
Orthogonality

1 k2 · · · kr

G 1 g2 · · · gr

χ1 1 1 · · · 1
χ2 d2 χ2(g2) · · · χ2(gr)
...

...
...

. . .
...

χr dr χr(g2) · · · χr(gr)
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Recall

If α, β : G→ C are functions, then 〈α, β〉 := 1
|G|

∑
g∈G α(g)β(g).
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Interpreting 〈χU, χV〉

Thm. 〈χU, χV〉 = dimC(HomC[G](U,V)).

Proof. 〈χV , χU〉 = 1
|G|

∑
G χV(g)χU(g) (Defn.)

= 1
|G|

∑
G χV(g)χU(g) · χ1(g) (z = z, χ1(g) = 1)

= 〈χVχU, χ1〉 (Defn.)

= 〈χHomC(U,V), χ1〉 (22), (24), (25)

= dimC(HomC(U,V)G) (26)

= dimC(HomC[G](U,V)) (Check!)

= dimC(HomC[G](U,V)) dim is in N

= 〈χV , χU〉 (Reverse argument)

= 〈χU, χV〉. (Defn.) 2
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Row orthogonality

Cor. If χi, χj ∈ Irr(G), then 〈χi, χj〉 = dimC(HomC[G](Si, Sj)) = δij.

Proof. Schur’s Lemma. 2
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Column orthogonality

Let X be the character table of G viewed as a square matrix over C.
Let K be the square diagonal matrix whose i, i-th diagonal entry is ki/|G|.
Row orthogonality may be expressed as XKXH = I.
This implies XHXK = I, or XHX = K−1. This is summarized by:

Thm. If g, h ∈ G are not conjugate, then
∑

χ∈Irr(G) χ(g)χ(h) = 0.

Otherwise
∑

χ∈Irr(G) χ(g)χ(g) = |CG(g)|.
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Example

1 3 2
S3 1 (1 2) (1 2 3)
χ1 1 1 1
χ2 1 −1 1
χ3 2 0 −1

Test orthogonality of columns (i, j). The sum
∑

χ∈Irr(G) χ(g)χ(h) is

(i, j) = (1, 2): (1)(1) + (1)(−1) + (2)(0) = 0

(i, j) = (1, 3): (1)(1) + (1)(1) + (2)(−1) = 0

(i, j) = (2, 3): (1)(1) + (−1)(1) + (0)(−1) = 0

(i, j) = (1, 1): 12 + 12 + 22 = 6 = |CG(1)|
(i, j) = (2, 2): 12 + (−1)2 + 02 = 2 = |CG((1 2))|
(i, j) = (1, 1): 12 + 12 + (−1)2 = 3 = |CG((1 2 3))|
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Observations

Cor. (30) (Irreducibility test) If U ∼= n1S1 ⊕ · · · ⊕ nrSr, then
〈χU, χU〉 =

∑r
i=1 n2

i . Hence U is a simple iff 〈χU, χU〉 = 1.
In fact, U is direct sum of 1, 2, or 3 pairwise nonisomorphic simple
submodules iff 〈χU, χU〉 = 1, 2 or 3. 2

Cor. (31) (Orthonormal expansion) Assume that χU is the character of a
G-module U and that {χ1, . . . , χr} are the distinct irreducible characters of G,
then χU =

∑r
i=1〈χi, χU〉 · χi. (If U ∼= n1S1 ⊕ · · · ⊕ nrSr, then 〈χi, χU〉 = ni,

so this reads χU =
∑r

i=1 ni · χi.) 2

Cor. (31) (Characters determine isotype) Any finite dimensional G-module U
is determined up to isomorphism by its character, χU . 2
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Orbit counting formula

Burnside’s Lm, not-Burnside’s Lm, Cauchy-Frobenius Lm. If G acts on a
finite set X, the number of orbits is 〈χX , χ1〉.

Proof. It suffices to prove that when G acts transitively on X, then
〈χX , χ1〉 = dim((CX)G) = 1.

The dimension is at least 1, since
∑

x∈X x =

1
...
1


X

∈ (CX)G.

Conversely, assume that α =
∑

zixi ∈ (CX)G. Then gα = α for any g ∈ G,
meaning

∑
zi(gxi) =

∑
zixi, meaning zi(gxi) = zixi for all i, meaning z is

constant with respect to i on each G-orbit of X, meaning α ∈ span


1

...
1


X

.

2
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The character of a 2-transitive action

Thm. Assume that G acts 2-transitively on X. This implies that G acts
(1-)transitively on X and that the diagonal action of G on X × X has 2 orbits:
the diagonal and the off-diagonal.
Claims:

〈χX , χ1〉 = 1, and

〈χX , χX〉 = 〈χX×X , χ1〉 = 2.

Hence χX is a sum of two irreducible characters, one of which is χ1 and the
other is not χ1.

Proof. The only nonobvious part is that

〈χX , χX〉 =
1
|G|

∑
χXχX

(23)
=

1
|G|

∑
χX×X = 〈χX×X , χ1〉.
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Example, A4

A4/K ∼= Z3, so 3 linear characters χ1, χ2, χ3 arise from inflation. Also, A4
acts 2-transitively on X = {1, 2, 3, 4}, so χ4 = χX − χ1 is an irrep of degree
3. This must be all, since 12 + 12 + 13 + 32 = 12 = |A4|.

1 3 4 4
A4 1 (1 2)(3 4) (1 2 3) (1 3 2)
χX 4 0 1 1

so
1 3 4 4

A4 1 (1 2)(3 4) (1 2 3) (1 3 2)
χ1 1 1 1 1
χ2 1 1 ω ω2

χ3 1 1 ω2 ω

χ4 3 −1 0 0
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