Orthogonality

	1	k_2		k _r
G	1	<i>g</i> ₂	• • • •	g _r
χ_1	1	1	• • •	1
χ_2	d_2	$\chi_2(g_2)$	• • •	$\chi_2(g_r)$
:	:	•	·	:
χ_r	d_r	$\chi_r(g_2)$	• • •	$\chi_r(g_r)$

If $\alpha, \beta \colon G \to \mathbb{C}$ are functions,

If $\alpha, \beta \colon G \to \mathbb{C}$ are functions, then $\langle \alpha, \beta \rangle := \frac{1}{|G|} \sum_{g \in G} \overline{\alpha(g)} \beta(g)$.

If $\alpha, \beta \colon G \to \mathbb{C}$ are functions, then $\langle \alpha, \beta \rangle := \frac{1}{|G|} \sum_{g \in G} \overline{\alpha(g)} \beta(g)$.

Thm.

Thm. $\langle \chi_U, \chi_V \rangle = \dim_{\mathbb{C}}(\operatorname{Hom}_{\mathbb{C}[G]}(U, V)).$

Thm. $\langle \chi_U, \chi_V \rangle = \dim_{\mathbb{C}}(\operatorname{Hom}_{\mathbb{C}[G]}(U, V)).$ *Proof.*

Thm. $\langle \chi_U, \chi_V \rangle = \dim_{\mathbb{C}}(\operatorname{Hom}_{\mathbb{C}[G]}(U, V)).$ *Proof.* $\langle \chi_V, \chi_U \rangle = \frac{1}{|G|} \sum_G \overline{\chi_V}(g)\chi_U(g)$ (Defn.)

Thm. $\langle \chi_U, \chi_V \rangle = \dim_{\mathbb{C}}(\operatorname{Hom}_{\mathbb{C}[G]}(U, V)).$ *Proof.* $\langle \chi_V, \chi_U \rangle = \frac{1}{|G|} \sum_G \overline{\chi_V}(g) \chi_U(g)$ (Defn.) $= \frac{1}{|G|} \sum_G \overline{\chi_V}(g) \overline{\chi_U}(g) \cdot \chi_1(g)$ ($\overline{\overline{z}} = z, \chi_1(g) = 1$)

Thm. $\langle \chi_U, \chi_V \rangle = \dim_{\mathbb{C}}(\operatorname{Hom}_{\mathbb{C}[G]}(U, V)).$ *Proof.* $\langle \chi_V, \chi_U \rangle = \frac{1}{|G|} \sum_G \overline{\chi_V}(g) \chi_U(g)$ (Defn.) $= \frac{1}{|G|} \sum_G \overline{\chi_V(g)} \overline{\chi_U}(g) \cdot \chi_1(g)$ ($\overline{\overline{z}} = z, \chi_1(g) = 1$) $= \langle \chi_V \overline{\chi_U}, \chi_1 \rangle$ (Defn.)

Thm. $\langle \chi_U, \chi_V \rangle = \dim_{\mathbb{C}}(\operatorname{Hom}_{\mathbb{C}[G]}(U, V)).$ *Proof.* $\langle \chi_V, \chi_U \rangle = \frac{1}{|G|} \sum_G \overline{\chi_V}(g) \chi_U(g)$ (Defn.) $= \frac{1}{|G|} \sum_G \overline{\chi_V(g)} \overline{\chi_U}(g) \cdot \chi_1(g)$ ($\overline{\overline{z}} = z, \chi_1(g) = 1$) $= \langle \chi_V \overline{\chi_U}, \chi_1 \rangle$ (Defn.) $= \langle \chi_{\operatorname{Hom}_C}(U, V), \chi_1 \rangle$ (22), (24), (25)

Thm. $\langle \chi_U, \chi_V \rangle = \dim_{\mathbb{C}}(\operatorname{Hom}_{\mathbb{C}[G]}(U, V)).$ *Proof.* $\langle \chi_V, \chi_U \rangle = \frac{1}{|G|} \sum_G \overline{\chi_V}(g) \chi_U(g)$ (Defn.) $= \frac{1}{|G|} \sum_G \overline{\chi_V}(g) \overline{\chi_U}(g) \cdot \chi_1(g)$ ($\overline{\overline{z}} = z, \chi_1(g) = 1$) $= \langle \chi_V \overline{\chi_U}, \chi_1 \rangle$ (Defn.) $= \langle \chi_{\operatorname{Hom}_{\mathbb{C}}}(U, V), \chi_1 \rangle$ (22), (24), (25) $= \dim_{\mathbb{C}}(\operatorname{Hom}_{\mathbb{C}}(U, V)^G)$ (26)

Thm. $\langle \chi_U, \chi_V \rangle = \dim_{\mathbb{C}}(\operatorname{Hom}_{\mathbb{C}[G]}(U, V)).$ Proof. $\langle \chi_V, \chi_U \rangle = \frac{1}{|G|} \sum_G \overline{\chi_V}(g) \chi_U(g)$ (Defn.) $= \frac{1}{|G|} \sum_{G} \overline{\chi_V(g)} \overline{\chi_U(g)} \cdot \chi_1(g) \quad (\overline{\overline{z}} = z, \chi_1(g) = 1)$ $=\langle \chi_V \overline{\chi_U}, \chi_1 \rangle$ (Defn.) $=\langle \chi_{\operatorname{Hom}_{\mathbb{C}}(U,V)}, \chi_1 \rangle$ (22), (24), (25) $= \dim_{\mathbb{C}}(\operatorname{Hom}_{\mathbb{C}}(U, V)^G)$ (26) $= \dim_{\mathbb{C}}(\operatorname{Hom}_{\mathbb{C}[G]}(U, V))$ (Check!)

