Integrality Properties

	1	k_{2}	\cdots	k_{r}
G	1	g_{2}	\cdots	g_{r}
χ_{1}	1	1	\cdots	1
χ_{2}	d_{2}	$\chi_{2}\left(g_{2}\right)$	\cdots	$\chi_{2}\left(g_{r}\right)$
\vdots	\vdots	\vdots	\ddots	\vdots
χ_{r}	d_{r}	$\chi_{r}\left(g_{2}\right)$	\cdots	$\chi_{r}\left(g_{r}\right)$

Algebraic integers

Algebraic integers

A complex number $\alpha \in \mathbb{C}$ is an algebraic integer if it satisfies a monic with integer coefficients.

Algebraic integers

A complex number $\alpha \in \mathbb{C}$ is an algebraic integer if it satisfies a monic with integer coefficients. (Equivalently, α is an eigenvalue of an integer matrix.)

Algebraic integers

A complex number $\alpha \in \mathbb{C}$ is an algebraic integer if it satisfies a monic with integer coefficients. (Equivalently, α is an eigenvalue of an integer matrix.)

Examples.

Algebraic integers

A complex number $\alpha \in \mathbb{C}$ is an algebraic integer if it satisfies a monic with integer coefficients. (Equivalently, α is an eigenvalue of an integer matrix.)
Examples. $i, \sqrt{2}, \cos (2 \pi / n)$.

Algebraic integers

A complex number $\alpha \in \mathbb{C}$ is an algebraic integer if it satisfies a monic with integer coefficients. (Equivalently, α is an eigenvalue of an integer matrix.)

Examples. $i, \sqrt{2}, \cos (2 \pi / n)$.
The collection \mathbb{A} of all algebraic integers is a subring of \mathbb{C}, which contains all roots of unity, and which is invariant under all automorphisms of \mathbb{C}.

Algebraic integers

A complex number $\alpha \in \mathbb{C}$ is an algebraic integer if it satisfies a monic with integer coefficients. (Equivalently, α is an eigenvalue of an integer matrix.)

Examples. $i, \sqrt{2}, \cos (2 \pi / n)$.
The collection \mathbb{A} of all algebraic integers is a subring of \mathbb{C}, which contains all roots of unity, and which is invariant under all automorphisms of \mathbb{C}. A basic fact about this ring is $\mathbb{A} \cap \mathbb{Q}=\mathbb{Z}$.

Algebraic integers

A complex number $\alpha \in \mathbb{C}$ is an algebraic integer if it satisfies a monic with integer coefficients. (Equivalently, α is an eigenvalue of an integer matrix.)
Examples. $i, \sqrt{2}, \cos (2 \pi / n)$.
The collection \mathbb{A} of all algebraic integers is a subring of \mathbb{C}, which contains all roots of unity, and which is invariant under all automorphisms of \mathbb{C}. A basic fact about this ring is $\mathbb{A} \cap \mathbb{Q}=\mathbb{Z}$. (The "Rational Root Theorem".)

Algebraic integers

A complex number $\alpha \in \mathbb{C}$ is an algebraic integer if it satisfies a monic with integer coefficients. (Equivalently, α is an eigenvalue of an integer matrix.)
Examples. $i, \sqrt{2}, \cos (2 \pi / n)$.
The collection \mathbb{A} of all algebraic integers is a subring of \mathbb{C}, which contains all roots of unity, and which is invariant under all automorphisms of \mathbb{C}. A basic fact about this ring is $\mathbb{A} \cap \mathbb{Q}=\mathbb{Z}$. (The "Rational Root Theorem".)

Since $\chi(g)$ is a sum of roots of unity, $\chi(g) \in \mathbb{A}$ for any χ and g.

Algebraic integers

A complex number $\alpha \in \mathbb{C}$ is an algebraic integer if it satisfies a monic with integer coefficients. (Equivalently, α is an eigenvalue of an integer matrix.)

