Orthogonality

	1	k_{2}	\cdots	k_{r}
G	1	g_{2}	\cdots	g_{r}
χ_{1}	1	1	\cdots	1
χ_{2}	d_{2}	$\chi_{2}\left(g_{2}\right)$	\cdots	$\chi_{2}\left(g_{r}\right)$
\vdots	\vdots	\vdots	\ddots	\vdots
χ_{r}	d_{r}	$\chi_{r}\left(g_{2}\right)$	\cdots	$\chi_{r}\left(g_{r}\right)$

Recall

Recall

If $\alpha, \beta: G \rightarrow \mathbb{C}$ are functions,

Recall

If $\alpha, \beta: G \rightarrow \mathbb{C}$ are functions, then $\langle\alpha, \beta\rangle:=\frac{1}{|G|} \sum_{g \in G} \overline{\alpha(g)} \beta(g)$.

Recall

If $\alpha, \beta: G \rightarrow \mathbb{C}$ are functions, then $\langle\alpha, \beta\rangle:=\frac{1}{|G|} \sum_{g \in G} \overline{\alpha(g)} \beta(g)$.

Interpreting $\left\langle\chi_{U}, \chi_{V}\right\rangle$

Interpreting $\left\langle\chi_{U}, \chi_{V}\right\rangle$

Thm.

Interpreting $\left\langle\chi_{U}, \chi_{V}\right\rangle$

Thm. $\left\langle\chi_{U}, \chi_{V}\right\rangle=\operatorname{dim}_{\mathbb{C}}\left(\operatorname{Hom}_{\mathbb{C}[G]}(U, V)\right)$.

Interpreting $\left\langle\chi_{U}, \chi_{V}\right\rangle$

Thm. $\left\langle\chi_{U}, \chi_{V}\right\rangle=\operatorname{dim}_{\mathbb{C}}\left(\operatorname{Hom}_{\mathbb{C}[G]}(U, V)\right)$.
Proof.

Interpreting $\left\langle\chi_{U}, \chi_{V}\right\rangle$

Thm. $\left\langle\chi_{U}, \chi_{V}\right\rangle=\operatorname{dim}_{\mathbb{C}}\left(\operatorname{Hom}_{\mathbb{C}[G]}(U, V)\right)$.
Proof. $\left\langle\chi_{V}, \chi_{U}\right\rangle=\frac{1}{|G|} \sum_{G} \overline{\chi_{V}}(g) \chi_{U}(g) \quad$ (Defn.)

Interpreting $\left\langle\chi_{U}, \chi_{V}\right\rangle$

Thm. $\left\langle\chi_{U}, \chi_{V}\right\rangle=\operatorname{dim}_{\mathbb{C}}\left(\operatorname{Hom}_{\mathbb{C}[G]}(U, V)\right)$.
Proof.

$$
\begin{aligned}
\left\langle\chi_{V}, \chi_{U}\right\rangle & =\frac{1}{|G|} \sum_{G} \overline{\chi_{V}}(g) \chi_{U}(g) & & \text { (Defn.) } \\
& =\frac{1}{|G|} \sum_{G} \overline{\chi_{V}(g) \overline{\chi_{U}}(g)} \cdot \chi_{1}(g) & & \left(\overline{\bar{z}}=z, \chi_{1}(g)=1\right)
\end{aligned}
$$

Interpreting $\left\langle\chi_{U}, \chi_{V}\right\rangle$

Thm. $\left\langle\chi_{U}, \chi_{V}\right\rangle=\operatorname{dim}_{\mathbb{C}}\left(\operatorname{Hom}_{\mathbb{C}[G]}(U, V)\right)$.
Proof.

$$
\begin{aligned}
\left\langle\chi_{V}, \chi_{U}\right\rangle & =\frac{1}{|G|} \sum_{G} \overline{\chi_{V}}(g) \chi_{U}(g) & & \text { (Defn.) } \\
& =\frac{1}{|G|} \sum_{G} \overline{\chi_{V}(g) \overline{\chi_{U}}(g)} \cdot \chi_{1}(g) & & \left(\overline{\bar{z}}=z, \chi_{1}(g)=1\right) \\
& =\left\langle\chi_{V} \overline{\chi_{U}}, \chi_{1}\right\rangle & & (\text { Defn. })
\end{aligned}
$$

Interpreting $\left\langle\chi_{U}, \chi_{V}\right\rangle$

Thm. $\left\langle\chi_{U}, \chi_{V}\right\rangle=\operatorname{dim}_{\mathbb{C}}\left(\operatorname{Hom}_{\mathbb{C}[G]}(U, V)\right)$.
Proof.

$$
\begin{aligned}
\left\langle\chi_{V}, \chi_{U}\right\rangle & =\frac{1}{|G|} \sum_{G} \overline{\chi_{V}}(g) \chi_{U}(g) & & \text { (Defn.) } \\
& =\frac{1}{|G|} \sum_{G} \overline{\chi_{V}(g) \overline{\chi_{U}}(g)} \cdot \chi_{1}(g) & & \left(\overline{\bar{z}}=z, \chi_{1}(g)=1\right) \\
& =\left\langle\chi_{V} \overline{\chi_{U}}, \chi_{1}\right\rangle & & \text { (Defn.) } \\
& =\left\langle\chi_{\operatorname{Hom}_{\mathcal{C}}(U, V)}, \chi_{1}\right\rangle & & \text { (22), (24), (25) }
\end{aligned}
$$

Interpreting $\left\langle\chi_{U}, \chi_{V}\right\rangle$

Thm. $\left\langle\chi_{U}, \chi_{V}\right\rangle=\operatorname{dim}_{\mathbb{C}}\left(\operatorname{Hom}_{\mathbb{C}[G]}(U, V)\right)$.
Proof.

$$
\begin{array}{rlrl}
\left\langle\chi_{V}, \chi_{U}\right\rangle & =\frac{1}{|G|} \sum_{G} \overline{\chi_{V}}(g) \chi_{U}(g) & & \text { (Defn.) } \\
& =\frac{1}{|G|} \sum_{G} \overline{\chi_{V}(g) \overline{\chi_{U}}(g)} \cdot \chi_{1}(g) & & \left(\overline{\bar{z}}=z, \chi_{1}(g)=1\right) \\
& =\left\langle\chi_{V} \overline{\chi_{U}}, \chi_{1}\right\rangle & & \text { (Defn.) } \\
& =\left\langle\chi_{\operatorname{Hom}_{\mathbb{C}}(U, V)}, \chi_{1}\right\rangle & \\
& =\operatorname{dim}_{\mathbb{C}}\left(\operatorname{Hom}_{\mathbb{C}}(U, V)^{G}\right),(24),(25) \tag{26}
\end{array}
$$

Interpreting $\left\langle\chi_{U}, \chi_{V}\right\rangle$

Thm. $\left\langle\chi_{U}, \chi_{V}\right\rangle=\operatorname{dim}_{\mathbb{C}}\left(\operatorname{Hom}_{\mathbb{C}[G]}(U, V)\right)$.
Proof.

$$
\begin{array}{rlrl}
\left\langle\chi_{V}, \chi_{U}\right\rangle & =\frac{1}{|G|} \sum_{G} \overline{\chi_{V}}(g) \chi_{U}(g) & & \text { (Defn.) } \\
& =\frac{1}{|G|} \sum_{G} \overline{\chi_{V}(g) \overline{\chi_{U}}(g)} \cdot \chi_{1}(g) & & \left(\overline{\bar{z}}=z, \chi_{1}(g)=1\right) \\
& =\left\langle\chi_{V} \overline{\chi_{U}}, \chi_{1}\right\rangle & & \text { (Defn.) } \\
& =\left\langle\chi_{\operatorname{Hom}_{\mathbb{C}}(U, V)}, \chi_{1}\right\rangle & \\
& =\operatorname{dim}_{\mathbb{C}}\left(\operatorname{Hom}_{\mathbb{C}}(U, V),(24),(25)\right. \tag{26}\\
& =\operatorname{dim}_{\mathbb{C}}\left(\operatorname{Hom}_{\mathbb{C}[G]}(U, V)\right)
\end{array}
$$