Thm. $\langle \chi_U, \chi_V \rangle = \dim_{\mathbb{C}}(\operatorname{Hom}_{\mathbb{C}[G]}(U, V)).$ Proof. $\langle \chi_V, \chi_U \rangle = \frac{1}{|G|} \sum_G \overline{\chi_V}(g) \chi_U(g)$ (Defn.) $= \frac{1}{|G|} \sum_{G} \overline{\chi_V(g)} \overline{\chi_U(g)} \cdot \chi_1(g) \quad (\overline{\overline{z}} = z, \chi_1(g) = 1)$ $=\langle \chi_V \overline{\chi_U}, \chi_1 \rangle$ (Defn.) $=\langle \chi_{\operatorname{Hom}_{\mathbb{C}}(U,V)}, \chi_1 \rangle$ (22), (24), (25) $= \dim_{\mathbb{C}}(\operatorname{Hom}_{\mathbb{C}}(U, V)^G)$ (26) $= \dim_{\mathbb{C}}(\operatorname{Hom}_{\mathbb{C}[G]}(U, V))$ (Check!) $=\overline{\dim_{\mathbb{C}}(\operatorname{Hom}_{\mathbb{C}[G]}(U,V))}$ dim is in \mathbb{N}

Thm. $\langle \chi_U, \chi_V \rangle = \dim_{\mathbb{C}}(\operatorname{Hom}_{\mathbb{C}[G]}(U, V)).$ Proof. $\langle \chi_V, \chi_U \rangle = \frac{1}{|G|} \sum_G \overline{\chi_V}(g) \chi_U(g)$ (Defn.) $= \frac{1}{|G|} \sum_{G} \overline{\chi_V(g)} \overline{\chi_U(g)} \cdot \chi_1(g) \quad (\overline{\overline{z}} = z, \chi_1(g) = 1)$ $=\langle \chi_V \overline{\chi_U}, \chi_1 \rangle$ (Defn.) $=\langle \chi_{\operatorname{Hom}_{\mathbb{C}}(U,V)}, \chi_1 \rangle$ (22), (24), (25) $= \dim_{\mathbb{C}}(\operatorname{Hom}_{\mathbb{C}}(U, V)^G)$ (26) $= \dim_{\mathbb{C}}(\operatorname{Hom}_{\mathbb{C}[G]}(U, V))$ (Check!) $=\overline{\dim_{\mathbb{C}}(\operatorname{Hom}_{\mathbb{C}[G]}(U,V))}$ dim is in \mathbb{N} $=\overline{\langle \chi_V, \chi_U \rangle}$ (Reverse argument)

Thm. $\langle \chi_U, \chi_V \rangle = \dim_{\mathbb{C}}(\operatorname{Hom}_{\mathbb{C}[G]}(U, V)).$ Proof. $\langle \chi_V, \chi_U \rangle = \frac{1}{|G|} \sum_G \overline{\chi_V}(g) \chi_U(g)$ (Defn.) $= \frac{1}{|G|} \sum_{G} \overline{\chi_V(g)} \overline{\chi_U(g)} \cdot \chi_1(g) \quad (\overline{\overline{z}} = z, \chi_1(g) = 1)$ $=\langle \chi_V \overline{\chi_U}, \chi_1 \rangle$ (Defn.) $=\langle \chi_{\operatorname{Hom}_{\mathbb{C}}(U,V)}, \chi_1 \rangle$ (22), (24), (25) $= \dim_{\mathbb{C}}(\operatorname{Hom}_{\mathbb{C}}(U, V)^G)$ (26) $= \dim_{\mathbb{C}}(\operatorname{Hom}_{\mathbb{C}[G]}(U, V))$ (Check!) $=\overline{\dim_{\mathbb{C}}(\operatorname{Hom}_{\mathbb{C}[G]}(U,V))}$ dim is in \mathbb{N} $=\overline{\langle \chi_V, \chi_U \rangle}$ (Reverse argument) $=\langle \chi_U, \chi_V \rangle.$ (Defn.) \Box

Thm. $\langle \chi_U, \chi_V \rangle = \dim_{\mathbb{C}}(\operatorname{Hom}_{\mathbb{C}[G]}(U, V)).$ Proof. $\langle \chi_V, \chi_U \rangle = \frac{1}{|G|} \sum_G \overline{\chi_V}(g) \chi_U(g)$ (Defn.) $= \frac{1}{|G|} \sum_{G} \overline{\chi_V(g)} \overline{\chi_U(g)} \cdot \chi_1(g) \quad (\overline{\overline{z}} = z, \chi_1(g) = 1)$ $=\langle \chi_V \overline{\chi_U}, \chi_1 \rangle$ (Defn.) $=\langle \chi_{\operatorname{Hom}_{\mathbb{C}}(U,V)}, \chi_1 \rangle$ (22), (24), (25) $= \dim_{\mathbb{C}}(\operatorname{Hom}_{\mathbb{C}}(U, V)^G)$ (26) $= \dim_{\mathbb{C}}(\operatorname{Hom}_{\mathbb{C}[G]}(U, V))$ (Check!) $=\overline{\dim_{\mathbb{C}}(\operatorname{Hom}_{\mathbb{C}[G]}(U,V))}$ dim is in \mathbb{N} $=\overline{\langle \chi_V, \chi_U \rangle}$ (Reverse argument) $=\langle \chi_U, \chi_V \rangle.$ (Defn.) \Box

Cor. If $\chi_i, \chi_j \in \operatorname{Irr}(G)$, then $\langle \chi_i, \chi_j \rangle = \dim_{\mathbb{C}}(\operatorname{Hom}_{\mathbb{C}[G]}(S_i, S_j)) = \delta_{ij}$.

Cor. If $\chi_i, \chi_j \in \operatorname{Irr}(G)$, then $\langle \chi_i, \chi_j \rangle = \dim_{\mathbb{C}}(\operatorname{Hom}_{\mathbb{C}[G]}(S_i, S_j)) = \delta_{ij}$. *Proof.*

Cor. If $\chi_i, \chi_j \in \operatorname{Irr}(G)$, then $\langle \chi_i, \chi_j \rangle = \dim_{\mathbb{C}}(\operatorname{Hom}_{\mathbb{C}[G]}(S_i, S_j)) = \delta_{ij}$. *Proof.* Schur's Lemma.

