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Algebraic integers

A complex number « € C is an algebraic integer if it satisfies a monic with
integer coefficients. (Equivalently, « is an eigenvalue of an integer matrix.)

Examples. i, /2, cos(27/n).

The collection A of all algebraic integers is a subring of C, which contains all
roots of unity, and which is invariant under all automorphisms of C. A basic
fact about this ring is A N Q = Z. (The “Rational Root Theorem™.)

Since x(g) is a sum of roots of unity, x(g) € A for any x and g. We want to
refine this observation.
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More algebraic integers

Let K;(gj) be the conjugacy class of g;, and let kj = )8 € C[G] be

the class sum associated to g;.

Claim. x; € Z(C[G]).
(See the argument for Theorem (8).)

Under the isomorphism ¢: C[G] = M, (C) x - -+ x M,,(C),

8€K (g

QD(K]') = ()\11,“ sy )\rln,), )\i cC.

Claim.The matrix [x;] of the module endomorphism
C[G] — CIG]: v — &; - v has integer entries.
(It is a sum of k; permutation matrices.)

Claim. The \;’s are algebraic integers.
(They are e-values of [x;].)
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