Interpreting $\left\langle\chi_{U}, \chi_{V}\right\rangle$

Thm. $\left\langle\chi_{U}, \chi_{V}\right\rangle=\operatorname{dim}_{\mathbb{C}}\left(\operatorname{Hom}_{\mathbb{C}[G]}(U, V)\right)$.
Proof.

$$
\begin{array}{rlrl}
\left\langle\chi_{V}, \chi_{U}\right\rangle & =\frac{1}{|G|} \sum_{G} \overline{\chi_{V}}(g) \chi_{U}(g) & & \text { (Defn.) } \\
& =\frac{1}{|G|} \sum_{G} \overline{\chi_{V}(g) \overline{\chi_{U}(g)} \cdot \chi_{1}(g)} & & \left(\overline{\bar{z}}=z, \chi_{1}(g)=1\right) \\
& =\left\langle\chi_{V} \overline{\chi_{U}}, \chi_{1}\right\rangle & & \text { (Defn.) } \\
& =\left\langle\chi_{\operatorname{Hom}_{\mathbb{C}}(U, V)}, \chi_{1}\right\rangle & & (22),(24),(25) \\
& =\operatorname{dim}_{\mathbb{C}}\left(\operatorname{Hom}_{\mathbb{C}}(U, V)^{G}\right) & & (26) \\
& =\operatorname{dim}_{\mathbb{C}}\left(\operatorname{Hom}_{\mathbb{C}[G]}(U, V)\right) \\
& =\overline{\operatorname{dim}_{\mathbb{C}}\left(\operatorname{Hom}_{\mathbb{C}[G]}(U, V)\right)} & & \operatorname{dim} \text { is in } \mathbb{N}
\end{array}
$$

Interpreting $\left\langle\chi_{U}, \chi_{V}\right\rangle$

Thm. $\left\langle\chi_{U}, \chi_{V}\right\rangle=\operatorname{dim}_{\mathbb{C}}\left(\operatorname{Hom}_{\mathbb{C}[G]}(U, V)\right)$.
Proof.

$$
\begin{array}{rlrl}
\left\langle\chi_{V}, \chi_{U}\right\rangle & =\frac{1}{|G|} \sum_{G} \overline{\chi_{V}}(g) \chi_{U}(g) & & \text { (Defn.) } \\
& =\frac{1}{|G|} \sum_{G} \overline{\chi_{V}(g) \overline{\chi_{U}}(g)} \cdot \chi_{1}(g) & & \left(\overline{\bar{z}}=z, \chi_{1}(g)=1\right) \\
& =\left\langle\chi_{V} \overline{\chi_{U}}, \chi_{1}\right\rangle & & \text { (Defn.) } \\
& =\left\langle\chi_{\operatorname{Hom}_{\mathbb{C}}(U, V)}, \chi_{1}\right\rangle & & (22),(24),(25) \\
& =\operatorname{dim}_{\mathbb{C}}\left(\operatorname{Hom}_{\mathbb{C}}(U, V)^{G}\right) & & (26) \\
& =\operatorname{dim}_{\mathbb{C}}\left(\operatorname{Hom}_{\mathbb{C}[G]}(U, V)\right) & & \text { (Check!) } \\
& =\overline{\operatorname{dim}_{\mathbb{C}}\left(\operatorname{Hom}_{\mathbb{C}[G]}(U, V)\right)} \\
& =\overline{\left\langle\chi_{V}, \chi_{U}\right\rangle} & & \text { dim is in } \mathbb{N}
\end{array}
$$

Interpreting $\left\langle\chi_{U}, \chi_{V}\right\rangle$

Thm. $\left\langle\chi_{U}, \chi_{V}\right\rangle=\operatorname{dim}_{\mathbb{C}}\left(\operatorname{Hom}_{\mathbb{C}[G]}(U, V)\right)$.
Proof.

$$
\begin{aligned}
\left\langle\chi_{V}, \chi_{U}\right\rangle & =\frac{1}{|G|} \sum_{G} \overline{\chi_{V}}(g) \chi_{U}(g) & & \text { (Defn.) } \\
& =\frac{1}{|G|} \sum_{G} \overline{\chi_{V}(g) \overline{\chi_{U}}(g)} \cdot \chi_{1}(g) & & \left(\overline{\bar{z}}=z, \chi_{1}(g)=1\right) \\
& =\left\langle\chi_{V} \overline{\chi_{U}}, \chi_{1}\right\rangle & & \text { (Defn.) } \\
& =\left\langle\chi_{\operatorname{Hom}_{\mathbb{C}}(U, V)}, \chi_{1}\right\rangle & & (22),(24),(25) \\
& =\operatorname{dim}_{\mathbb{C}}\left(\operatorname{Hom}_{\mathbb{C}}(U, V)^{G}\right) & & \text { (26) } \\
& =\operatorname{dim}_{\mathbb{C}}\left(\operatorname{Hom}_{\mathbb{C}[G]}(U, V)\right) & & \text { (Check!) } \\
& =\overline{\operatorname{dim}_{\mathbb{C}}\left(\operatorname{Hom}_{\mathbb{C}[G]}(U, V)\right)} & & \text { dim is in } \mathbb{N} \\
& =\overline{\left\langle\chi_{V}, \chi_{U}\right\rangle} & & \text { (Reverse argument) } \\
& =\left\langle\chi_{U}, \chi_{V}\right\rangle . & & \text { (Defn.) } \square
\end{aligned}
$$

Interpreting $\left\langle\chi_{U}, \chi_{V}\right\rangle$

Thm. $\left\langle\chi_{U}, \chi_{V}\right\rangle=\operatorname{dim}_{\mathbb{C}}\left(\operatorname{Hom}_{\mathbb{C}[G]}(U, V)\right)$.
Proof.

$$
\begin{aligned}
\left\langle\chi_{V}, \chi_{U}\right\rangle & =\frac{1}{|G|} \sum_{G} \overline{\chi_{V}}(g) \chi_{U}(g) & & \text { (Defn.) } \\
& =\frac{1}{|G|} \sum_{G} \overline{\chi_{V}(g) \overline{\chi_{U}}(g)} \cdot \chi_{1}(g) & & \left(\overline{\bar{z}}=z, \chi_{1}(g)=1\right) \\
& =\left\langle\chi_{V} \overline{\chi_{U}}, \chi_{1}\right\rangle & & \text { (Defn.) } \\
& =\left\langle\chi_{\operatorname{Hom}_{\mathbb{C}}(U, V)}, \chi_{1}\right\rangle & & (22),(24),(25) \\
& =\operatorname{dim}_{\mathbb{C}}\left(\operatorname{Hom}_{\mathbb{C}}(U, V)^{G}\right) & & \text { (26) } \\
& =\operatorname{dim}_{\mathbb{C}}\left(\operatorname{Hom}_{\mathbb{C}[G]}(U, V)\right) & & \text { (Check!) } \\
& =\overline{\operatorname{dim}_{\mathbb{C}}\left(\operatorname{Hom}_{\mathbb{C}[G]}(U, V)\right)} & & \text { dim is in } \mathbb{N} \\
& =\overline{\left\langle\chi_{V}, \chi_{U}\right\rangle} & & \text { (Reverse argument) } \\
& =\left\langle\chi_{U}, \chi_{V}\right\rangle . & & \text { (Defn.) } \square
\end{aligned}
$$

Row orthogonality

Row orthogonality

Cor. If $\chi_{i}, \chi_{j} \in \operatorname{Irr}(G)$, then $\left\langle\chi_{i}, \chi_{j}\right\rangle=\operatorname{dim}_{\mathbb{C}}\left(\operatorname{Hom}_{\mathbb{C}[G]}\left(S_{i}, S_{j}\right)\right)=\delta_{i j}$.