Cor. If $\chi_i, \chi_j \in \operatorname{Irr}(G)$, then $\langle \chi_i, \chi_j \rangle = \dim_{\mathbb{C}}(\operatorname{Hom}_{\mathbb{C}[G]}(S_i, S_j)) = \delta_{ij}$. *Proof.* Schur's Lemma. \Box

Let \mathcal{X} be the character table of G viewed as a square matrix over \mathbb{C} .

Let \mathcal{X} be the character table of G viewed as a square matrix over \mathbb{C} . Let K be the square diagonal matrix whose i, i-th diagonal entry is $k_i/|G|$.

Let \mathcal{X} be the character table of G viewed as a square matrix over \mathbb{C} . Let K be the square diagonal matrix whose i, i-th diagonal entry is $k_i/|G|$. Row orthogonality may be expressed as $\mathcal{X}K\mathcal{X}^H = I$.

Let \mathcal{X} be the character table of G viewed as a square matrix over \mathbb{C} . Let K be the square diagonal matrix whose i, i-th diagonal entry is $k_i/|G|$. Row orthogonality may be expressed as $\mathcal{X}K\mathcal{X}^H = I$. This implies $\mathcal{X}^H\mathcal{X}K = I$,

Let \mathcal{X} be the character table of G viewed as a square matrix over \mathbb{C} . Let K be the square diagonal matrix whose i, i-th diagonal entry is $k_i/|G|$. Row orthogonality may be expressed as $\mathcal{X}K\mathcal{X}^H = I$. This implies $\mathcal{X}^H\mathcal{X}K = I$, or $\mathcal{X}^H\mathcal{X} = K^{-1}$.

Let \mathcal{X} be the character table of G viewed as a square matrix over \mathbb{C} . Let K be the square diagonal matrix whose i, i-th diagonal entry is $k_i/|G|$. Row orthogonality may be expressed as $\mathcal{X}K\mathcal{X}^H = I$. This implies $\mathcal{X}^H\mathcal{X}K = I$, or $\mathcal{X}^H\mathcal{X} = K^{-1}$. This is summarized by:

Let \mathcal{X} be the character table of G viewed as a square matrix over \mathbb{C} . Let K be the square diagonal matrix whose i, i-th diagonal entry is $k_i/|G|$. Row orthogonality may be expressed as $\mathcal{X}K\mathcal{X}^H = I$. This implies $\mathcal{X}^H\mathcal{X}K = I$, or $\mathcal{X}^H\mathcal{X} = K^{-1}$. This is summarized by:

Thm. If $g, h \in G$ are not conjugate, then $\sum_{\chi \in Irr(G)} \overline{\chi(g)}\chi(h) = 0$. Otherwise $\sum_{\chi \in Irr(G)} \overline{\chi(g)}\chi(g) = |C_G(g)|$.

Example

	1	3	2
<i>S</i> ₃	1	(1 2)	(1 2 3)
χ_1	1	1	1
χ_2	1	-1	1
χ3	2	0	-1

	1	3	2
<i>S</i> ₃	1	(1 2)	(1 2 3)
χ_1	1	1	1
χ_2	1	-1	1
χ3	2	0	-1

Test orthogonality of columns (i, j).

	1	3	2
<i>S</i> ₃	1	(1 2)	(1 2 3)
χ_1	1	1	1
χ_2	1	-1	1
χ3	2	0	-1

Test orthogonality of columns (i, j). The sum $\sum_{\chi \in Irr(G)} \overline{\chi(g)} \chi(h)$ is

	1	3	2
<i>S</i> ₃	1	(1 2)	(1 2 3)
χ_1	1	1	1
χ2	1	-1	1
χ3	2	0	-1

Test orthogonality of columns (i,j). The sum $\sum_{\chi \in Irr(G)} \overline{\chi(g)}\chi(h)$ is • (i,j) = (1,2): (1)(1) + (1)(-1) + (2)(0) = 0

	1	3	2
<i>S</i> ₃	1	(1 2)	(1 2 3)
χ_1	1	1	1
χ2	1	-1	1
χ3	2	0	-1

Test orthogonality of columns (i,j). The sum $\sum_{\chi \in Irr(G)} \overline{\chi(g)}\chi(h)$ is • (i,j) = (1,2): (1)(1) + (1)(-1) + (2)(0) = 0

