
Representations and their characters

ρVi : G→ GL(Vi)

1 k2 · · · kr

G 1 g2 · · · gr

χ1 1 1 · · · 1
χ2 d2 χ2(g2) · · · χ2(gr)
...

...
...

. . .
...

χr dr χr(g2) · · · χr(gr)
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Permutation representations

An action of group G on set X yields a representation ρ : G→ Sym(X) called
a “permutation representation” of G.
This induces a group homomorphism ρ̂ : G→ GL(V) where V = C[X] is the
C-space with basis X. (Such ρ̂ is also called a “permutation representation” of
G).
With respect to the basis X each [ρ̂(g)] is a permutation matrix.
χ(g) = tr ◦ ρ̂(g) = number of 1’s on the diagonal of [ρ̂(g)] = number of fixed
points of g on X.
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Example

G = S3. X = {1, 2, 3}. V = C[X].

ρ(1) =

1 0 0
0 1 0
0 0 1

 , ρ((1 2)) =

0 1 0
1 0 0
0 0 1

 , ρ((1 2 3)) =

0 0 1
1 0 0
0 1 0



1 3 2
S3 1 (1 2) (1 2 3)
χ 3 1 0
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The regular representation

The (left) regular representation

ρ : G→ Sym(G) : g 7→ (λg : x 7→ gx)

is a permutation representation.
It yields the regular representation

ρ̂ = ρreg : G→ GL(V), V = C[G]

1 k2 · · · kr

G 1 g2 · · · gr

χreg |G| 0 · · · 0
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The regular representation

The group representation

ρ̂ = ρreg : G→ GL(V), V = C[G]

extends to an algebra representation

ρreg : C[G]→ EndC(C[G]).

Module-theoretically, this is the structure map for the free module C[G]C[G]
on 1-generator (the “regular C[G]-module”).

The isomorphism C[G] ∼= Mn1(C)× · · · ×Mnr(C) establishes that the regular
module is a direct sum of simple summands: ni isomorphic summands of
dimension ni for each i = 1, . . . , r.

Representations and their characters 5 / 11



The regular representation

The group representation

ρ̂ = ρreg : G→ GL(V), V = C[G]

extends to an algebra representation

ρreg : C[G]→ EndC(C[G]).

Module-theoretically, this is the structure map for the free module C[G]C[G]
on 1-generator (the “regular C[G]-module”).

The isomorphism C[G] ∼= Mn1(C)× · · · ×Mnr(C) establishes that the regular
module is a direct sum of simple summands: ni isomorphic summands of
dimension ni for each i = 1, . . . , r.

Representations and their characters 5 / 11



The regular representation

The group representation

ρ̂ = ρreg : G→ GL(V), V = C[G]

extends to an algebra representation

ρreg : C[G]→ EndC(C[G]).

Module-theoretically, this is the structure map for the free module C[G]C[G]
on 1-generator (the “regular C[G]-module”).

The isomorphism C[G] ∼= Mn1(C)× · · · ×Mnr(C) establishes that the regular
module is a direct sum of simple summands: ni isomorphic summands of
dimension ni for each i = 1, . . . , r.

Representations and their characters 5 / 11



The regular representation

The group representation

ρ̂ = ρreg : G→ GL(V), V = C[G]

extends to an algebra representation

ρreg : C[G]→ EndC(C[G]).

Module-theoretically, this is the structure map for the free module C[G]C[G]
on 1-generator (the “regular C[G]-module”).

The isomorphism C[G] ∼= Mn1(C)× · · · ×Mnr(C) establishes that the regular
module is a direct sum of simple summands: ni isomorphic summands of
dimension ni for each i = 1, . . . , r.

Representations and their characters 5 / 11



The regular representation

The group representation

ρ̂ = ρreg : G→ GL(V), V = C[G]

extends to an algebra representation

ρreg : C[G]→ EndC(C[G]).

Module-theoretically, this is the structure map for the free module C[G]C[G]
on 1-generator

(the “regular C[G]-module”).

The isomorphism C[G] ∼= Mn1(C)× · · · ×Mnr(C) establishes that the regular
module is a direct sum of simple summands: ni isomorphic summands of
dimension ni for each i = 1, . . . , r.

Representations and their characters 5 / 11



The regular representation

The group representation

ρ̂ = ρreg : G→ GL(V), V = C[G]

extends to an algebra representation

ρreg : C[G]→ EndC(C[G]).