Row orthogonality

Cor. If $\chi_{i}, \chi_{j} \in \operatorname{Irr}(G)$, then $\left\langle\chi_{i}, \chi_{j}\right\rangle=\operatorname{dim}_{\mathbb{C}}\left(\operatorname{Hom}_{\mathbb{C}[G]}\left(S_{i}, S_{j}\right)\right)=\delta_{i j}$. Proof.

Row orthogonality

Cor. If $\chi_{i}, \chi_{j} \in \operatorname{Irr}(G)$, then $\left\langle\chi_{i}, \chi_{j}\right\rangle=\operatorname{dim}_{\mathbb{C}}\left(\operatorname{Hom}_{\mathbb{C}[G]}\left(S_{i}, S_{j}\right)\right)=\delta_{i j}$. Proof. Schur's Lemma.

Row orthogonality

Cor. If $\chi_{i}, \chi_{j} \in \operatorname{Irr}(G)$, then $\left\langle\chi_{i}, \chi_{j}\right\rangle=\operatorname{dim}_{\mathbb{C}}\left(\operatorname{Hom}_{\mathbb{C}[G]}\left(S_{i}, S_{j}\right)\right)=\delta_{i j}$. Proof. Schur's Lemma. \square

Column orthogonality

Column orthogonality

Let \mathcal{X} be the character table of G viewed as a square matrix over \mathbb{C}.

Column orthogonality

Let \mathcal{X} be the character table of G viewed as a square matrix over \mathbb{C}. Let K be the square diagonal matrix whose i, i-th diagonal entry is $k_{i} /|G|$.

Column orthogonality

Let \mathcal{X} be the character table of G viewed as a square matrix over \mathbb{C}. Let K be the square diagonal matrix whose i, i-th diagonal entry is $k_{i} /|G|$. Row orthogonality may be expressed as $\mathcal{X} K \mathcal{X}^{H}=I$.

Column orthogonality

Let \mathcal{X} be the character table of G viewed as a square matrix over \mathbb{C}. Let K be the square diagonal matrix whose i, i-th diagonal entry is $k_{i} /|G|$. Row orthogonality may be expressed as $\mathcal{X} K \mathcal{X}^{H}=I$. This implies $\mathcal{X}^{H} \mathcal{X} K=I$,

Column orthogonality

Let \mathcal{X} be the character table of G viewed as a square matrix over \mathbb{C}. Let K be the square diagonal matrix whose i, i-th diagonal entry is $k_{i} /|G|$. Row orthogonality may be expressed as $\mathcal{X} K \mathcal{X}^{H}=I$. This implies $\mathcal{X}^{H} \mathcal{X} K=I$, or $\mathcal{X}^{H} \mathcal{X}=K^{-1}$.

Column orthogonality

Let \mathcal{X} be the character table of G viewed as a square matrix over \mathbb{C}. Let K be the square diagonal matrix whose i, i-th diagonal entry is $k_{i} /|G|$. Row orthogonality may be expressed as $\mathcal{X} K \mathcal{X}^{H}=I$.
This implies $\mathcal{X}^{H} \mathcal{X} K=I$, or $\mathcal{X}^{H} \mathcal{X}=K^{-1}$. This is summarized by:

Column orthogonality

Let \mathcal{X} be the character table of G viewed as a square matrix over \mathbb{C}. Let K be the square diagonal matrix whose i, i-th diagonal entry is $k_{i} /|G|$. Row orthogonality may be expressed as $\mathcal{X} K \mathcal{X}^{H}=I$.
This implies $\mathcal{X}^{H} \mathcal{X} K=I$, or $\mathcal{X}^{H} \mathcal{X}=K^{-1}$. This is summarized by:
Thm. If $g, h \in G$ are not conjugate, then $\sum_{\chi \in \operatorname{Irr}(G)} \overline{\chi(g)} \chi(h)=0$.
Otherwise $\sum_{\chi \in \operatorname{Irr}(G)} \overline{\chi(g)} \chi(g)=\left|C_{G}(g)\right|$.

Example

Example

	1	3	2
S_{3}	1	$\left(\begin{array}{l}12\end{array}\right)$	$\left(\begin{array}{ll}1 & 2\end{array}\right)$
χ_{1}	1	1	1
χ_{2}	1	-1	1
χ_{3}	2	0	-1

Example

	1	3	2
S_{3}	1	$\left(\begin{array}{ll}1 & 2\end{array}\right)$	$\left(\begin{array}{ll}1 & 2\end{array}\right)$
χ_{1}	1	1	1
χ_{2}	1	-1	1
χ_{3}	2	0	-1

Test orthogonality of columns (i, j).

Example

S_{3}	1	$\begin{gathered} 3 \\ (12) \end{gathered}$	$\begin{gathered} 2 \\ (123) \end{gathered}$
χ_{1}	1	1	1
χ_{2}	1	-1	1
χ_{3}	2	0	-1

Test orthogonality of columns (i, j). The sum $\sum_{\chi \in \operatorname{Irr}(G)} \overline{\chi(g)} \chi(h)$ is

Example

S_{3}	1	$\begin{gathered} 3 \\ (12) \end{gathered}$	$\begin{gathered} 2 \\ (123) \end{gathered}$
χ_{1}	1	1	1
χ_{2}	1	-1	1
χ_{3}	2	0	-1

Test orthogonality of columns (i, j). The sum $\sum_{\chi \in \operatorname{Irr}(G)} \overline{\chi(g)} \chi(h)$ is

- $(i, j)=(1,2):(1)(1)+(1)(-1)+(2)(0)=0$

Example

S_{3}	1	$\begin{gathered} 3 \\ (12) \end{gathered}$	$\begin{gathered} 2 \\ (123) \end{gathered}$
χ_{1}	1	1	1
χ_{2}	1	-1	1
χ_{3}	2	0	-1

Test orthogonality of columns (i, j). The sum $\sum_{\chi \in \operatorname{Irr}(G)} \overline{\chi(g)} \chi(h)$ is

- $(i, j)=(1,2):(1)(1)+(1)(-1)+(2)(0)=0$

Example

	1	3	2
S_{3}	1	$\left(\begin{array}{ll}1 & 2\end{array}\right)$	$\left(\begin{array}{ll}1 & 2\end{array}\right)$
χ_{1}	1	1	1
χ_{2}	1	-1	1
χ_{3}	2	0	-1

Test orthogonality of columns (i, j). The sum $\sum_{\chi \in \operatorname{Irr}(G)} \overline{\chi(g)} \chi(h)$ is

- $(i, j)=(1,2):(1)(1)+(1)(-1)+(2)(0)=0$
- $(i, j)=(1,3):(1)(1)+(1)(1)+(2)(-1)=0$

Example

	1	3	2
S_{3}	1	$\left(\begin{array}{ll}1 & 2\end{array}\right)$	$\left(\begin{array}{ll}1 & 2\end{array}\right)$
χ_{1}	1	1	1
χ_{2}	1	-1	1
χ_{3}	2	0	-1

Test orthogonality of columns (i, j). The sum $\sum_{\chi \in \operatorname{Irr}(G)} \overline{\chi(g)} \chi(h)$ is

- $(i, j)=(1,2):(1)(1)+(1)(-1)+(2)(0)=0$
- $(i, j)=(1,3):(1)(1)+(1)(1)+(2)(-1)=0$

Example

S_{3}	1	$\begin{gathered} 3 \\ (12) \end{gathered}$	$\begin{gathered} 2 \\ (123) \end{gathered}$
χ_{1}	1	1	1
χ_{2}	1	-1	1
χ_{3}	2	0	-1

Test orthogonality of columns (i, j). The sum $\sum_{\chi \in \operatorname{Irr}(G)} \overline{\chi(g)} \chi(h)$ is