	1	3	2
<i>S</i> ₃	1	(1 2)	(1 2 3)
χ_1	1	1	1
χ2	1	-1	1
χ3	2	0	-1

•
$$(i,j) = (1,3)$$
: $(1)(1) + (1)(1) + (2)(-1) = 0$

	1	3	2
<i>S</i> ₃	1	(1 2)	(1 2 3)
χ_1	1	1	1
χ2	1	-1	1
χ3	2	0	-1

•
$$(i,j) = (1,3)$$
: $(1)(1) + (1)(1) + (2)(-1) = 0$

	1	3	2
<i>S</i> ₃	1	(1 2)	(1 2 3)
χ_1	1	1	1
χ_2	1	-1	1
χ3	2	0	-1

• (i,j) = (1,2): (1)(1) + (1)(-1) + (2)(0) = 0

•
$$(i,j) = (1,3)$$
: $(1)(1) + (1)(1) + (2)(-1) = 0$

	1	3	2
<i>S</i> ₃	1	(1 2)	(1 2 3)
χ_1	1	1	1
χ_2	1	-1	1
χ3	2	0	-1

• (i,j) = (1,2): (1)(1) + (1)(-1) + (2)(0) = 0

•
$$(i,j) = (1,3)$$
: $(1)(1) + (1)(1) + (2)(-1) = 0$

	1	3	2
<i>S</i> ₃	1	(1 2)	(1 2 3)
χ_1	1	1	1
χ_2	1	-1	1
χ3	2	0	-1

• (i,j) = (1,2): (1)(1) + (1)(-1) + (2)(0) = 0

•
$$(i,j) = (1,3): (1)(1) + (1)(1) + (2)(-1) = 0$$

•
$$(i,j) = (1,1)$$
: $1^2 + 1^2 + 2^2 = 6$

	1	3	2
<i>S</i> ₃	1	(1 2)	(1 2 3)
χ_1	1	1	1
χ_2	1	-1	1
χ3	2	0	-1

• (i,j) = (1,2): (1)(1) + (1)(-1) + (2)(0) = 0

•
$$(i,j) = (1,3): (1)(1) + (1)(1) + (2)(-1) = 0$$

•
$$(i,j) = (1,1)$$
: $1^2 + 1^2 + 2^2 = 6$

	1	3	2
<i>S</i> ₃	1	(1 2)	(1 2 3)
χ_1	1	1	1
χ_2	1	-1	1
χ3	2	0	-1

•
$$(i,j) = (1,3)$$
: $(1)(1) + (1)(1) + (2)(-1) = 0$

- (i,j) = (2,3): (1)(1) + (-1)(1) + (0)(-1) = 0
- (i,j) = (1,1): $1^2 + 1^2 + 2^2 = 6 = |C_G(1)|$

	1	3	2
<i>S</i> ₃	1	(1 2)	(1 2 3)
χ_1	1	1	1
χ_2	1	-1	1
χ3	2	0	-1

•
$$(i,j) = (1,3)$$
: $(1)(1) + (1)(1) + (2)(-1) = 0$

•
$$(i,j) = (2,3)$$
: $(1)(1) + (-1)(1) + (0)(-1) = 0$

•
$$(i,j) = (1,1): 1^2 + 1^2 + 2^2 = 6 = |C_G(1)|$$

•
$$(i,j) = (2,2)$$
: $1^2 + (-1)^2 + 0^2 = 2$

	1	3	2
<i>S</i> ₃	1	(1 2)	(1 2 3)
χ_1	1	1	1
χ_2	1	-1	1
χ3	2	0	-1

•
$$(i,j) = (1,3)$$
: $(1)(1) + (1)(1) + (2)(-1) = 0$

•
$$(i,j) = (2,3)$$
: $(1)(1) + (-1)(1) + (0)(-1) = 0$

•
$$(i,j) = (1,1): 1^2 + 1^2 + 2^2 = 6 = |C_G(1)|$$

•
$$(i,j) = (2,2)$$
: $1^2 + (-1)^2 + 0^2 = 2$

	1	3	2
<i>S</i> ₃	1	(1 2)	(1 2 3)
χ_1	1	1	1
χ2	1	-1	1
χ3	2	0	-1

•
$$(i,j) = (1,3)$$
: $(1)(1) + (1)(1) + (2)(-1) = 0$

- (i,j) = (2,3): (1)(1) + (-1)(1) + (0)(-1) = 0
- (i,j) = (1,1): $1^2 + 1^2 + 2^2 = 6 = |C_G(1)|$

•
$$(i,j) = (2,2)$$
: $1^2 + (-1)^2 + 0^2 = 2 = |C_G((1\ 2))|$

	1	3	2
<i>S</i> ₃	1	(1 2)	(1 2 3)
χ_1	1	1	1
χ_2	1	-1	1
χ3	2	0	-1

• (i,j) = (1,2): (1)(1) + (1)(-1) + (2)(0) = 0

•
$$(i,j) = (1,3)$$
: $(1)(1) + (1)(1) + (2)(-1) = 0$

- (i,j) = (2,3): (1)(1) + (-1)(1) + (0)(-1) = 0
- (i,j) = (1,1): $1^2 + 1^2 + 2^2 = 6 = |C_G(1)|$

•
$$(i,j) = (2,2)$$
: $1^2 + (-1)^2 + 0^2 = 2 = |C_G((1\ 2))|$

• (i,j) = (1,1): $1^2 + 1^2 + (-1)^2 = 3$

	1	3	2
<i>S</i> ₃	1	(1 2)	(1 2 3)
χ_1	1	1	1
χ_2	1	-1	1
χ3	2	0	-1

• (i,j) = (1,2): (1)(1) + (1)(-1) + (2)(0) = 0

•
$$(i,j) = (1,3)$$
: $(1)(1) + (1)(1) + (2)(-1) = 0$

- (i,j) = (2,3): (1)(1) + (-1)(1) + (0)(-1) = 0
- (i,j) = (1,1): $1^2 + 1^2 + 2^2 = 6 = |C_G(1)|$

•
$$(i,j) = (2,2)$$
: $1^2 + (-1)^2 + 0^2 = 2 = |C_G((1\ 2))|$

• (i,j) = (1,1): $1^2 + 1^2 + (-1)^2 = 3$

	1	3	2
<i>S</i> ₃	1	(1 2)	(1 2 3)
χ_1	1	1	1
χ2	1	-1	1
χ3	2	0	-1

• (i,j) = (1,2): (1)(1) + (1)(-1) + (2)(0) = 0

•
$$(i,j) = (1,3)$$
: $(1)(1) + (1)(1) + (2)(-1) = 0$

- (i,j) = (2,3): (1)(1) + (-1)(1) + (0)(-1) = 0
- (i,j) = (1,1): $1^2 + 1^2 + 2^2 = 6 = |C_G(1)|$

