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An action of group G on set X yields a representation p: G — Sym(X) called
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Permutation representations

An action of group G on set X yields a representation p: G — Sym(X) called
a “permutation representation” of G.

This induces a group homomorphism p: G — GL(V) where V = C[X] is the
C-space with basis X. (Such p is also called a “permutation representation” of
G).

With respect to the basis X each [p(g)] is a permutation matrix.

x(g) = tropl(g)
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Permutation representations

An action of group G on set X yields a representation p: G — Sym(X) called
a “permutation representation” of G.

This induces a group homomorphism p: G — GL(V) where V = C[X] is the
C-space with basis X. (Such p is also called a “permutation representation” of
G).

With respect to the basis X each [p(g)] is a permutation matrix.

X(g) = tr o p(g) =number of 1’s on the diagonal of [p(g)]
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Permutation representations

An action of group G on set X yields a representation p: G — Sym(X) called
a “permutation representation” of G.

This induces a group homomorphism p: G — GL(V) where V = C[X] is the
C-space with basis X. (Such p is also called a “permutation representation” of
G).

With respect to the basis X each [p(g)] is a permutation matrix.

X(g) = tr o p(g) =number of 1’s on the diagonal of [p(g)] = number of fixed
points of g on X.
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G=S55X=1{1,23}
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G=S85.X={1,2,3}. V=C[X].
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G=S85.X={1,2,3}. V=C[X].

0 0
1 0|,p((12)) = p((123)) =
0 1

S = O
S O =
- o O
S = O
- O O
S O -
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G=S85.X={1,2,3}. V=C[X].

1] 3 2
Ssl1](12)](123)
(x 3 1 [ 0 |
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The regular representation

The (left) regular representation
p: G— Sym(G): g — (Ag: x +— gx)

is a permutation representation.
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The (left) regular representation
p: G— Sym(G): g — (Ag: x +— gx)

is a permutation representation.
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p = preg: G — GL(V), V =C|[G]
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The regular representation

The (left) regular representation
p: G— Sym(G): g — (Ag: x +— gx)

is a permutation representation.
It yields the regular representation

p = preg: G — GL(V), V =C|[G]

1 [ky |- | &r
G ||l |g|-|&
[ Xree [ 1G] O[] 0]
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The group representation

P = preg: G — GL(V), V =C[G]
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The group representation
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extends to an algebra representation
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The regular representation

The group representation
P = preg: G — GL(V), V = C[G]
extends to an algebra representation

Preg * (C[G] - EndC(C[G])‘
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The regular representation

The group representation
P = prs: G GL(V), V =C[G]
extends to an algebra representation
preg: C[G] = Endc(C[G]).

Module-theoretically, this is the structure map for the free module ¢ C[G]
on 1-generator
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The regular representation

The group representation
P = prs: G GL(V), V =C[G]
extends to an algebra representation
preg: C[G] = Endc(C[G]).

Module-theoretically, this is the structure map for the free module ¢ C[G]
on 1-generator (the “regular C[G]-module”).

The isomorphism C[G] = M, (C) x --- x M, (C) establishes that the regular
module is a direct sum of simple summands: n; isomorphic summands of
dimension n; foreachi=1,...,r.
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Assume that U and V are G-modules.
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Direct sums

Assume that U and V are G-modules. (Module structure afforded by
pu: G — GL(U) and py: G — GL(V) respectively.)

U @ V is a G-module under the action g(u,v) = (gu, gv),
(puev(g)(u,v) = (pu(8)(u), pv(8)(v))).
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Direct sums

Assume that U and V are G-modules. (Module structure afforded by

pu: G — GL(U) and py: G — GL(V) respectively.)

U @ V is a G-module under the action g(u,v) = (gu, gv),

(puav(g)(u,v) = (pu(g)(u), py () (V)

To calculate yygy, concatenate ordered bases (uy, . .., u,) and (vy,...,v,)
for U and V to obtain an ordered basis (uy, . .., upm, vi,...,v,) forUdV
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Direct sums

Assume that U and V are G-modules. (Module structure afforded by
pu: G — GL(U) and py: G — GL(V) respectively.)

U @ V is a G-module under the action g(u,v) = (gu, gv),
(puev(g)(u,v) = (pu(8)(u), pv(8)(v))).