- $(i, j)=(1,2):(1)(1)+(1)(-1)+(2)(0)=0$
- $(i, j)=(1,3):(1)(1)+(1)(1)+(2)(-1)=0$
- $(i, j)=(2,3):(1)(1)+(-1)(1)+(0)(-1)=0$

Example

S_{3}	1	$\begin{gathered} 3 \\ (12) \end{gathered}$	$\begin{gathered} 2 \\ (123) \end{gathered}$
χ_{1}	1	1	1
χ_{2}	1	-1	1
χ_{3}	2	0	-1

Test orthogonality of columns (i, j). The sum $\sum_{\chi \in \operatorname{Irr}(G)} \overline{\chi(g)} \chi(h)$ is

- $(i, j)=(1,2):(1)(1)+(1)(-1)+(2)(0)=0$
- $(i, j)=(1,3):(1)(1)+(1)(1)+(2)(-1)=0$
- $(i, j)=(2,3):(1)(1)+(-1)(1)+(0)(-1)=0$

Example

	1	3	2
S_{3}	1	$\left(\begin{array}{ll}1 & 2\end{array}\right)$	$\left(\begin{array}{ll}1 & 2\end{array}\right)$
χ_{1}	1	1	1
χ_{2}	1	-1	1
χ_{3}	2	0	-1

Test orthogonality of columns (i, j). The sum $\sum_{\chi \in \operatorname{Irr}(G)} \overline{\chi(g)} \chi(h)$ is

- $(i, j)=(1,2):(1)(1)+(1)(-1)+(2)(0)=0$
- $(i, j)=(1,3):(1)(1)+(1)(1)+(2)(-1)=0$
- $(i, j)=(2,3):(1)(1)+(-1)(1)+(0)(-1)=0$
- $(i, j)=(1,1): 1^{2}+1^{2}+2^{2}=6$

Example

	1	3	2
S_{3}	1	$\left(\begin{array}{ll}1 & 2\end{array}\right)$	$\left(\begin{array}{ll}1 & 2\end{array}\right)$
χ_{1}	1	1	1
χ_{2}	1	-1	1
χ_{3}	2	0	-1

Test orthogonality of columns (i, j). The sum $\sum_{\chi \in \operatorname{Irr}(G)} \overline{\chi(g)} \chi(h)$ is

- $(i, j)=(1,2):(1)(1)+(1)(-1)+(2)(0)=0$
- $(i, j)=(1,3):(1)(1)+(1)(1)+(2)(-1)=0$
- $(i, j)=(2,3):(1)(1)+(-1)(1)+(0)(-1)=0$
- $(i, j)=(1,1): 1^{2}+1^{2}+2^{2}=6$

Example

	1	3	2
S_{3}	1	$\left(\begin{array}{ll}1 & 2\end{array}\right)$	$\left(\begin{array}{ll}1 & 2\end{array}\right)$
χ_{1}	1	1	1
χ_{2}	1	-1	1
χ_{3}	2	0	-1

Test orthogonality of columns (i, j). The sum $\sum_{\chi \in \operatorname{Irr}(G)} \overline{\chi(g)} \chi(h)$ is

- $(i, j)=(1,2):(1)(1)+(1)(-1)+(2)(0)=0$
- $(i, j)=(1,3):(1)(1)+(1)(1)+(2)(-1)=0$
- $(i, j)=(2,3):(1)(1)+(-1)(1)+(0)(-1)=0$
- $(i, j)=(1,1): 1^{2}+1^{2}+2^{2}=6=\left|C_{G}(1)\right|$

Example

	1	3	2
S_{3}	1	$\left(\begin{array}{ll}1 & 2\end{array}\right)$	$\left(\begin{array}{ll}1 & 2\end{array}\right)$
χ_{1}	1	1	1
χ_{2}	1	-1	1
χ_{3}	2	0	-1

Test orthogonality of columns (i, j). The sum $\sum_{\chi \in \operatorname{Irr}(G)} \overline{\chi(g)} \chi(h)$ is

- $(i, j)=(1,2):(1)(1)+(1)(-1)+(2)(0)=0$
- $(i, j)=(1,3):(1)(1)+(1)(1)+(2)(-1)=0$
- $(i, j)=(2,3):(1)(1)+(-1)(1)+(0)(-1)=0$
- $(i, j)=(1,1): 1^{2}+1^{2}+2^{2}=6=\left|C_{G}(1)\right|$
- $(i, j)=(2,2): 1^{2}+(-1)^{2}+0^{2}=2$

Example

	1	3	2
S_{3}	1	$\left(\begin{array}{ll}1 & 2\end{array}\right)$	$\left(\begin{array}{ll}1 & 2\end{array}\right)$
χ_{1}	1	1	1
χ_{2}	1	-1	1
χ_{3}	2	0	-1

Test orthogonality of columns (i, j). The sum $\sum_{\chi \in \operatorname{Irr}(G)} \overline{\chi(g)} \chi(h)$ is

- $(i, j)=(1,2):(1)(1)+(1)(-1)+(2)(0)=0$
- $(i, j)=(1,3):(1)(1)+(1)(1)+(2)(-1)=0$
- $(i, j)=(2,3):(1)(1)+(-1)(1)+(0)(-1)=0$
- $(i, j)=(1,1): 1^{2}+1^{2}+2^{2}=6=\left|C_{G}(1)\right|$
- $(i, j)=(2,2): 1^{2}+(-1)^{2}+0^{2}=2$

Example

S_{3}	1	$\begin{gathered} 3 \\ (12) \end{gathered}$	$\begin{gathered} 2 \\ (123) \end{gathered}$
χ_{1}	1	1	1
χ_{2}	1	-1	1
χ_{3}	2	0	-1

Test orthogonality of columns (i, j). The sum $\sum_{\chi \in \operatorname{Irr}(G)} \overline{\chi(g)} \chi(h)$ is

- $(i, j)=(1,2):(1)(1)+(1)(-1)+(2)(0)=0$
- $(i, j)=(1,3):(1)(1)+(1)(1)+(2)(-1)=0$
- $(i, j)=(2,3):(1)(1)+(-1)(1)+(0)(-1)=0$
- $(i, j)=(1,1): 1^{2}+1^{2}+2^{2}=6=\left|C_{G}(1)\right|$
- $(i, j)=(2,2): 1^{2}+(-1)^{2}+0^{2}=2=\left|C_{G}((12))\right|$

Example

S_{3}	1	$\begin{gathered} 3 \\ (12) \end{gathered}$	$\begin{gathered} 2 \\ (123) \end{gathered}$
χ_{1}	1	1	1
χ_{2}	1	-1	1
χ_{3}	2	0	-1

Test orthogonality of columns (i, j). The sum $\sum_{\chi \in \operatorname{Irr}(G)} \overline{\chi(g)} \chi(h)$ is

- $(i, j)=(1,2):(1)(1)+(1)(-1)+(2)(0)=0$
- $(i, j)=(1,3):(1)(1)+(1)(1)+(2)(-1)=0$
- $(i, j)=(2,3):(1)(1)+(-1)(1)+(0)(-1)=0$
- $(i, j)=(1,1): 1^{2}+1^{2}+2^{2}=6=\left|C_{G}(1)\right|$
- $(i, j)=(2,2): 1^{2}+(-1)^{2}+0^{2}=2=\left|C_{G}((12))\right|$
- $(i, j)=(1,1): 1^{2}+1^{2}+(-1)^{2}=3$

Example

S_{3}	1	$\begin{gathered} 3 \\ (12) \end{gathered}$	$\begin{gathered} 2 \\ (123) \end{gathered}$
χ_{1}	1	1	1
χ_{2}	1	-1	1
χ_{3}	2	0	-1

Test orthogonality of columns (i, j). The sum $\sum_{\chi \in \operatorname{Irr}(G)} \overline{\chi(g)} \chi(h)$ is