•
$$(i,j) = (2,2)$$
: $1^2 + (-1)^2 + 0^2 = 2 = |C_G((1\ 2))|$

• (i,j) = (1,1): $1^2 + 1^2 + (-1)^2 = 3 = |C_G((1\ 2\ 3))|$

	1	3	2
<i>S</i> ₃	1	(1 2)	(1 2 3)
χ_1	1	1	1
χ_2	1	-1	1
<i>χ</i> 3	2	0	-1

• (i,j) = (1,2): (1)(1) + (1)(-1) + (2)(0) = 0

•
$$(i,j) = (1,3)$$
: $(1)(1) + (1)(1) + (2)(-1) = 0$

- (i,j) = (2,3): (1)(1) + (-1)(1) + (0)(-1) = 0
- (i,j) = (1,1): $1^2 + 1^2 + 2^2 = 6 = |C_G(1)|$

•
$$(i,j) = (2,2)$$
: $1^2 + (-1)^2 + 0^2 = 2 = |C_G((1\ 2))|$

• (i,j) = (1,1): $1^2 + 1^2 + (-1)^2 = 3 = |C_G((1\ 2\ 3))|$

Cor. (30)

Cor. (30) (Irreducibility test)

Cor. (30) (Irreducibility test) If $U \cong n_1 S_1 \oplus \cdots \oplus n_r S_r$, then $\langle \chi_U, \chi_U \rangle = \sum_{i=1}^r n_i^2$.

Cor. (30) (Irreducibility test) If $U \cong n_1 S_1 \oplus \cdots \oplus n_r S_r$, then $\langle \chi_U, \chi_U \rangle = \sum_{i=1}^r n_i^2$. Hence U is a simple iff $\langle \chi_U, \chi_U \rangle = 1$.

Cor. (30) (Irreducibility test) If $U \cong n_1 S_1 \oplus \cdots \oplus n_r S_r$, then $\langle \chi_U, \chi_U \rangle = \sum_{i=1}^r n_i^2$. Hence U is a simple iff $\langle \chi_U, \chi_U \rangle = 1$. In fact, U is direct sum of 1, 2, or 3 pairwise nonisomorphic simple submodules iff $\langle \chi_U, \chi_U \rangle = 1, 2$ or 3.

Cor. (30) (Irreducibility test) If $U \cong n_1 S_1 \oplus \cdots \oplus n_r S_r$, then $\langle \chi_U, \chi_U \rangle = \sum_{i=1}^r n_i^2$. Hence U is a simple iff $\langle \chi_U, \chi_U \rangle = 1$. In fact, U is direct sum of 1, 2, or 3 pairwise nonisomorphic simple submodules iff $\langle \chi_U, \chi_U \rangle = 1, 2$ or 3. \Box

Cor. (30) (Irreducibility test) If $U \cong n_1 S_1 \oplus \cdots \oplus n_r S_r$, then $\langle \chi_U, \chi_U \rangle = \sum_{i=1}^r n_i^2$. Hence U is a simple iff $\langle \chi_U, \chi_U \rangle = 1$. In fact, U is direct sum of 1, 2, or 3 pairwise nonisomorphic simple submodules iff $\langle \chi_U, \chi_U \rangle = 1, 2$ or 3. \Box

Cor. (31) (Orthonormal expansion)

Cor. (30) (Irreducibility test) If $U \cong n_1 S_1 \oplus \cdots \oplus n_r S_r$, then $\langle \chi_U, \chi_U \rangle = \sum_{i=1}^r n_i^2$. Hence U is a simple iff $\langle \chi_U, \chi_U \rangle = 1$. In fact, U is direct sum of 1, 2, or 3 pairwise nonisomorphic simple submodules iff $\langle \chi_U, \chi_U \rangle = 1, 2$ or 3. \Box

Cor. (31) (Orthonormal expansion) Assume that χ_U is the character of a *G*-module *U* and that $\{\chi_1, \ldots, \chi_r\}$ are the distinct irreducible characters of *G*, then $\chi_U = \sum_{i=1}^r \langle \chi_i, \chi_U \rangle \cdot \chi_i$.

Cor. (30) (Irreducibility test) If $U \cong n_1 S_1 \oplus \cdots \oplus n_r S_r$, then $\langle \chi_U, \chi_U \rangle = \sum_{i=1}^r n_i^2$. Hence U is a simple iff $\langle \chi_U, \chi_U \rangle = 1$. In fact, U is direct sum of 1, 2, or 3 pairwise nonisomorphic simple submodules iff $\langle \chi_U, \chi_U \rangle = 1, 2$ or 3. \Box

Cor. (31) (Orthonormal expansion) Assume that χ_U is the character of a *G*-module *U* and that $\{\chi_1, \ldots, \chi_r\}$ are the distinct irreducible characters of *G*, then $\chi_U = \sum_{i=1}^r \langle \chi_i, \chi_U \rangle \cdot \chi_i$. (If $U \cong n_1 S_1 \oplus \cdots \oplus n_r S_r$, then $\langle \chi_i, \chi_U \rangle = n_i$, so this reads $\chi_U = \sum_{i=1}^r n_i \cdot \chi_i$.)

Cor. (30) (Irreducibility test) If $U \cong n_1 S_1 \oplus \cdots \oplus n_r S_r$, then $\langle \chi_U, \chi_U \rangle = \sum_{i=1}^r n_i^2$. Hence U is a simple iff $\langle \chi_U, \chi_U \rangle = 1$. In fact, U is direct sum of 1, 2, or 3 pairwise nonisomorphic simple submodules iff $\langle \chi_U, \chi_U \rangle = 1, 2$ or 3. \Box

Cor. (31) (Orthonormal expansion) Assume that χ_U is the character of a *G*-module *U* and that $\{\chi_1, \ldots, \chi_r\}$ are the distinct irreducible characters of *G*, then $\chi_U = \sum_{i=1}^r \langle \chi_i, \chi_U \rangle \cdot \chi_i$. (If $U \cong n_1 S_1 \oplus \cdots \oplus n_r S_r$, then $\langle \chi_i, \chi_U \rangle = n_i$, so this reads $\chi_U = \sum_{i=1}^r n_i \cdot \chi_i$.) \Box

