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Algebraic integers

A complex number α ∈ C is an algebraic integer if it satisfies a monic with
integer coefficients. (Equivalently, α is an eigenvalue of an integer matrix.)

Examples. i,
√

2, cos(2π/n).

The collection A of all algebraic integers is a subring of C, which contains all
roots of unity, and which is invariant under all automorphisms of C. A basic
fact about this ring is A ∩Q = Z. (The “Rational Root Theorem”.)

Since χ(g) is a sum of roots of unity, χ(g) ∈ A for any χ and g. We want to
refine this observation.
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More algebraic integers

Let KG(gj) be the conjugacy class of gj, and let κj =
∑

g∈KG(gj)
g ∈ C[G] be

the class sum associated to gj.

Claim. κj ∈ Z(C[G]).
(See the argument for Theorem (8).)

Under the isomorphism ϕ : C[G]
∼→ Mn1(C)× · · · ×Mnr(C),

ϕ(κj) = (λ1In1 , . . . , λrInr), λi ∈ C.

Claim.The matrix [κj] of the module endomorphism
C[G]→ C[G] : v 7→ κj · v has integer entries.
(It is a sum of kj permutation matrices.)

Claim. The λi’s are algebraic integers.
(They are e-values of [κj].)
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λi = kj · χi(gj)/χi(1)

If C[G] ∼= n1S1 ⊕ · · · ⊕ nrSr, then the left-multiplication action of κj on Si has
matrix λiIni and also

∑
g∈KG(gj)

[ρi(g)].
Equating traces yields λi · χi(1) = kj · χi(gj), or λi = kj · χi(gj)/χi(1).

Summary. kj · χi(gj)/χi(1) is an algebraic integer for any i, j.

Corollary. If gcd(kj, χi(1)) = d, then
(

d
χi(1)

)
χi(gj) is an algebraic integer.

Proof. Choose m, n ∈ Z such that mkj + nχi(1) = d. Multiply by
χi(gj)/χi(1):

m (kj · χi(gj)/χi(1)) + nχi(gj) =

(
d

χi(1)

)
χi(gj).2

Corollary. If gcd(kj, χi(1)) = 1, then χi(gj)/χi(1) is an algebraic integer.
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Zeros in the character table

Thm. If χi(gj)/χi(1) is an algebraic integer, then χi(gj) = 0 or gj ∈ (χi)Z .

Proof. Let z = χi(gj)/χi(1).
Let ω be a |G|-th root of unity.
Let L = Q[ω].
Let α ∈ Gal be any automorphism of L.
|α(z)| = |ωe1+···+ωer |

|1 +···+ 1| ≤ 1.
Then NL/Q(z) =

∏
α∈Gal α(z) is a rational integer and

0 ≤ |NL/Q(z)| = |
∏
α∈Gal α(z)| =

∏
α∈Gal |α(z)| ≤ 1.

|NL/Q(z)| = 0 iff |z| = 0 iff χi(gj) = 0.
|NL/Q(z)| = 1 iff |z| = 1 iff |χi(gj)| = χi(1) iff gj ∈ (χi)Z . 2
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Irreducible character degrees divide |G|

Thm. If χi is irreducible, then the integer χi(1) divides |G|.

Proof.
Using Row Orthogonality on the i-th row

Z
?
3 |G|

χi(1)
= |G|

χi(1)
· 1 = |G|

χi(1)
· 1
|G|
∑r

j=1 kjχi(gj)χi(gj)

=
∑r

j=1

(
kjχi(gj)/χi(1)

)
χi(gj)

∈ A ∩Q = Z.2

Integrality Properties 6 / 6



Irreducible character degrees divide |G|

Thm.

If χi is irreducible, then the integer χi(1) divides |G|.

Proof.
Using Row Orthogonality on the i-th row

Z
?
3 |G|

χi(1)
= |G|

χi(1)
· 1 = |G|

χi(1)
· 1
|G|
∑r

j=1 kjχi(gj)χi(gj)

=
∑r

j=1

(
kjχi(gj)/χi(1)

)
χi(gj)

∈ A ∩Q = Z.2

Integrality Properties 6 / 6



Irreducible character degrees divide |G|

Thm. If χi is irreducible, then the integer χi(1) divides |G|.

Proof.
Using Row Orthogonality on the i-th row

Z
?
3 |G|

χi(1)
= |G|

χi(1)
· 1 = |G|

χi(1)
· 1
|G|
∑r

j=1 kjχi(gj)χi(gj)

=
∑r

j=1

(
kjχi(gj)/χi(1)

)
χi(gj)

∈ A ∩Q = Z.2

Integrality Properties 6 / 6



Irreducible character degrees divide |G|

Thm. If χi is irreducible, then the integer χi(1) divides |G|.