- $(i, j)=(1,2):(1)(1)+(1)(-1)+(2)(0)=0$
- $(i, j)=(1,3):(1)(1)+(1)(1)+(2)(-1)=0$
- $(i, j)=(2,3):(1)(1)+(-1)(1)+(0)(-1)=0$
- $(i, j)=(1,1): 1^{2}+1^{2}+2^{2}=6=\left|C_{G}(1)\right|$
- $(i, j)=(2,2): 1^{2}+(-1)^{2}+0^{2}=2=\left|C_{G}((12))\right|$
- $(i, j)=(1,1): 1^{2}+1^{2}+(-1)^{2}=3$

Example

S_{3}	1	$\begin{gathered} 3 \\ (12) \end{gathered}$	$\begin{gathered} 2 \\ (123) \end{gathered}$
χ_{1}	1	1	1
χ_{2}	1	-1	1
χ_{3}	2	0	-1

Test orthogonality of columns (i, j). The sum $\sum_{\chi \in \operatorname{Irr}(G)} \overline{\chi(g)} \chi(h)$ is

- $(i, j)=(1,2):(1)(1)+(1)(-1)+(2)(0)=0$
- $(i, j)=(1,3):(1)(1)+(1)(1)+(2)(-1)=0$
- $(i, j)=(2,3):(1)(1)+(-1)(1)+(0)(-1)=0$
- $(i, j)=(1,1): 1^{2}+1^{2}+2^{2}=6=\left|C_{G}(1)\right|$
- $(i, j)=(2,2): 1^{2}+(-1)^{2}+0^{2}=2=\left|C_{G}((12))\right|$
- $(i, j)=(1,1): 1^{2}+1^{2}+(-1)^{2}=3=\left|C_{G}\left(\left(\begin{array}{ll}1 & 2\end{array}\right)\right)\right|$

Example

S_{3}	1	$\begin{gathered} 3 \\ (12) \end{gathered}$	$\begin{gathered} 2 \\ (123) \end{gathered}$
χ_{1}	1	1	1
χ_{2}	1	-1	1
χ_{3}	2	0	-1

Test orthogonality of columns (i, j). The sum $\sum_{\chi \in \operatorname{Irr}(G)} \overline{\chi(g)} \chi(h)$ is

- $(i, j)=(1,2):(1)(1)+(1)(-1)+(2)(0)=0$
- $(i, j)=(1,3):(1)(1)+(1)(1)+(2)(-1)=0$
- $(i, j)=(2,3):(1)(1)+(-1)(1)+(0)(-1)=0$
- $(i, j)=(1,1): 1^{2}+1^{2}+2^{2}=6=\left|C_{G}(1)\right|$
- $(i, j)=(2,2): 1^{2}+(-1)^{2}+0^{2}=2=\left|C_{G}((12))\right|$
- $(i, j)=(1,1): 1^{2}+1^{2}+(-1)^{2}=3=\left|C_{G}\left(\left(\begin{array}{ll}1 & 2\end{array}\right)\right)\right|$

Observations

Observations

Cor. (30)

Observations

Cor. (30) (Irreducibility test)

Observations

Cor. (30) (Irreducibility test) If $U \cong n_{1} S_{1} \oplus \cdots \oplus n_{r} S_{r}$, then $\left\langle\chi_{U}, \chi_{U}\right\rangle=\sum_{i=1}^{r} n_{i}^{2}$.

Observations

Cor. (30) (Irreducibility test) If $U \cong n_{1} S_{1} \oplus \cdots \oplus n_{r} S_{r}$, then $\left\langle\chi_{U}, \chi_{U}\right\rangle=\sum_{i=1}^{r} n_{i}^{2}$. Hence U is a simple iff $\left\langle\chi_{U}, \chi_{U}\right\rangle=1$.

Observations

Cor. (30) (Irreducibility test) If $U \cong n_{1} S_{1} \oplus \cdots \oplus n_{r} S_{r}$, then $\left\langle\chi_{U}, \chi_{U}\right\rangle=\sum_{i=1}^{r} n_{i}^{2}$. Hence U is a simple iff $\left\langle\chi_{U}, \chi_{U}\right\rangle=1$. In fact, U is direct sum of 1,2 , or 3 pairwise nonisomorphic simple submodules iff $\left\langle\chi_{U}, \chi_{U}\right\rangle=1,2$ or 3 .

Observations

Cor. (30) (Irreducibility test) If $U \cong n_{1} S_{1} \oplus \cdots \oplus n_{r} S_{r}$, then $\left\langle\chi_{U}, \chi_{U}\right\rangle=\sum_{i=1}^{r} n_{i}^{2}$. Hence U is a simple iff $\left\langle\chi_{U}, \chi_{U}\right\rangle=1$. In fact, U is direct sum of 1,2 , or 3 pairwise nonisomorphic simple submodules iff $\left\langle\chi_{U}, \chi_{U}\right\rangle=1,2$ or 3 . \square

Observations

Cor. (30) (Irreducibility test) If $U \cong n_{1} S_{1} \oplus \cdots \oplus n_{r} S_{r}$, then $\left\langle\chi_{U}, \chi_{U}\right\rangle=\sum_{i=1}^{r} n_{i}^{2}$. Hence U is a simple iff $\left\langle\chi_{U}, \chi_{U}\right\rangle=1$. In fact, U is direct sum of 1,2 , or 3 pairwise nonisomorphic simple submodules iff $\left\langle\chi_{U}, \chi_{U}\right\rangle=1,2$ or 3 . \square

Cor. (31) (Orthonormal expansion)

Observations

Cor. (30) (Irreducibility test) If $U \cong n_{1} S_{1} \oplus \cdots \oplus n_{r} S_{r}$, then $\left\langle\chi_{U}, \chi_{U}\right\rangle=\sum_{i=1}^{r} n_{i}^{2}$. Hence U is a simple iff $\left\langle\chi_{U}, \chi_{U}\right\rangle=1$.
In fact, U is direct sum of 1,2 , or 3 pairwise nonisomorphic simple submodules iff $\left\langle\chi_{U}, \chi_{U}\right\rangle=1,2$ or 3 . \square

Cor. (31) (Orthonormal expansion) Assume that χ_{U} is the character of a G-module U and that $\left\{\chi_{1}, \ldots, \chi_{r}\right\}$ are the distinct irreducible characters of G, then $\chi_{U}=\sum_{i=1}^{r}\left\langle\chi_{i}, \chi_{U}\right\rangle \cdot \chi_{i}$.

Observations

Cor. (30) (Irreducibility test) If $U \cong n_{1} S_{1} \oplus \cdots \oplus n_{r} S_{r}$, then $\left\langle\chi_{U}, \chi_{U}\right\rangle=\sum_{i=1}^{r} n_{i}^{2}$. Hence U is a simple iff $\left\langle\chi_{U}, \chi_{U}\right\rangle=1$.
In fact, U is direct sum of 1,2 , or 3 pairwise nonisomorphic simple submodules iff $\left\langle\chi_{U}, \chi_{U}\right\rangle=1,2$ or 3 . \square

Cor. (31) (Orthonormal expansion) Assume that χ_{U} is the character of a G-module U and that $\left\{\chi_{1}, \ldots, \chi_{r}\right\}$ are the distinct irreducible characters of G, then $\chi_{U}=\sum_{i=1}^{r}\left\langle\chi_{i}, \chi_{U}\right\rangle \cdot \chi_{i}$. (If $U \cong n_{1} S_{1} \oplus \cdots \oplus n_{r} S_{r}$, then $\left\langle\chi_{i}, \chi_{U}\right\rangle=n_{i}$, so this reads $\chi_{U}=\sum_{i=1}^{r} n_{i} \cdot \chi_{i}$.)