Cor. (30) (Irreducibility test) If $U \cong n_1 S_1 \oplus \cdots \oplus n_r S_r$, then $\langle \chi_U, \chi_U \rangle = \sum_{i=1}^r n_i^2$. Hence U is a simple iff $\langle \chi_U, \chi_U \rangle = 1$. In fact, U is direct sum of 1, 2, or 3 pairwise nonisomorphic simple submodules iff $\langle \chi_U, \chi_U \rangle = 1, 2$ or 3. \Box

Cor. (31) (Orthonormal expansion) Assume that χ_U is the character of a *G*-module *U* and that $\{\chi_1, \ldots, \chi_r\}$ are the distinct irreducible characters of *G*, then $\chi_U = \sum_{i=1}^r \langle \chi_i, \chi_U \rangle \cdot \chi_i$. (If $U \cong n_1 S_1 \oplus \cdots \oplus n_r S_r$, then $\langle \chi_i, \chi_U \rangle = n_i$, so this reads $\chi_U = \sum_{i=1}^r n_i \cdot \chi_i$.) \Box

Cor. (31) (Characters determine isotype)

Cor. (30) (Irreducibility test) If $U \cong n_1 S_1 \oplus \cdots \oplus n_r S_r$, then $\langle \chi_U, \chi_U \rangle = \sum_{i=1}^r n_i^2$. Hence U is a simple iff $\langle \chi_U, \chi_U \rangle = 1$. In fact, U is direct sum of 1, 2, or 3 pairwise nonisomorphic simple submodules iff $\langle \chi_U, \chi_U \rangle = 1, 2$ or 3. \Box

Cor. (31) (Orthonormal expansion) Assume that χ_U is the character of a *G*-module *U* and that $\{\chi_1, \ldots, \chi_r\}$ are the distinct irreducible characters of *G*, then $\chi_U = \sum_{i=1}^r \langle \chi_i, \chi_U \rangle \cdot \chi_i$. (If $U \cong n_1 S_1 \oplus \cdots \oplus n_r S_r$, then $\langle \chi_i, \chi_U \rangle = n_i$, so this reads $\chi_U = \sum_{i=1}^r n_i \cdot \chi_i$.) \Box

Cor. (31) (Characters determine isotype) Any finite dimensional *G*-module *U* is determined up to isomorphism by its character, χ_U .

Cor. (30) (Irreducibility test) If $U \cong n_1 S_1 \oplus \cdots \oplus n_r S_r$, then $\langle \chi_U, \chi_U \rangle = \sum_{i=1}^r n_i^2$. Hence U is a simple iff $\langle \chi_U, \chi_U \rangle = 1$. In fact, U is direct sum of 1, 2, or 3 pairwise nonisomorphic simple submodules iff $\langle \chi_U, \chi_U \rangle = 1, 2$ or 3. \Box

Cor. (31) (Orthonormal expansion) Assume that χ_U is the character of a *G*-module *U* and that $\{\chi_1, \ldots, \chi_r\}$ are the distinct irreducible characters of *G*, then $\chi_U = \sum_{i=1}^r \langle \chi_i, \chi_U \rangle \cdot \chi_i$. (If $U \cong n_1 S_1 \oplus \cdots \oplus n_r S_r$, then $\langle \chi_i, \chi_U \rangle = n_i$, so this reads $\chi_U = \sum_{i=1}^r n_i \cdot \chi_i$.) \Box

Cor. (31) (Characters determine isotype) Any finite dimensional *G*-module *U* is determined up to isomorphism by its character, χ_U . \Box

Burnside's Lm,

Burnside's Lm, not-Burnside's Lm,

Burnside's Lm, not-Burnside's Lm, Cauchy-Frobenius Lm.

Burnside's Lm, not-Burnside's Lm, Cauchy-Frobenius Lm. If *G* acts on a finite set *X*, the number of orbits is $\langle \chi_X, \chi_1 \rangle$.

Burnside's Lm, not-Burnside's Lm, Cauchy-Frobenius Lm. If *G* acts on a finite set *X*, the number of orbits is $\langle \chi_X, \chi_1 \rangle$.

Proof.

Burnside's Lm, not-Burnside's Lm, Cauchy-Frobenius Lm. If *G* acts on a finite set *X*, the number of orbits is $\langle \chi_X, \chi_1 \rangle$.

Proof. It suffices to prove that when *G* acts transitively on *X*, then $\langle \chi_X, \chi_1 \rangle = \dim((\mathbb{C}^X)^G) = 1.$

Burnside's Lm, not-Burnside's Lm, Cauchy-Frobenius Lm. If *G* acts on a finite set *X*, the number of orbits is $\langle \chi_X, \chi_1 \rangle$.

Proof. It suffices to prove that when *G* acts transitively on *X*, then $\langle \chi_X, \chi_1 \rangle = \dim((\mathbb{C}^X)^G) = 1.$

The dimension is at least 1, since $\sum_{x \in X} x = \begin{bmatrix} 1 \\ \vdots \\ 1 \end{bmatrix}_X \in (\mathbb{C}^X)^G$.

Burnside's Lm, not-Burnside's Lm, Cauchy-Frobenius Lm. If *G* acts on a finite set *X*, the number of orbits is $\langle \chi_X, \chi_1 \rangle$.

Proof. It suffices to prove that when *G* acts transitively on *X*, then $\langle \chi_X, \chi_1 \rangle = \dim((\mathbb{C}^X)^G) = 1.$

The dimension is at least 1, since $\sum_{x \in X} x = \begin{bmatrix} 1 \\ \vdots \\ 1 \end{bmatrix}_X \in (\mathbb{C}^X)^G$. Conversely, assume that $\alpha = \sum z_i x_i \in (\mathbb{C}^X)^G$.