To calculate yygy, concatenate ordered bases (uy, . .., u,) and (vy,...,v,)
for U and V to obtain an ordered basis (uj, . . ., U, vi,...,v,) for U@ V and
compute
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Direct sums

Assume that U and V are G-modules. (Module structure afforded by
pu: G — GL(U) and py: G — GL(V) respectively.)

U @ V is a G-module under the action g(u,v) = (gu, gv),
(puev(g)(u,v) = (pu(8)(u), pv(8)(v))).

To calculate yygy, concatenate ordered bases (uy, . .., u,) and (vy,...,v,)
for U and V to obtain an ordered basis (uj, . . ., U, vi,...,v,) for U@ V and
compute
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Direct sums

Assume that U and V are G-modules. (Module structure afforded by
pu: G — GL(U) and py: G — GL(V) respectively.)

U @ V is a G-module under the action g(u,v) = (gu, gv),
(puev(g)(u,v) = (pu(8)(u), pv(8)(v))).

To calculate yygy, concatenate ordered bases (uy, . .., u,) and (vy,...,v,)
for U and V to obtain an ordered basis (uj, . . ., U, vi,...,v,) for U@ V and
compute
[pu(@) | 0 ]
vev(g) =
posv(®) = 170"y (a))

Hence xuav(g) = xuv(g) + xv(g)-
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Direct sums

Assume that U and V are G-modules. (Module structure afforded by
pu: G — GL(U) and py: G — GL(V) respectively.)

U @ V is a G-module under the action g(u,v) = (gu, gv),
(puev(g)(u,v) = (pu(8)(u), pv(8)(v))).

To calculate yygy, concatenate ordered bases (uy, . .., u,) and (vy,...,v,)
for U and V to obtain an ordered basis (uj, . . ., U, vi,...,v,) for U@ V and
compute
[pu(@) | 0 ]
vev(g) =
posv(®) = 170"y (a))

Hence xuav(g) = xuv(g) + xv(g)-

(In particular, Xreg = Z;Zl n; - Xi.)
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Permutation representations decompose as direct sums

If G acts on X with orbit decomposition X = Y U - - - U Yy, then, as
G-modules,

CX]=C"h]® - & C[Yl.
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Permutation representations decompose as direct sums

If G acts on X with orbit decomposition X = Y U - - - U Yy, then, as
G-modules,

CX]=C"h]® - & C[Yl.

k
Hence xx = > ;_; Xv:-
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Permutation representations decompose as direct sums

If G acts on X with orbit decomposition X = Y U - - - U Yy, then, as
G-modules,

C[X] = (C[Yl] D---D (C[Yk].

Hence yx = Zle Xv;- This just says that the number of fixed points of g on
X is the sum of the numbers of fixed points over all Y;.
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Permutation representations decompose as direct sums

If G acts on X with orbit decomposition X = Y L - - - U Yy, then, as
G-modules,

C[X] = (C[Yl] D---D (C[Yk].

Hence yx = Zle Xv;- This just says that the number of fixed points of g on
X is the sum of the numbers of fixed points over all Y;.

The observation on this page reduces the problem of determining the
characters of permutation representations to the subcase of transitive actions.
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Tensor product over C

Assume that U and V are G-modules. Let B = (uy, ..., u,) and
C = (v1,...,vs) be ordered bases for these spaces.
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Assume that U and V are G-modules. Let B = (uy, ..., u,) and
C = (v1,...,vs) be ordered bases for these spaces.
BxC=(u ®@vi,u1 @vy,...,ur @ vy) is an ordered basis for U @ V.
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Tensor product over C

Assume that U and V are G-modules. Let B = (uy, ..., u,) and
C = (v1,...,vs) be ordered bases for these spaces.
BxC=(u ®@vi,u1 @vy,...,ur @ vy) is an ordered basis for U @ V.

Make U ® V a G-module by defining g(u; ® v;) = gu; ® gvj.
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Tensor product over C

Assume that U and V are G-modules. Let B = (uy,...,u,) and

C = (vi,...,vs) be ordered bases for these spaces.

BxC=(u ®@vi,u1 @vy,...,ur @ vy) is an ordered basis for U @ V.

Make U ® V a G-module by defining g(u; ® vj) = gu; ® gv;. (More precisely,
puev(8) (i @ vi) = pu(g)(ui) © pv(g)(v;).)
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Tensor product over C

Assume that U and V are G-modules. Let B = (uy, ..., u,) and
C = (v1,...,vs) be ordered bases for these spaces.
BxC=(u ®@vi,u1 @vy,...,ur @ vy) is an ordered basis for U @ V.

