1, \ldots, u_r)$ and $\mathcal{C} = (v_1, \ldots, v_s)$ be ordered bases for these spaces.

Assume that *U* and *V* are *G*-modules. Let $\mathcal{B} = (u_1, \ldots, u_r)$ and $\mathcal{C} = (v_1, \ldots, v_s)$ be ordered bases for these spaces. $\mathcal{B} \times \mathcal{C} = (u_1 \otimes v_1, u_1 \otimes v_2, \ldots, u_r \otimes v_s)$ is an ordered basis for $U \otimes V$.

Assume that *U* and *V* are *G*-modules. Let $\mathcal{B} = (u_1, \ldots, u_r)$ and $\mathcal{C} = (v_1, \ldots, v_s)$ be ordered bases for these spaces. $\mathcal{B} \times \mathcal{C} = (u_1 \otimes v_1, u_1 \otimes v_2, \ldots, u_r \otimes v_s)$ is an ordered basis for $U \otimes V$.

Make $U \otimes V$ a *G*-module by defining $g(u_i \otimes v_j) = gu_i \otimes gv_j$.

Assume that *U* and *V* are *G*-modules. Let $\mathcal{B} = (u_1, \ldots, u_r)$ and $\mathcal{C} = (v_1, \ldots, v_s)$ be ordered bases for these spaces. $\mathcal{B} \times \mathcal{C} = (u_1 \otimes v_1, u_1 \otimes v_2, \ldots, u_r \otimes v_s)$ is an ordered basis for $U \otimes V$.

Make $U \otimes V$ a *G*-module by defining $g(u_i \otimes v_j) = gu_i \otimes gv_j$. (More precisely, $\rho_{U \otimes V}(g)(u_i \otimes v_j) = \rho_U(g)(u_i) \otimes \rho_V(g)(v_j)$.)

Assume that *U* and *V* are *G*-modules. Let $\mathcal{B} = (u_1, \ldots, u_r)$ and $\mathcal{C} = (v_1, \ldots, v_s)$ be ordered bases for these spaces. $\mathcal{B} \times \mathcal{C} = (u_1 \otimes v_1, u_1 \otimes v_2, \ldots, u_r \otimes v_s)$ is an ordered basis for $U \otimes V$.

Make $U \otimes V$ a *G*-module by defining $g(u_i \otimes v_j) = gu_i \otimes gv_j$. (More precisely, $\rho_{U \otimes V}(g)(u_i \otimes v_j) = \rho_U(g)(u_i) \otimes \rho_V(g)(v_j)$.)

Suppose that $[\rho_U(g)]_{\mathcal{B}} = M, [\rho_V(g)]_{\mathcal{C}} = N.$

Assume that *U* and *V* are *G*-modules. Let $\mathcal{B} = (u_1, \ldots, u_r)$ and $\mathcal{C} = (v_1, \ldots, v_s)$ be ordered bases for these spaces. $\mathcal{B} \times \mathcal{C} = (u_1 \otimes v_1, u_1 \otimes v_2, \ldots, u_r \otimes v_s)$ is an ordered basis for $U \otimes V$.

Make $U \otimes V$ a *G*-module by defining $g(u_i \otimes v_j) = gu_i \otimes gv_j$. (More precisely, $\rho_{U \otimes V}(g)(u_i \otimes v_j) = \rho_U(g)(u_i) \otimes \rho_V(g)(v_j)$.)

Suppose that $[\rho_U(g)]_{\mathcal{B}} = M, [\rho_V(g)]_{\mathcal{C}} = N.$

Claim.

Assume that *U* and *V* are *G*-modules. Let $\mathcal{B} = (u_1, \ldots, u_r)$ and $\mathcal{C} = (v_1, \ldots, v_s)$ be ordered bases for these spaces. $\mathcal{B} \times \mathcal{C} = (u_1 \otimes v_1, u_1 \otimes v_2, \ldots, u_r \otimes v_s)$ is an ordered basis for $U \otimes V$.