Observations

Cor. (30) (Irreducibility test) If $U \cong n_{1} S_{1} \oplus \cdots \oplus n_{r} S_{r}$, then $\left\langle\chi_{U}, \chi_{U}\right\rangle=\sum_{i=1}^{r} n_{i}^{2}$. Hence U is a simple iff $\left\langle\chi_{U}, \chi_{U}\right\rangle=1$.
In fact, U is direct sum of 1,2 , or 3 pairwise nonisomorphic simple submodules iff $\left\langle\chi_{U}, \chi_{U}\right\rangle=1,2$ or 3 . \square

Cor. (31) (Orthonormal expansion) Assume that χ_{U} is the character of a G-module U and that $\left\{\chi_{1}, \ldots, \chi_{r}\right\}$ are the distinct irreducible characters of G, then $\chi_{U}=\sum_{i=1}^{r}\left\langle\chi_{i}, \chi_{U}\right\rangle \cdot \chi_{i}$. (If $U \cong n_{1} S_{1} \oplus \cdots \oplus n_{r} S_{r}$, then $\left\langle\chi_{i}, \chi_{U}\right\rangle=n_{i}$, so this reads $\chi_{U}=\sum_{i=1}^{r} n_{i} \cdot \chi_{i}$.) \square

Observations

Cor. (30) (Irreducibility test) If $U \cong n_{1} S_{1} \oplus \cdots \oplus n_{r} S_{r}$, then $\left\langle\chi_{U}, \chi_{U}\right\rangle=\sum_{i=1}^{r} n_{i}^{2}$. Hence U is a simple iff $\left\langle\chi_{U}, \chi_{U}\right\rangle=1$.
In fact, U is direct sum of 1,2 , or 3 pairwise nonisomorphic simple submodules iff $\left\langle\chi_{U}, \chi_{U}\right\rangle=1,2$ or 3 . \square

Cor. (31) (Orthonormal expansion) Assume that χ_{U} is the character of a G-module U and that $\left\{\chi_{1}, \ldots, \chi_{r}\right\}$ are the distinct irreducible characters of G, then $\chi_{U}=\sum_{i=1}^{r}\left\langle\chi_{i}, \chi_{U}\right\rangle \cdot \chi_{i}$. (If $U \cong n_{1} S_{1} \oplus \cdots \oplus n_{r} S_{r}$, then $\left\langle\chi_{i}, \chi_{U}\right\rangle=n_{i}$, so this reads $\chi_{U}=\sum_{i=1}^{r} n_{i} \cdot \chi_{i}$.) \square

Cor. (31) (Characters determine isotype)

Observations

Cor. (30) (Irreducibility test) If $U \cong n_{1} S_{1} \oplus \cdots \oplus n_{r} S_{r}$, then $\left\langle\chi_{U}, \chi_{U}\right\rangle=\sum_{i=1}^{r} n_{i}^{2}$. Hence U is a simple iff $\left\langle\chi_{U}, \chi_{U}\right\rangle=1$.
In fact, U is direct sum of 1,2 , or 3 pairwise nonisomorphic simple submodules iff $\left\langle\chi_{U}, \chi_{U}\right\rangle=1,2$ or 3 . \square

Cor. (31) (Orthonormal expansion) Assume that χ_{U} is the character of a G-module U and that $\left\{\chi_{1}, \ldots, \chi_{r}\right\}$ are the distinct irreducible characters of G, then $\chi_{U}=\sum_{i=1}^{r}\left\langle\chi_{i}, \chi_{U}\right\rangle \cdot \chi_{i}$. (If $U \cong n_{1} S_{1} \oplus \cdots \oplus n_{r} S_{r}$, then $\left\langle\chi_{i}, \chi_{U}\right\rangle=n_{i}$, so this reads $\chi_{U}=\sum_{i=1}^{r} n_{i} \cdot \chi_{i}$.) \square

Cor. (31) (Characters determine isotype) Any finite dimensional G-module U is determined up to isomorphism by its character, χ_{U}.

Observations

Cor. (30) (Irreducibility test) If $U \cong n_{1} S_{1} \oplus \cdots \oplus n_{r} S_{r}$, then $\left\langle\chi_{U}, \chi_{U}\right\rangle=\sum_{i=1}^{r} n_{i}^{2}$. Hence U is a simple iff $\left\langle\chi_{U}, \chi_{U}\right\rangle=1$.
In fact, U is direct sum of 1,2 , or 3 pairwise nonisomorphic simple submodules iff $\left\langle\chi_{U}, \chi_{U}\right\rangle=1,2$ or 3 . \square

Cor. (31) (Orthonormal expansion) Assume that χ_{U} is the character of a G-module U and that $\left\{\chi_{1}, \ldots, \chi_{r}\right\}$ are the distinct irreducible characters of G, then $\chi_{U}=\sum_{i=1}^{r}\left\langle\chi_{i}, \chi_{U}\right\rangle \cdot \chi_{i}$. (If $U \cong n_{1} S_{1} \oplus \cdots \oplus n_{r} S_{r}$, then $\left\langle\chi_{i}, \chi_{U}\right\rangle=n_{i}$, so this reads $\chi_{U}=\sum_{i=1}^{r} n_{i} \cdot \chi_{i}$.) \square

Cor. (31) (Characters determine isotype) Any finite dimensional G-module U is determined up to isomorphism by its character, $\chi_{U} . \square$

Orbit counting formula

Orbit counting formula

Burnside's Lm,

Orbit counting formula

Burnside's Lm, not-Burnside's Lm,

Orbit counting formula

Burnside's Lm, not-Burnside's Lm, Cauchy-Frobenius Lm.

Orbit counting formula

Burnside's Lm, not-Burnside's Lm, Cauchy-Frobenius Lm. If G acts on a finite set X, the number of orbits is $\left\langle\chi_{X}, \chi_{1}\right\rangle$.

Orbit counting formula

Burnside's Lm, not-Burnside's Lm, Cauchy-Frobenius Lm. If G acts on a finite set X, the number of orbits is $\left\langle\chi_{X}, \chi_{1}\right\rangle$.
Proof.

Orbit counting formula

Burnside's Lm, not-Burnside's Lm, Cauchy-Frobenius Lm. If G acts on a finite set X, the number of orbits is $\left\langle\chi_{x}, \chi_{1}\right\rangle$.

Proof. It suffices to prove that when G acts transitively on X, then $\left\langle\chi_{X}, \chi_{1}\right\rangle=\operatorname{dim}\left(\left(\mathbb{C}^{X}\right)^{G}\right)=1$.

Orbit counting formula

Burnside's Lm, not-Burnside's Lm, Cauchy-Frobenius Lm. If G acts on a finite set X, the number of orbits is $\left\langle\chi_{X}, \chi_{1}\right\rangle$.

Proof. It suffices to prove that when G acts transitively on X, then $\left\langle\chi_{X}, \chi_{1}\right\rangle=\operatorname{dim}\left(\left(\mathbb{C}^{X}\right)^{G}\right)=1$.
The dimension is at least 1 , since $\sum_{x \in X} x=\left[\begin{array}{c}1 \\ \vdots \\ 1\end{array}\right]_{X} \in\left(\mathbb{C}^{X}\right)^{G}$.

Orbit counting formula

Burnside's Lm, not-Burnside's Lm, Cauchy-Frobenius Lm. If G acts on a finite set X, the number of orbits is $\left\langle\chi_{X}, \chi_{1}\right\rangle$.

Proof. It suffices to prove that when G acts transitively on X, then $\left\langle\chi_{X}, \chi_{1}\right\rangle=\operatorname{dim}\left(\left(\mathbb{C}^{X}\right)^{G}\right)=1$.
The dimension is at least 1 , since $\sum_{x \in X} x=\left[\begin{array}{c}1 \\ \vdots \\ 1\end{array}\right]_{X} \in\left(\mathbb{C}^{X}\right)^{G}$.
Conversely, assume that $\alpha=\sum z_{i} x_{i} \in\left(\mathbb{C}^{X}\right)^{G}$.

Orbit counting formula

Burnside's Lm, not-Burnside's Lm, Cauchy-Frobenius Lm. If G acts on a finite set X, the number of orbits is $\left\langle\chi_{X}, \chi_{1}\right\rangle$.