Examples. $i, \sqrt{2}, \cos (2 \pi / n)$.
The collection \mathbb{A} of all algebraic integers is a subring of \mathbb{C}, which contains all roots of unity, and which is invariant under all automorphisms of \mathbb{C}. A basic fact about this ring is $\mathbb{A} \cap \mathbb{Q}=\mathbb{Z}$. (The "Rational Root Theorem".)

Since $\chi(g)$ is a sum of roots of unity, $\chi(g) \in \mathbb{A}$ for any χ and g. We want to refine this observation.

More algebraic integers

More algebraic integers

Let $K_{G}\left(g_{j}\right)$ be the conjugacy class of g_{j}, and let $\kappa_{j}=\sum_{g \in K_{G}\left(g_{j}\right)} g \in \mathbb{C}[G]$ be the class sum associated to g_{j}.

More algebraic integers

Let $K_{G}\left(g_{j}\right)$ be the conjugacy class of g_{j}, and let $\kappa_{j}=\sum_{g \in K_{G}\left(g_{j}\right)} g \in \mathbb{C}[G]$ be the class sum associated to g_{j}.

Claim.

More algebraic integers

Let $K_{G}\left(g_{j}\right)$ be the conjugacy class of g_{j}, and let $\kappa_{j}=\sum_{g \in K_{G}\left(g_{j}\right)} g \in \mathbb{C}[G]$ be the class sum associated to g_{j}.
Claim. $\kappa_{j} \in Z(\mathbb{C}[G])$.

More algebraic integers

Let $K_{G}\left(g_{j}\right)$ be the conjugacy class of g_{j}, and let $\kappa_{j}=\sum_{g \in K_{G}\left(g_{j}\right)} g \in \mathbb{C}[G]$ be the class sum associated to g_{j}.
Claim. $\kappa_{j} \in Z(\mathbb{C}[G])$.
(See the argument for Theorem (8).)

More algebraic integers

Let $K_{G}\left(g_{j}\right)$ be the conjugacy class of g_{j}, and let $\kappa_{j}=\sum_{g \in K_{G}\left(g_{j}\right)} g \in \mathbb{C}[G]$ be the class sum associated to g_{j}.
Claim. $\kappa_{j} \in Z(\mathbb{C}[G])$.
(See the argument for Theorem (8).)
Under the isomorphism $\varphi: \mathbb{C}[G] \xrightarrow{\sim} M_{n_{1}}(\mathbb{C}) \times \cdots \times M_{n_{r}}(\mathbb{C})$,

More algebraic integers

Let $K_{G}\left(g_{j}\right)$ be the conjugacy class of g_{j}, and let $\kappa_{j}=\sum_{g \in K_{G}\left(g_{j}\right)} g \in \mathbb{C}[G]$ be the class sum associated to g_{j}.

Claim. $\kappa_{j} \in Z(\mathbb{C}[G])$.
(See the argument for Theorem (8).)
Under the isomorphism $\varphi: \mathbb{C}[G] \xrightarrow{\sim} M_{n_{1}}(\mathbb{C}) \times \cdots \times M_{n_{r}}(\mathbb{C})$,

$$
\varphi\left(\kappa_{j}\right)=\left(\lambda_{1} I_{n_{1}}, \ldots, \lambda_{r} I_{n_{r}}\right), \lambda_{i} \in \mathbb{C} .
$$

More algebraic integers

Let $K_{G}\left(g_{j}\right)$ be the conjugacy class of g_{j}, and let $\kappa_{j}=\sum_{g \in K_{G}\left(g_{j}\right)} g \in \mathbb{C}[G]$ be the class sum associated to g_{j}.

Claim. $\kappa_{j} \in Z(\mathbb{C}[G])$.
(See the argument for Theorem (8).)
Under the isomorphism $\varphi: \mathbb{C}[G] \xrightarrow{\sim} M_{n_{1}}(\mathbb{C}) \times \cdots \times M_{n_{r}}(\mathbb{C})$,

$$
\varphi\left(\kappa_{j}\right)=\left(\lambda_{1} I_{n_{1}}, \ldots, \lambda_{r} I_{n_{r}}\right), \lambda_{i} \in \mathbb{C} .
$$

Claim.