Make $U \otimes V$ a *G*-module by defining $g(u_i \otimes v_j) = gu_i \otimes gv_j$. (More precisely, $\rho_{U \otimes V}(g)(u_i \otimes v_j) = \rho_U(g)(u_i) \otimes \rho_V(g)(v_j)$.)

Suppose that $[\rho_U(g)]_{\mathcal{B}} = M, [\rho_V(g)]_{\mathcal{C}} = N.$

Claim. $[\rho_{U\otimes V}(g)]_{\mathcal{B}\times \mathcal{C}} = M \otimes N$

Assume that *U* and *V* are *G*-modules. Let $\mathcal{B} = (u_1, \ldots, u_r)$ and $\mathcal{C} = (v_1, \ldots, v_s)$ be ordered bases for these spaces. $\mathcal{B} \times \mathcal{C} = (u_1 \otimes v_1, u_1 \otimes v_2, \ldots, u_r \otimes v_s)$ is an ordered basis for $U \otimes V$.

Make $U \otimes V$ a *G*-module by defining $g(u_i \otimes v_j) = gu_i \otimes gv_j$. (More precisely, $\rho_{U \otimes V}(g)(u_i \otimes v_j) = \rho_U(g)(u_i) \otimes \rho_V(g)(v_j)$.)

Suppose that $[\rho_U(g)]_{\mathcal{B}} = M, [\rho_V(g)]_{\mathcal{C}} = N.$

Claim. $[\rho_{U\otimes V}(g)]_{\mathcal{B}\times \mathcal{C}} = M \otimes N$ (Kronecker product).

Assume that *U* and *V* are *G*-modules. Let $\mathcal{B} = (u_1, \ldots, u_r)$ and $\mathcal{C} = (v_1, \ldots, v_s)$ be ordered bases for these spaces. $\mathcal{B} \times \mathcal{C} = (u_1 \otimes v_1, u_1 \otimes v_2, \ldots, u_r \otimes v_s)$ is an ordered basis for $U \otimes V$.

Make $U \otimes V$ a *G*-module by defining $g(u_i \otimes v_j) = gu_i \otimes gv_j$. (More precisely, $\rho_{U \otimes V}(g)(u_i \otimes v_j) = \rho_U(g)(u_i) \otimes \rho_V(g)(v_j)$.)

Suppose that $[\rho_U(g)]_{\mathcal{B}} = M, [\rho_V(g)]_{\mathcal{C}} = N.$

Claim. $[\rho_{U\otimes V}(g)]_{\mathcal{B}\times\mathcal{C}} = M \otimes N$ (Kronecker product). (Check!)

Assume that *U* and *V* are *G*-modules. Let $\mathcal{B} = (u_1, \ldots, u_r)$ and $\mathcal{C} = (v_1, \ldots, v_s)$ be ordered bases for these spaces. $\mathcal{B} \times \mathcal{C} = (u_1 \otimes v_1, u_1 \otimes v_2, \ldots, u_r \otimes v_s)$ is an ordered basis for $U \otimes V$.

Make $U \otimes V$ a *G*-module by defining $g(u_i \otimes v_j) = gu_i \otimes gv_j$. (More precisely, $\rho_{U \otimes V}(g)(u_i \otimes v_j) = \rho_U(g)(u_i) \otimes \rho_V(g)(v_j)$.)

Suppose that $[\rho_U(g)]_{\mathcal{B}} = M, [\rho_V(g)]_{\mathcal{C}} = N.$

Claim. $[\rho_{U\otimes V}(g)]_{\mathcal{B}\times \mathcal{C}} = M \otimes N$ (Kronecker product). (Check!)

$$M \otimes N = \begin{bmatrix} m_{11}N & \cdots & m_{1r}N \\ \vdots & \ddots & \vdots \\ m_{r1}N & \cdots & m_{rr}N \end{bmatrix}$$

Assume that *U* and *V* are *G*-modules. Let $\mathcal{B} = (u_1, \ldots, u_r)$ and $\mathcal{C} = (v_1, \ldots, v_s)$ be ordered bases for these spaces. $\mathcal{B} \times \mathcal{C} = (u_1 \otimes v_1, u_1 \otimes v_2, \ldots, u_r \otimes v_s)$ is an ordered basis for $U \otimes V$.