Burnside's Lm, not-Burnside's Lm, Cauchy-Frobenius Lm. If *G* acts on a finite set *X*, the number of orbits is $\langle \chi_X, \chi_1 \rangle$.

Proof. It suffices to prove that when *G* acts transitively on *X*, then $\langle \chi_X, \chi_1 \rangle = \dim((\mathbb{C}^X)^G) = 1.$

The dimension is at least 1, since $\sum_{x \in X} x = \begin{bmatrix} 1 \\ \vdots \\ 1 \end{bmatrix}_X \in (\mathbb{C}^X)^G$. Conversely, assume that $\alpha = \sum z_i x_i \in (\mathbb{C}^X)^G$. Then $g\alpha = \alpha$ for any $g \in G$,

Burnside's Lm, not-Burnside's Lm, Cauchy-Frobenius Lm. If *G* acts on a finite set *X*, the number of orbits is $\langle \chi_X, \chi_1 \rangle$.

Proof. It suffices to prove that when *G* acts transitively on *X*, then $\langle \chi_X, \chi_1 \rangle = \dim((\mathbb{C}^X)^G) = 1.$

The dimension is at least 1, since $\sum_{x \in X} x = \begin{bmatrix} 1 \\ \vdots \\ 1 \end{bmatrix}_X \in (\mathbb{C}^X)^G$. Conversely, assume that $\alpha = \sum z_i x_i \in (\mathbb{C}^X)^G$. Then $g\alpha = \alpha$ for any $g \in G$, meaning $\sum z_i(gx_i) = \sum z_i x_i$,

Burnside's Lm, not-Burnside's Lm, Cauchy-Frobenius Lm. If *G* acts on a finite set *X*, the number of orbits is $\langle \chi_X, \chi_1 \rangle$.

Proof. It suffices to prove that when *G* acts transitively on *X*, then $\langle \chi_X, \chi_1 \rangle = \dim((\mathbb{C}^X)^G) = 1.$

The dimension is at least 1, since $\sum_{x \in X} x = \begin{bmatrix} 1 \\ \vdots \\ 1 \end{bmatrix}_X \in (\mathbb{C}^X)^G$. Conversely, assume that $\alpha = \sum z_i x_i \in (\mathbb{C}^X)^G$. Then $g\alpha = \alpha$ for any $g \in G$, meaning $\sum z_i(gx_i) = \sum z_i x_i$, meaning $z_i(gx_i) = z_i x_i$ for all i,

Burnside's Lm, not-Burnside's Lm, Cauchy-Frobenius Lm. If *G* acts on a finite set *X*, the number of orbits is $\langle \chi_X, \chi_1 \rangle$.

Proof. It suffices to prove that when *G* acts transitively on *X*, then $\langle \chi_X, \chi_1 \rangle = \dim((\mathbb{C}^X)^G) = 1.$

The dimension is at least 1, since $\sum_{x \in X} x = \begin{bmatrix} 1 \\ \vdots \\ 1 \end{bmatrix}_X \in (\mathbb{C}^X)^G$. Conversely, assume that $\alpha = \sum z_i x_i \in (\mathbb{C}^X)^G$. Then $g\alpha = \alpha$ for any $g \in G$, meaning $\sum z_i(gx_i) = \sum z_i x_i$, meaning $z_i(gx_i) = z_i x_i$ for all *i*, meaning *z* is

constant with respect to i on each G-orbit of X,

Burnside's Lm, not-Burnside's Lm, Cauchy-Frobenius Lm. If *G* acts on a finite set *X*, the number of orbits is $\langle \chi_X, \chi_1 \rangle$.

Proof. It suffices to prove that when *G* acts transitively on *X*, then $\langle \chi_X, \chi_1 \rangle = \dim((\mathbb{C}^X)^G) = 1.$

The dimension is at least 1, since $\sum_{x \in X} x = \begin{bmatrix} 1 \\ \vdots \\ 1 \end{bmatrix}_X \in (\mathbb{C}^X)^G$. Conversely, assume that $\alpha = \sum z_i x_i \in (\mathbb{C}^X)^G$. Then $g\alpha = \alpha$ for any $g \in G$, meaning $\sum z_i(gx_i) = \sum z_i x_i$, meaning $z_i(gx_i) = z_i x_i$ for all *i*, meaning *z* is

constant with respect to *i* on each *G*-orbit of *X*, meaning $\alpha \in \text{span} \left\{ \begin{bmatrix} 1 \\ \vdots \\ 1 \end{bmatrix} \right\}$.

Burnside's Lm, not-Burnside's Lm, Cauchy-Frobenius Lm. If *G* acts on a finite set *X*, the number of orbits is $\langle \chi_X, \chi_1 \rangle$.

Proof. It suffices to prove that when *G* acts transitively on *X*, then $\langle \chi_X, \chi_1 \rangle = \dim((\mathbb{C}^X)^G) = 1.$

The dimension is at least 1, since $\sum_{x \in X} x = \begin{bmatrix} 1 \\ 1 \end{bmatrix}_X \in (\mathbb{C}^X)^G$. Conversely, assume that $\alpha = \sum z_i x_i \in (\mathbb{C}^X)^G$. Then $g\alpha = \alpha$ for any $g \in G$, meaning $\sum z_i(gx_i) = \sum z_i x_i$, meaning $z_i(gx_i) = z_i x_i$ for all *i*, meaning *z* is

constant with respect to *i* on each *G*-orbit of *X*, meaning $\alpha \in \text{span} \left\{ \begin{bmatrix} 1 \\ \vdots \\ 1 \end{bmatrix} \right\}$.

Thm.

Thm. Assume that *G* acts 2-transitively on *X*.