Module-theoretically, this is the structure map for the free module C[G]C[G]
on 1-generator (the “regular C[G]-module”).

The isomorphism C[G] ∼= Mn1(C)× · · · ×Mnr(C) establishes that the regular
module is a direct sum of simple summands: ni isomorphic summands of
dimension ni for each i = 1, . . . , r.

Representations and their characters 5 / 11



The regular representation

The group representation

ρ̂ = ρreg : G→ GL(V), V = C[G]

extends to an algebra representation

ρreg : C[G]→ EndC(C[G]).

Module-theoretically, this is the structure map for the free module C[G]C[G]
on 1-generator (the “regular C[G]-module”).

The isomorphism C[G] ∼= Mn1(C)× · · · ×Mnr(C) establishes that the regular
module is a direct sum of simple summands: ni isomorphic summands of
dimension ni for each i = 1, . . . , r.

Representations and their characters 5 / 11



Direct sums

Assume that U and V are G-modules. (Module structure afforded by
ρU : G→ GL(U) and ρV : G→ GL(V) respectively.)
U ⊕ V is a G-module under the action g(u, v) = (gu, gv),
(ρU⊕V(g)(u, v) = (ρU(g)(u), ρV(g)(v))).
To calculate χU⊕V , concatenate ordered bases (u1, . . . , um) and (v1, . . . , vn)
for U and V to obtain an ordered basis (u1, . . . , um, v1, . . . , vn) for U ⊕ V and
compute

ρU⊕V(g) =
[
ρU(g) | 0

0 | ρV(g)

]
Hence χU⊕V(g) = χU(g) + χV(g).

(In particular, χreg =
∑r

i=1 ni · χi.)
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Permutation representations decompose as direct sums

If G acts on X with orbit decomposition X = Y1 t · · · t Yk, then, as
G-modules,

C[X] ∼= C[Y1]⊕ · · · ⊕ C[Yk].

Hence χX =
∑k

i=1 χYi . This just says that the number of fixed points of g on
X is the sum of the numbers of fixed points over all Yi.

The observation on this page reduces the problem of determining the
characters of permutation representations to the subcase of transitive actions.
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Tensor product over C

Assume that U and V are G-modules. Let B = (u1, . . . , ur) and
C = (v1, . . . , vs) be ordered bases for these spaces.
B × C = (u1 ⊗ v1, u1 ⊗ v2, . . . , ur ⊗ vs) is an ordered basis for U ⊗ V .

Make U ⊗ V a G-module by defining g(ui ⊗ vj) = gui ⊗ gvj. (More precisely,
ρU⊗V(g)(ui ⊗ vj) = ρU(g)(ui)⊗ ρV(g)(vj).)

Suppose that [ρU(g)]B = M, [ρV(g)]C = N.

Claim. [ρU⊗V(g)]B×C = M ⊗ N (Kronecker product). (Check!)

M ⊗ N =

 m11N · · · m1rN
...

. . .
...

mr1N · · · mrrN

 .
χU⊗V(g) = χU(g)χV(g)
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Dual module

If U is a G-module, then U∗ := HomC(U,C) is a G-module under the action
g(f ) = f ◦ g−1. If one fixes an ordered basis for U, then takes the dual basis

for U∗, one obtains

[ρU∗(g)] =
(
[ρU(g)]−1

)t.

Hence χU∗(g) = χU(g).
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Hom

If U,V are G-modules, then HomC(U,V) is a G-module under the action
g(f ) = g ◦ f ◦ g−1.

The vector space isomorphism HomC(U,V) ∼= V ⊗ U∗ is a G-module
isomorphism.

Hence χHomC(U,V) = χV⊗U∗ = χVχU∗ = χUχV .
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Fixed-point submodule

Let e = 1
|G|
∑

g∈G g ∈ C[G] be the average of the group elements. This
element is a central idempotent of C[G].

If V is a G-module, then scalar multiplication by e, V → V : v 7→ ev, is a
module retraction.

The image of this map is the submodule VG of elements v ∈ V fixed by every
group element: v ∈ VG means gv = v for every g ∈ G.

dim(VG) = tr([e])
= 1
|G|
∑

G tr([ρV(g)])
= 1
|G|
∑

G χV(g)
=
∫

G χV(g) dg

In particular, this shows that, for a given character, the average of its values
over G is an integer.
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