Make $U \otimes V$ a *G*-module by defining $g(u_i \otimes v_j) = gu_i \otimes gv_j$. (More precisely, $\rho_{U \otimes V}(g)(u_i \otimes v_j) = \rho_U(g)(u_i) \otimes \rho_V(g)(v_j)$.)

Suppose that $[\rho_U(g)]_{\mathcal{B}} = M, [\rho_V(g)]_{\mathcal{C}} = N.$

Claim. $[\rho_{U\otimes V}(g)]_{\mathcal{B}\times\mathcal{C}} = M \otimes N$ (Kronecker product). (Check!)

$$M \otimes N = \begin{bmatrix} m_{11}N & \cdots & m_{1r}N \\ \vdots & \ddots & \vdots \\ m_{r1}N & \cdots & m_{rr}N \end{bmatrix}$$

 $\chi_{U\otimes V}(g) = \chi_U(g)\chi_V(g)$

If U is a G-module, then $U^* := \text{Hom}_{\mathcal{C}}(U, \mathbb{C})$ is a G-module under the action $g(f) = f \circ g^{-1}$.

If *U* is a *G*-module, then $U^* := \text{Hom}_{\mathcal{C}}(U, \mathbb{C})$ is a *G*-module under the action $g(f) = f \circ g^{-1}$. If one fixes an ordered basis for *U*, then takes the dual basis for U^* , one obtains

If U is a G-module, then $U^* := \text{Hom}_{\mathcal{C}}(U, \mathbb{C})$ is a G-module under the action $g(f) = f \circ g^{-1}$. If one fixes an ordered basis for U, then takes the dual basis for U^* , one obtains

for U, one obtains

 $[\rho_{U^*}(g)] = ([\rho_U(g)]^{-1})^t.$

If *U* is a *G*-module, then $U^* := \text{Hom}_{\mathcal{C}}(U, \mathbb{C})$ is a *G*-module under the action $g(f) = f \circ g^{-1}$. If one fixes an ordered basis for *U*, then takes the dual basis

for U^* , one obtains

 $[\rho_{U^*}(g)] = \left([\rho_U(g)]^{-1} \right)^t.$ Hence $\chi_{U^*}(g) = \overline{\chi_U(g)}.$

If U, V are *G*-modules, then $\text{Hom}_{\mathbb{C}}(U, V)$ is a *G*-module under the action $g(f) = g \circ f \circ g^{-1}$.

If U, V are *G*-modules, then $\text{Hom}_{\mathbb{C}}(U, V)$ is a *G*-module under the action $g(f) = g \circ f \circ g^{-1}$.

The vector space isomorphism $\text{Hom}_{\mathbb{C}}(U, V) \cong V \otimes U^*$ is a *G*-module isomorphism.

If U, V are *G*-modules, then $\text{Hom}_{\mathbb{C}}(U, V)$ is a *G*-module under the action $g(f) = g \circ f \circ g^{-1}$.

The vector space isomorphism $\text{Hom}_{\mathbb{C}}(U, V) \cong V \otimes U^*$ is a *G*-module isomorphism.

Hence $\chi_{\operatorname{Hom}_{\mathbb{C}}(U,V)} = \chi_{V \otimes U^*} = \chi_V \chi_{U^*} = \overline{\chi_U} \chi_V.$

Let $e = \frac{1}{|G|} \sum_{g \in G} g \in \mathbb{C}[G]$ be the average of the group elements.

Let $e = \frac{1}{|G|} \sum_{g \in G} g \in \mathbb{C}[G]$ be the average of the group elements. This element is a central idempotent of $\mathbb{C}[G]$.

