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Column orthogonality

Let X be the character table of G viewed as a square matrix over C.

Let K be the square diagonal matrix whose i, i-th diagonal entry is k;/|G]|.
Row orthogonality may be expressed as YKXH = I.

This implies XYY XK = I, or XX = K~'. This is summarized by:
Thm. If g, h € G are not conjugate, then ) x(8)x(h) = 0.
Otherwise erlrr X(g) ( ) - |CG( )‘
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The dimension is at least 1, since ), .y x = || € (cx)e.
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Burnside’s Lm, not-Burnside’s Lm, Cauchy-Frobenius Lm. If G acts on a
finite set X, the number of orbits is (), x1)-

Proof. It suffices to prove that when G acts transitively on X, then
(x> x1) = dim((C*)9) = 1.

1
The dimension is at least 1, since ), .y x = || € (cx)e.
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Conversely, assume that o = 5~ z;x; € (CX)C.
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The character of a 2-transitive action

Thm. Assume that G acts 2-transitively on X. This implies that G acts
(1-)transitively on X and that the diagonal action of G on X x X has 2 orbits:
the diagonal and the off-diagonal.
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other is not .
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