Make U ® V a G-module by defining g(u; ® vj) = gu; ® gv;. (More precisely,
puev(8) (i @ vi) = pu(g)(ui) @ pv(g)(v;).)

Suppose that [py(g)|g = M, [pv(g)]c = N.
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Tensor product over C

Assume that U and V are G-modules. Let B = (uy, ..., u,) and
C = (v1,...,vs) be ordered bases for these spaces.
BxC=(u ®@vi,u1 @vy,...,ur @ vy) is an ordered basis for U @ V.

Make U ® V a G-module by defining g(u; ® vj) = gu; ® gv;. (More precisely,
puev(8) (i @ vi) = pu(g)(ui) @ pv(g)(v;).)

Suppose that [py(g)|g = M, [pv(g)]c = N.

Claim.
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Tensor product over C

Assume that U and V are G-modules. Let B = (uy, ..., u,) and
C = (v1,...,vs) be ordered bases for these spaces.
BxC=(u ®@vi,u1 @vy,...,ur @ vy) is an ordered basis for U @ V.

Make U ® V a G-module by defining g(u; ® vj) = gu; ® gv;. (More precisely,
puev(8) (i @ vi) = pu(g)(ui) @ pv(g)(v;).)

Suppose that [py(g)|g = M, [pv(g)]c = N.
Claim. [pU®V(g)]B><C == M@N
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Tensor product over C

Assume that U and V are G-modules. Let B = (uy, ..., u,) and
C = (v1,...,vs) be ordered bases for these spaces.
BxC=(u ®@vi,u1 @vy,...,ur @ vy) is an ordered basis for U @ V.

Make U ® V a G-module by defining g(u; ® vj) = gu; ® gv;. (More precisely,
puev(8) (i @ vi) = pu(g)(ui) @ pv(g)(v;).)

Suppose that [py(g)]s = M, [pv(g)le = N
Claim. [pygv(g)]sxc = M ® N (Kronecker product).
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Tensor product over C

Assume that U and V are G-modules. Let B = (uy, ..., u,) and
C = (v1,...,vs) be ordered bases for these spaces.
BxC=(u ®@vi,u1 @vy,...,ur @ vy) is an ordered basis for U @ V.

Make U ® V a G-module by defining g(u; ® vj) = gu; ® gv;. (More precisely,
puev(8) (i @ vi) = pu(g)(ui) @ pv(g)(v;).)

Suppose that [py(g)]s = M, [pv(g)lc = N.
Claim. [pygv(g)]sxc = M ® N (Kronecker product). (Check!)
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Tensor product over C

Assume that U and V are G-modules. Let B = (uy, ..., u,) and
C = (v1,...,vs) be ordered bases for these spaces.
BxC=(u ®@vi,u1 @vy,...,ur @ vy) is an ordered basis for U @ V.

Make U ® V a G-module by defining g(u; ® vj) = gu; ® gv;. (More precisely,
puev(8) (i @ vi) = pu(g)(ui) @ pv(g)(v;).)

Suppose that [py(g)]s = M, [pv(g)lc = N.

Claim. [pygv(g)]sxc = M ® N (Kronecker product). (Check!)
myN --- m,N

MoN=| : .
maN - myN
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Tensor product over C

Assume that U and V are G-modules. Let B = (uy, ..., u,) and
C = (v1,...,vs) be ordered bases for these spaces.
BxC=(u ®@vi,u1 @vy,...,ur @ vy) is an ordered basis for U @ V.

Make U ® V a G-module by defining g(u; ® vj) = gu; ® gv;. (More precisely,
puev(8) (i @ vi) = pu(g)(ui) @ pv(g)(v;).)

Suppose that [py(g)]s = M, [pv(g)lc = N.
Claim. [pygv(g)]sxc = M ® N (Kronecker product). (Check!)

myN --- m,N
M®N = : ..
maN -+ m,N

xvev(g) = xu(g)xv(g)
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Dual module

If U is a G-module, then U* := Hom¢ (U, C) is a G-module under the action

g(f) =fog .
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Dual module

If U is a G-module, then U* := Hom¢ (U, C) is a G-module under the action
g(f) =f o g~ !. If one fixes an ordered basis for U, then takes the dual basis

for U*, one obtains
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Dual module