Let $e = \frac{1}{|G|} \sum_{g \in G} g \in \mathbb{C}[G]$ be the average of the group elements. This element is a central idempotent of $\mathbb{C}[G]$.

If *V* is a *G*-module, then scalar multiplication by $e, V \rightarrow V: v \mapsto ev$, is a module retraction.
Let $e = \frac{1}{|G|} \sum_{g \in G} g \in \mathbb{C}[G]$ be the average of the group elements. This element is a central idempotent of $\mathbb{C}[G]$.

If *V* is a *G*-module, then scalar multiplication by $e, V \rightarrow V : v \mapsto ev$, is a module retraction.

The image of this map is the submodule V^G of elements $v \in V$ fixed by every group element:

Let $e = \frac{1}{|G|} \sum_{g \in G} g \in \mathbb{C}[G]$ be the average of the group elements. This element is a central idempotent of $\mathbb{C}[G]$.

If *V* is a *G*-module, then scalar multiplication by $e, V \rightarrow V : v \mapsto ev$, is a module retraction.

Let $e = \frac{1}{|G|} \sum_{g \in G} g \in \mathbb{C}[G]$ be the average of the group elements. This element is a central idempotent of $\mathbb{C}[G]$.

If *V* is a *G*-module, then scalar multiplication by $e, V \rightarrow V : v \mapsto ev$, is a module retraction.

The image of this map is the submodule V^G of elements $v \in V$ fixed by every group element: $v \in V^G$ means gv = v for every $g \in G$.

 $\dim(V^G)$

Let $e = \frac{1}{|G|} \sum_{g \in G} g \in \mathbb{C}[G]$ be the average of the group elements. This element is a central idempotent of $\mathbb{C}[G]$.

If *V* is a *G*-module, then scalar multiplication by $e, V \rightarrow V : v \mapsto ev$, is a module retraction.

$$\dim(V^G) = \operatorname{tr}([e])$$

Let $e = \frac{1}{|G|} \sum_{g \in G} g \in \mathbb{C}[G]$ be the average of the group elements. This element is a central idempotent of $\mathbb{C}[G]$.

If *V* is a *G*-module, then scalar multiplication by $e, V \rightarrow V : v \mapsto ev$, is a module retraction.

$$\dim(V^G) = \operatorname{tr}([e]) \\ = \frac{1}{|G|} \sum_G \operatorname{tr}([\rho_V(g)])$$

Let $e = \frac{1}{|G|} \sum_{g \in G} g \in \mathbb{C}[G]$ be the average of the group elements. This element is a central idempotent of $\mathbb{C}[G]$.

If *V* is a *G*-module, then scalar multiplication by $e, V \rightarrow V: v \mapsto ev$, is a module retraction.

$$\begin{array}{ll} \dim(V^G) &= \operatorname{tr}([e]) \\ &= \frac{1}{|G|} \sum_G \operatorname{tr}([\rho_V(g)]) \\ &= \frac{1}{|G|} \sum_G \chi_V(g) \\ &= \int_G \chi_V(g) \ dg \end{array}$$

Let $e = \frac{1}{|G|} \sum_{g \in G} g \in \mathbb{C}[G]$ be the average of the group elements. This element is a central idempotent of $\mathbb{C}[G]$.

If *V* is a *G*-module, then scalar multiplication by $e, V \rightarrow V : v \mapsto ev$, is a module retraction.

The image of this map is the submodule V^G of elements $v \in V$ fixed by every group element: $v \in V^G$ means gv = v for every $g \in G$.

$$\begin{split} \dim(V^G) &= \operatorname{tr}([e]) \\ &= \frac{1}{|G|} \sum_G \operatorname{tr}([\rho_V(g)]) \\ &= \frac{1}{|G|} \sum_G \chi_V(g) \\ &= \int_G \chi_V(g) \ dg \end{split}$$

In particular, this shows that, for a given character, the average of its values over G is an integer.