Proof. It suffices to prove that when G acts transitively on X, then $\left\langle\chi_{X}, \chi_{1}\right\rangle=\operatorname{dim}\left(\left(\mathbb{C}^{X}\right)^{G}\right)=1$.
The dimension is at least 1 , since $\sum_{x \in X} x=\left[\begin{array}{c}1 \\ \vdots \\ 1\end{array}\right]_{X} \in\left(\mathbb{C}^{X}\right)^{G}$.
Conversely, assume that $\alpha=\sum z_{i} x_{i} \in\left(\mathbb{C}^{X}\right)^{G}$. Then $g \alpha=\alpha$ for any $g \in G$,

Orbit counting formula

Burnside's Lm, not-Burnside's Lm, Cauchy-Frobenius Lm. If G acts on a finite set X, the number of orbits is $\left\langle\chi_{X}, \chi_{1}\right\rangle$.

Proof. It suffices to prove that when G acts transitively on X, then $\left\langle\chi_{X}, \chi_{1}\right\rangle=\operatorname{dim}\left(\left(\mathbb{C}^{X}\right)^{G}\right)=1$.
The dimension is at least 1 , since $\sum_{x \in X} x=\left[\begin{array}{c}1 \\ \vdots \\ 1\end{array}\right]_{X} \in\left(\mathbb{C}^{X}\right)^{G}$.
Conversely, assume that $\alpha=\sum z_{i} x_{i} \in\left(\mathbb{C}^{X}\right)^{G}$. Then $g \alpha=\alpha$ for any $g \in G$, meaning $\sum z_{i}\left(g x_{i}\right)=\sum z_{i} x_{i}$,

Orbit counting formula

Burnside's Lm, not-Burnside's Lm, Cauchy-Frobenius Lm. If G acts on a finite set X, the number of orbits is $\left\langle\chi_{X}, \chi_{1}\right\rangle$.

Proof. It suffices to prove that when G acts transitively on X, then $\left\langle\chi_{X}, \chi_{1}\right\rangle=\operatorname{dim}\left(\left(\mathbb{C}^{X}\right)^{G}\right)=1$.
The dimension is at least 1 , since $\sum_{x \in X} x=\left[\begin{array}{c}1 \\ \vdots \\ 1\end{array}\right]_{X} \in\left(\mathbb{C}^{X}\right)^{G}$.
Conversely, assume that $\alpha=\sum z_{i} x_{i} \in\left(\mathbb{C}^{X}\right)^{G}$. Then $g \alpha=\alpha$ for any $g \in G$, meaning $\sum z_{i}\left(g x_{i}\right)=\sum z_{i} x_{i}$, meaning $z_{i}\left(g x_{i}\right)=z_{i} x_{i}$ for all i,

Orbit counting formula

Burnside's Lm, not-Burnside's Lm, Cauchy-Frobenius Lm. If G acts on a finite set X, the number of orbits is $\left\langle\chi_{x}, \chi_{1}\right\rangle$.

Proof. It suffices to prove that when G acts transitively on X, then $\left\langle\chi_{X}, \chi_{1}\right\rangle=\operatorname{dim}\left(\left(\mathbb{C}^{X}\right)^{G}\right)=1$.
The dimension is at least 1 , since $\sum_{x \in X} x=\left[\begin{array}{c}1 \\ \vdots \\ 1\end{array}\right]_{X} \in\left(\mathbb{C}^{X}\right)^{G}$.
Conversely, assume that $\alpha=\sum z_{i} x_{i} \in\left(\mathbb{C}^{X}\right)^{G}$. Then $g \alpha=\alpha$ for any $g \in G$, meaning $\sum z_{i}\left(g x_{i}\right)=\sum z_{i} x_{i}$, meaning $z_{i}\left(g x_{i}\right)=z_{i} x_{i}$ for all i, meaning z is
constant with respect to i on each G-orbit of X,

Orbit counting formula

Burnside's Lm, not-Burnside's Lm, Cauchy-Frobenius Lm. If G acts on a finite set X, the number of orbits is $\left\langle\chi_{x}, \chi_{1}\right\rangle$.

Proof. It suffices to prove that when G acts transitively on X, then $\left\langle\chi_{X}, \chi_{1}\right\rangle=\operatorname{dim}\left(\left(\mathbb{C}^{X}\right)^{G}\right)=1$.
The dimension is at least 1 , since $\sum_{x \in X} x=\left[\begin{array}{c}1 \\ \vdots \\ 1\end{array}\right]_{X} \in\left(\mathbb{C}^{X}\right)^{G}$.
Conversely, assume that $\alpha=\sum z_{i} x_{i} \in\left(\mathbb{C}^{X}\right)^{G}$. Then $g \alpha=\alpha$ for any $g \in G$, meaning $\sum z_{i}\left(g x_{i}\right)=\sum z_{i} x_{i}$, meaning $z_{i}\left(g x_{i}\right)=z_{i} x_{i}$ for all i, meaning z is constant with respect to i on each G-orbit of X, meaning $\alpha \in \operatorname{span}\left\{\left[\begin{array}{c}1 \\ \vdots \\ 1\end{array}\right]_{X}\right\}$.

Orbit counting formula

Burnside's Lm, not-Burnside's Lm, Cauchy-Frobenius Lm. If G acts on a finite set X, the number of orbits is $\left\langle\chi_{x}, \chi_{1}\right\rangle$.

Proof. It suffices to prove that when G acts transitively on X, then $\left\langle\chi_{X}, \chi_{1}\right\rangle=\operatorname{dim}\left(\left(\mathbb{C}^{X}\right)^{G}\right)=1$.
The dimension is at least 1 , since $\sum_{x \in X} x=\left[\begin{array}{c}1 \\ \vdots \\ 1\end{array}\right]_{X} \in\left(\mathbb{C}^{X}\right)^{G}$.
Conversely, assume that $\alpha=\sum z_{i} x_{i} \in\left(\mathbb{C}^{X}\right)^{G}$. Then $g \alpha=\alpha$ for any $g \in G$, meaning $\sum z_{i}\left(g x_{i}\right)=\sum z_{i} x_{i}$, meaning $z_{i}\left(g x_{i}\right)=z_{i} x_{i}$ for all i, meaning z is
constant with respect to i on each G-orbit of X, meaning $\alpha \in \operatorname{span}$

The character of a 2-transitive action

The character of a 2-transitive action

Thm.

The character of a 2-transitive action

Thm. Assume that G acts 2-transitively on X.

The character of a 2-transitive action

Thm. Assume that G acts 2-transitively on X. This implies that G acts (1-)transitively on X and that the diagonal action of G on $X \times X$ has 2 orbits: the diagonal and the off-diagonal.

The character of a 2-transitive action

Thm. Assume that G acts 2-transitively on X. This implies that G acts (1-)transitively on X and that the diagonal action of G on $X \times X$ has 2 orbits: the diagonal and the off-diagonal.
Claims:

The character of a 2-transitive action

Thm. Assume that G acts 2-transitively on X. This implies that G acts (1-)transitively on X and that the diagonal action of G on $X \times X$ has 2 orbits: the diagonal and the off-diagonal.
Claims:

- $\left\langle\chi_{X}, \chi_{1}\right\rangle=1$,

The character of a 2-transitive action

Thm. Assume that G acts 2-transitively on X. This implies that G acts (1-)transitively on X and that the diagonal action of G on $X \times X$ has 2 orbits: the diagonal and the off-diagonal.
Claims:

- $\left\langle\chi_{X}, \chi_{1}\right\rangle=1$,

The character of a 2-transitive action

Thm. Assume that G acts 2-transitively on X. This implies that G acts (1-)transitively on X and that the diagonal action of G on $X \times X$ has 2 orbits: the diagonal and the off-diagonal.
Claims:

- $\left\langle\chi_{x}, \chi_{1}\right\rangle=1$, and

The character of a 2-transitive action

Thm. Assume that G acts 2-transitively on X. This implies that G acts (1-)transitively on X and that the diagonal action of G on $X \times X$ has 2 orbits: the diagonal and the off-diagonal.
Claims:

- $\left\langle\chi_{x}, \chi_{1}\right\rangle=1$, and
- $\left\langle\chi_{X}, \chi_{X}\right\rangle=\left\langle\chi_{X} \times_{X}, \chi_{1}\right\rangle=2$.