Proof.

Using Row Orthogonality on the i-th row

Z
?
3 |G|

χi(1)
= |G|

χi(1)
· 1 = |G|

χi(1)
· 1
|G|
∑r

j=1 kjχi(gj)χi(gj)

=
∑r

j=1

(
kjχi(gj)/χi(1)

)
χi(gj)

∈ A ∩Q = Z.2

Integrality Properties 6 / 6



Irreducible character degrees divide |G|

Thm. If χi is irreducible, then the integer χi(1) divides |G|.

Proof.
Using Row Orthogonality on the i-th row

Z
?
3 |G|

χi(1)
= |G|

χi(1)
· 1 = |G|

χi(1)
· 1
|G|
∑r

j=1 kjχi(gj)χi(gj)

=
∑r

j=1

(
kjχi(gj)/χi(1)

)
χi(gj)

∈ A ∩Q = Z.2

Integrality Properties 6 / 6



Irreducible character degrees divide |G|

Thm. If χi is irreducible, then the integer χi(1) divides |G|.

Proof.
Using Row Orthogonality on the i-th row

Z
?
3 |G|

χi(1)

= |G|
χi(1)
· 1 = |G|

χi(1)
· 1
|G|
∑r

j=1 kjχi(gj)χi(gj)

=
∑r

j=1

(
kjχi(gj)/χi(1)

)
χi(gj)

∈ A ∩Q = Z.2

Integrality Properties 6 / 6



Irreducible character degrees divide |G|

Thm. If χi is irreducible, then the integer χi(1) divides |G|.

Proof.
Using Row Orthogonality on the i-th row

Z
?
3 |G|

χi(1)
= |G|

χi(1)
· 1

= |G|
χi(1)
· 1
|G|
∑r

j=1 kjχi(gj)χi(gj)

=
∑r

j=1

(
kjχi(gj)/χi(1)

)
χi(gj)

∈ A ∩Q = Z.2

Integrality Properties 6 / 6



Irreducible character degrees divide |G|

Thm. If χi is irreducible, then the integer χi(1) divides |G|.

Proof.
Using Row Orthogonality on the i-th row

Z
?
3 |G|

χi(1)
= |G|

χi(1)
· 1 = |G|

χi(1)
· 1
|G|
∑r

j=1 kjχi(gj)χi(gj)

=
∑r

j=1

(
kjχi(gj)/χi(1)

)
χi(gj)

∈ A ∩Q = Z.2

Integrality Properties 6 / 6



Irreducible character degrees divide |G|

Thm. If χi is irreducible, then the integer χi(1) divides |G|.

Proof.
Using Row Orthogonality on the i-th row

Z
?
3 |G|

χi(1)
= |G|

χi(1)
· 1 = |G|

χi(1)
· 1
|G|
∑r

j=1 kjχi(gj)χi(gj)

=
∑r

j=1

(
kjχi(gj)/χi(1)

)
χi(gj)

∈ A ∩Q = Z.2

Integrality Properties 6 / 6



Irreducible character degrees divide |G|

Thm. If χi is irreducible, then the integer χi(1) divides |G|.

Proof.
Using Row Orthogonality on the i-th row

Z
?
3 |G|

χi(1)
= |G|

χi(1)
· 1 = |G|

χi(1)
· 1
|G|
∑r

j=1 kjχi(gj)χi(gj)

=
∑r

j=1

(
kjχi(gj)/χi(1)

)
χi(gj)

∈ A ∩Q

= Z.2

Integrality Properties 6 / 6



Irreducible character degrees divide |G|

Thm. If χi is irreducible, then the integer χi(1) divides |G|.

Proof.
Using Row Orthogonality on the i-th row

Z
?
3 |G|

χi(1)
= |G|

χi(1)
· 1 = |G|

χi(1)
· 1
|G|
∑r

j=1 kjχi(gj)χi(gj)

=
∑r

j=1

(
kjχi(gj)/χi(1)

)
χi(gj)

∈ A ∩Q = Z.

2

Integrality Properties 6 / 6



Irreducible character degrees divide |G|

Thm. If χi is irreducible, then the integer χi(1) divides |G|.

Proof.
Using Row Orthogonality on the i-th row

Z
?
3 |G|

χi(1)
= |G|

χi(1)
· 1 = |G|

χi(1)
· 1
|G|
∑r

j=1 kjχi(gj)χi(gj)

=
∑r

j=1

(
kjχi(gj)/χi(1)

)
χi(gj)

∈ A ∩Q = Z.2

Integrality Properties 6 / 6