•
$$\langle \chi_{\rm X}, \chi_1 \rangle = 1$$
,

•
$$\langle \chi_{\rm X}, \chi_1 \rangle = 1$$
,

•
$$\langle \chi_{X}, \chi_{1} \rangle = 1$$
, and

- $\langle \chi_{X}, \chi_{1} \rangle = 1$, and
- $\langle \chi_{X}, \chi_{X} \rangle = \langle \chi_{X \times X}, \chi_{1} \rangle = 2.$

- $\langle \chi_{X}, \chi_{1} \rangle = 1$, and
- $\langle \chi_{X}, \chi_{X} \rangle = \langle \chi_{X \times X}, \chi_{1} \rangle = 2.$

Thm. Assume that *G* acts 2-transitively on *X*. This implies that *G* acts (1-)transitively on *X* and that the diagonal action of *G* on $X \times X$ has 2 orbits: the diagonal and the off-diagonal. Claims:

- $\langle \chi_{X}, \chi_{1} \rangle = 1$, and
- $\langle \chi_{x}, \chi_{x} \rangle = \langle \chi_{x \times x}, \chi_{1} \rangle = 2.$

Hence χ_x is a sum of two irreducible characters, one of which is χ_1 and the other is not χ_1 .

Thm. Assume that *G* acts 2-transitively on *X*. This implies that *G* acts (1-)transitively on *X* and that the diagonal action of *G* on $X \times X$ has 2 orbits: the diagonal and the off-diagonal. Claims:

- $\langle \chi_{X}, \chi_{1} \rangle = 1$, and
- $\langle \chi_{x}, \chi_{x} \rangle = \langle \chi_{x \times x}, \chi_{1} \rangle = 2.$

Hence χ_x is a sum of two irreducible characters, one of which is χ_1 and the other is not χ_1 .

Proof.

Thm. Assume that *G* acts 2-transitively on *X*. This implies that *G* acts (1-)transitively on *X* and that the diagonal action of *G* on $X \times X$ has 2 orbits: the diagonal and the off-diagonal. Claims:

- $\langle \chi_{X}, \chi_{1} \rangle = 1$, and
- $\langle \chi_{x}, \chi_{x} \rangle = \langle \chi_{x \times x}, \chi_{1} \rangle = 2.$

Hence χ_x is a sum of two irreducible characters, one of which is χ_1 and the other is not χ_1 .

Proof. The only nonobvious part is that

Thm. Assume that *G* acts 2-transitively on *X*. This implies that *G* acts (1-)transitively on *X* and that the diagonal action of *G* on $X \times X$ has 2 orbits: the diagonal and the off-diagonal. Claims:

- $\langle \chi_{X}, \chi_{1} \rangle = 1$, and
- $\langle \chi_{x}, \chi_{x} \rangle = \langle \chi_{x \times x}, \chi_{1} \rangle = 2.$

Hence χ_{χ} is a sum of two irreducible characters, one of which is χ_1 and the other is not χ_1 .

Proof. The only nonobvious part is that

$$\langle \chi_x, \chi_x \rangle = \frac{1}{|G|} \sum \overline{\chi_x} \chi_x \stackrel{(23)}{=} \frac{1}{|G|} \sum \chi_{x \times x} = \langle \chi_{x \times x}, \chi_1 \rangle.$$

Thm. Assume that *G* acts 2-transitively on *X*. This implies that *G* acts (1-)transitively on *X* and that the diagonal action of *G* on $X \times X$ has 2 orbits: the diagonal and the off-diagonal. Claims:

- $\langle \chi_{X}, \chi_{1} \rangle = 1$, and
- $\langle \chi_{x}, \chi_{x} \rangle = \langle \chi_{x \times x}, \chi_{1} \rangle = 2.$

Hence χ_{χ} is a sum of two irreducible characters, one of which is χ_1 and the other is not χ_1 .

Proof. The only nonobvious part is that

$$\langle \chi_x, \chi_x \rangle = \frac{1}{|G|} \sum \overline{\chi_x} \chi_x \stackrel{(23)}{=} \frac{1}{|G|} \sum \chi_{x \times x} = \langle \chi_{x \times x}, \chi_1 \rangle.$$

 $A_4/K \cong \mathbb{Z}_3$, so 3 linear characters χ_1, χ_2, χ_3 arise from inflation.

 $A_4/K \cong \mathbb{Z}_3$, so 3 linear characters χ_1, χ_2, χ_3 arise from inflation. Also, A_4 acts 2-transitively on $X = \{1, 2, 3, 4\}$, so $\chi_4 = \chi_X - \chi_1$ is an irrep of degree 3.

 $A_4/K \cong \mathbb{Z}_3$, so 3 linear characters χ_1, χ_2, χ_3 arise from inflation. Also, A_4 acts 2-transitively on $X = \{1, 2, 3, 4\}$, so $\chi_4 = \chi_X - \chi_1$ is an irrep of degree 3. This must be all, since $1^2 + 1^2 + 1^3 + 3^2 = 12 = |A_4|$.

 $A_4/K \cong \mathbb{Z}_3$, so 3 linear characters χ_1, χ_2, χ_3 arise from inflation. Also, A_4 acts 2-transitively on $X = \{1, 2, 3, 4\}$, so $\chi_4 = \chi_x - \chi_1$ is an irrep of degree 3. This must be all, since $1^2 + 1^2 + 1^3 + 3^2 = 12 = |A_4|$.

 $A_4/K \cong \mathbb{Z}_3$, so 3 linear characters χ_1, χ_2, χ_3 arise from inflation. Also, A_4 acts 2-transitively on $X = \{1, 2, 3, 4\}$, so $\chi_4 = \chi_x - \chi_1$ is an irrep of degree 3. This must be all, since $1^2 + 1^2 + 1^3 + 3^2 = 12 = |A_4|$.

	1	3	4	4
A_4	1	(1 2)(3 4)	(1 2 3)	(1 3 2)
χ_1	1	1	1	1
χ_2	1	1	ω	ω^2
<i>χ</i> 3	1	1	ω^2	ω
χ_4	3	-1	0	0

SO

Orthogonality