The character of a 2-transitive action

Thm. Assume that G acts 2-transitively on X. This implies that G acts (1-)transitively on X and that the diagonal action of G on $X \times X$ has 2 orbits: the diagonal and the off-diagonal.
Claims:

- $\left\langle\chi_{x}, \chi_{1}\right\rangle=1$, and
- $\left\langle\chi_{X}, \chi_{X}\right\rangle=\left\langle\chi_{X} \times_{X}, \chi_{1}\right\rangle=2$.

The character of a 2-transitive action

Thm. Assume that G acts 2-transitively on X. This implies that G acts (1-)transitively on X and that the diagonal action of G on $X \times X$ has 2 orbits: the diagonal and the off-diagonal.
Claims:

- $\left\langle\chi_{x}, \chi_{1}\right\rangle=1$, and
- $\left\langle\chi_{X}, \chi_{X}\right\rangle=\left\langle\chi_{X} \times_{X}, \chi_{1}\right\rangle=2$.

Hence χ_{X} is a sum of two irreducible characters, one of which is χ_{1} and the other is not χ_{1}.

The character of a 2-transitive action

Thm. Assume that G acts 2-transitively on X. This implies that G acts (1-)transitively on X and that the diagonal action of G on $X \times X$ has 2 orbits: the diagonal and the off-diagonal.
Claims:

- $\left\langle\chi_{x}, \chi_{1}\right\rangle=1$, and
- $\left\langle\chi_{X}, \chi_{X}\right\rangle=\left\langle\chi_{X} \times_{X}, \chi_{1}\right\rangle=2$.

Hence χ_{X} is a sum of two irreducible characters, one of which is χ_{1} and the other is not χ_{1}.

Proof.

The character of a 2-transitive action

Thm. Assume that G acts 2-transitively on X. This implies that G acts (1-)transitively on X and that the diagonal action of G on $X \times X$ has 2 orbits: the diagonal and the off-diagonal.
Claims:

- $\left\langle\chi_{x}, \chi_{1}\right\rangle=1$, and
- $\left\langle\chi_{X}, \chi_{X}\right\rangle=\left\langle\chi_{X} \times_{X}, \chi_{1}\right\rangle=2$.

Hence χ_{X} is a sum of two irreducible characters, one of which is χ_{1} and the other is not χ_{1}.

Proof. The only nonobvious part is that

The character of a 2-transitive action

Thm. Assume that G acts 2-transitively on X. This implies that G acts (1-)transitively on X and that the diagonal action of G on $X \times X$ has 2 orbits: the diagonal and the off-diagonal.
Claims:

- $\left\langle\chi_{x}, \chi_{1}\right\rangle=1$, and
- $\left\langle\chi_{X}, \chi_{X}\right\rangle=\left\langle\chi_{X} \times_{X}, \chi_{1}\right\rangle=2$.

Hence χ_{X} is a sum of two irreducible characters, one of which is χ_{1} and the other is not χ_{1}.

Proof. The only nonobvious part is that

$$
\left\langle\chi_{X}, \chi_{X}\right\rangle=\frac{1}{|G|} \sum \overline{\chi_{X}} \chi_{X} \stackrel{(23)}{=} \frac{1}{|G|} \sum \chi_{X} \times_{X}=\left\langle\chi_{X} \times_{X}, \chi_{1}\right\rangle .
$$

The character of a 2-transitive action

Thm. Assume that G acts 2-transitively on X. This implies that G acts (1-)transitively on X and that the diagonal action of G on $X \times X$ has 2 orbits: the diagonal and the off-diagonal.
Claims:

- $\left\langle\chi_{x}, \chi_{1}\right\rangle=1$, and
- $\left\langle\chi_{X}, \chi_{X}\right\rangle=\left\langle\chi_{X} \times_{X}, \chi_{1}\right\rangle=2$.

Hence χ_{X} is a sum of two irreducible characters, one of which is χ_{1} and the other is not χ_{1}.

Proof. The only nonobvious part is that

$$
\left\langle\chi_{X}, \chi_{X}\right\rangle=\frac{1}{|G|} \sum \overline{\chi_{X}} \chi_{X} \stackrel{(23)}{=} \frac{1}{|G|} \sum \chi_{X} \times_{X}=\left\langle\chi_{X} \times_{X}, \chi_{1}\right\rangle .
$$

Example, A_{4}

Example, A_{4}

$A_{4} / K \cong \mathbb{Z}_{3}$, so 3 linear characters $\chi_{1}, \chi_{2}, \chi_{3}$ arise from inflation.

Example, A_{4}

$A_{4} / K \cong \mathbb{Z}_{3}$, so 3 linear characters $\chi_{1}, \chi_{2}, \chi_{3}$ arise from inflation. Also, A_{4} acts 2-transitively on $X=\{1,2,3,4\}$, so $\chi_{4}=\chi_{X}-\chi_{1}$ is an irrep of degree 3.

Example, A_{4}

$A_{4} / K \cong \mathbb{Z}_{3}$, so 3 linear characters $\chi_{1}, \chi_{2}, \chi_{3}$ arise from inflation. Also, A_{4} acts 2-transitively on $X=\{1,2,3,4\}$, so $\chi_{4}=\chi_{X}-\chi_{1}$ is an irrep of degree 3. This must be all, since $1^{2}+1^{2}+1^{3}+3^{2}=12=\left|A_{4}\right|$.

Example, A_{4}

$A_{4} / K \cong \mathbb{Z}_{3}$, so 3 linear characters $\chi_{1}, \chi_{2}, \chi_{3}$ arise from inflation. Also, A_{4} acts 2-transitively on $X=\{1,2,3,4\}$, so $\chi_{4}=\chi_{X}-\chi_{1}$ is an irrep of degree 3. This must be all, since $1^{2}+1^{2}+1^{3}+3^{2}=12=\left|A_{4}\right|$.

	1	3	4	4
A_{4}	1	$(12)\left(\begin{array}{ll}3 & 4\end{array}\right)$	$\left(\begin{array}{ll}1 & 2\end{array}\right)$	$\left(\begin{array}{ll}1 & 2\end{array}\right)$
χ_{X}	4	0	1	1

Example, A_{4}

$A_{4} / K \cong \mathbb{Z}_{3}$, so 3 linear characters $\chi_{1}, \chi_{2}, \chi_{3}$ arise from inflation. Also, A_{4} acts 2-transitively on $X=\{1,2,3,4\}$, so $\chi_{4}=\chi_{X}-\chi_{1}$ is an irrep of degree 3. This must be all, since $1^{2}+1^{2}+1^{3}+3^{2}=12=\left|A_{4}\right|$.
$\left.\begin{array}{|c||c|c||c|c|}\hline & 1 & 3 & 4 & 4 \\ A_{4} & 1 & \left(\begin{array}{ll}1 & 2\end{array}\right)\left(\begin{array}{ll}3 & 4\end{array}\right) & \left(\begin{array}{ll}1 & 2\end{array}\right) & \left(\begin{array}{ll}1 & 3\end{array}\right)\end{array}\right]$

SO

	1	3	4	4
A_{4}	1	$\left(\begin{array}{ll}1 & 2\end{array}\right)\left(\begin{array}{ll}3 & 4\end{array}\right)$	$\left(\begin{array}{ll}1 & 2\end{array}\right)$	$\left(\begin{array}{ll}1 & 3\end{array}\right)$
χ_{1}	1	1	1	1
χ_{2}	1	1	ω	ω^{2}
χ_{3}	1	1	ω^{2}	ω
χ_{4}	3	-1	0	0