If U is a G-module, then U* := Hom¢ (U, C) is a G-module under the action
g(f) =f o g~ !. If one fixes an ordered basis for U, then takes the dual basis

for U*, one obtains

lou-(8)] = (low(g)] )"
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Dual module

If U is a G-module, then U* := Hom¢ (U, C) is a G-module under the action
g(f) =f o g~ !. If one fixes an ordered basis for U, then takes the dual basis

for U*, one obtains
()] = (lpu(@) )"

Hence xu-(¢) = xuv(g)-
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Hom

If U, V are G-modules, then Homc (U, V) is a G-module under the action

g(f)=gofog .
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Hom

If U, V are G-modules, then Homc (U, V) is a G-module under the action
g(f) =gofog™".

The vector space isomorphism Hom¢ (U, V) &£ V ® U* is a G-module
isomorphism.
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Hom

If U, V are G-modules, then Homc (U, V) is a G-module under the action
g(f) =gofog™".

The vector space isomorphism Hom¢ (U, V) &£ V ® U* is a G-module
isomorphism.

Hence XHome(v,v) = Xveu* = XvXU* = XUXV-
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Fixed-point submodule
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Fixed-point submodule

Lete = ﬁ > _¢cc & € C[G] be the average of the group elements.
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Fixed-point submodule

Lete = ﬁ > _¢cc & € C[G] be the average of the group elements. This
element is a central idempotent of C[G].
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Fixed-point submodule

Lete = ﬁ > _¢cc & € C[G] be the average of the group elements. This
element is a central idempotent of C[G].

If V is a G-module, then scalar multiplication by e, V. — V: v ev, is a
module retraction.
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Fixed-point submodule

Lete = ﬁ > _¢cc & € C[G] be the average of the group elements. This
element is a central idempotent of C[G].

If V is a G-module, then scalar multiplication by e, V. — V: v ev, is a
module retraction.

The image of this map is the submodule V of elements v € V fixed by every
group element:

Representations and their characters 11/11



Fixed-point submodule

Lete = ﬁ > _¢cc & € C[G] be the average of the group elements. This
element is a central idempotent of C[G].

If V is a G-module, then scalar multiplication by e, V. — V: v ev, is a
module retraction.

The image of this map is the submodule V of elements v € V fixed by every
group element: v € V° means gv = v for every g € G.
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Fixed-point submodule

Lete = ﬁ > _¢cc & € C[G] be the average of the group elements. This
element is a central idempotent of C[G].

If V is a G-module, then scalar multiplication by e, V. — V: v ev, is a
module retraction.

The image of this map is the submodule V of elements v € V fixed by every
group element: v € V° means gv = v for every g € G.

dim(V9)
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Fixed-point submodule

Lete = ﬁ > _¢cc & € C[G] be the average of the group elements. This
element is a central idempotent of C[G].

If V is a G-module, then scalar multiplication by e, V. — V: v ev, is a
module retraction.

The image of this map is the submodule V of elements v € V fixed by every
group element: v € V° means gv = v for every g € G.

dim(VY) = tr(fe])
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Fixed-point submodule

Lete = ﬁ > _¢cc & € C[G] be the average of the group elements. This
element is a central idempotent of C[G].

If V is a G-module, then scalar multiplication by e, V. — V: v ev, is a
module retraction.

The image of this map is the submodule V of elements v € V fixed by every
group element: v € V° means gv = v for every g € G.

dim(VY) = tr(fe])
= g1 Lo trlev(®)
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Fixed-point submodule

Lete = ﬁ > _¢cc & € C[G] be the average of the group elements. This
element is a central idempotent of C[G].

If V is a G-module, then scalar multiplication by e, V. — V: v ev, is a
module retraction.

The image of this map is the submodule V of elements v € V fixed by every
group element: v € V° means gv = v for every g € G.

dim(VY) = tr(fe])
=g Lo trlev(®)
= 161 2o xv(8)
= Joxv(g) dg
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Fixed-point submodule

Lete = ﬁ > _¢cc & € C[G] be the average of the group elements. This
element is a central idempotent of C[G].

If V is a G-module, then scalar multiplication by e, V. — V: v ev, is a
module retraction.

The image of this map is the submodule V of elements v € V fixed by every
group element: v € V° means gv = v for every g € G.

dim(VY) = tr(fe])
=g Lo trlev(®)
= 161 2o xv(8)
= Joxv(g) dg

In particular, this shows that, for a given character, the average of its values
over G is an integer.
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