More algebraic integers

Let $K_{G}\left(g_{j}\right)$ be the conjugacy class of g_{j}, and let $\kappa_{j}=\sum_{g \in K_{G}\left(g_{j}\right)} g \in \mathbb{C}[G]$ be the class sum associated to g_{j}.

Claim. $\kappa_{j} \in Z(\mathbb{C}[G])$.
(See the argument for Theorem (8).)
Under the isomorphism $\varphi: \mathbb{C}[G] \xrightarrow{\sim} M_{n_{1}}(\mathbb{C}) \times \cdots \times M_{n_{r}}(\mathbb{C})$,

$$
\varphi\left(\kappa_{j}\right)=\left(\lambda_{1} I_{n_{1}}, \ldots, \lambda_{r} I_{n_{r}}\right), \lambda_{i} \in \mathbb{C} .
$$

Claim.The matrix $\left[\kappa_{j}\right]$ of the module endomorphism $\mathbb{C}[G] \rightarrow \mathbb{C}[G]: v \mapsto \kappa_{j} \cdot v$ has integer entries.

More algebraic integers

Let $K_{G}\left(g_{j}\right)$ be the conjugacy class of g_{j}, and let $\kappa_{j}=\sum_{g \in K_{G}\left(g_{j}\right)} g \in \mathbb{C}[G]$ be the class sum associated to g_{j}.

Claim. $\kappa_{j} \in Z(\mathbb{C}[G])$.
(See the argument for Theorem (8).)
Under the isomorphism $\varphi: \mathbb{C}[G] \xrightarrow{\sim} M_{n_{1}}(\mathbb{C}) \times \cdots \times M_{n_{r}}(\mathbb{C})$,

$$
\varphi\left(\kappa_{j}\right)=\left(\lambda_{1} I_{n_{1}}, \ldots, \lambda_{r} I_{n_{r}}\right), \lambda_{i} \in \mathbb{C} .
$$

Claim.The matrix $\left[\kappa_{j}\right]$ of the module endomorphism $\mathbb{C}[G] \rightarrow \mathbb{C}[G]: v \mapsto \kappa_{j} \cdot v$ has integer entries.
(It is a sum of k_{j} permutation matrices.)

More algebraic integers

Let $K_{G}\left(g_{j}\right)$ be the conjugacy class of g_{j}, and let $\kappa_{j}=\sum_{g \in K_{G}\left(g_{j}\right)} g \in \mathbb{C}[G]$ be the class sum associated to g_{j}.

Claim. $\kappa_{j} \in Z(\mathbb{C}[G])$.
(See the argument for Theorem (8).)
Under the isomorphism $\varphi: \mathbb{C}[G] \xrightarrow{\sim} M_{n_{1}}(\mathbb{C}) \times \cdots \times M_{n_{r}}(\mathbb{C})$,

$$
\varphi\left(\kappa_{j}\right)=\left(\lambda_{1} I_{n_{1}}, \ldots, \lambda_{r} I_{n_{r}}\right), \lambda_{i} \in \mathbb{C} .
$$

Claim.The matrix $\left[\kappa_{j}\right]$ of the module endomorphism $\mathbb{C}[G] \rightarrow \mathbb{C}[G]: v \mapsto \kappa_{j} \cdot v$ has integer entries.
(It is a sum of k_{j} permutation matrices.)

Claim.

More algebraic integers

Let $K_{G}\left(g_{j}\right)$ be the conjugacy class of g_{j}, and let $\kappa_{j}=\sum_{g \in K_{G}\left(g_{j}\right)} g \in \mathbb{C}[G]$ be the class sum associated to g_{j}.

Claim. $\kappa_{j} \in Z(\mathbb{C}[G])$.
(See the argument for Theorem (8).)
Under the isomorphism $\varphi: \mathbb{C}[G] \xrightarrow{\sim} M_{n_{1}}(\mathbb{C}) \times \cdots \times M_{n_{r}}(\mathbb{C})$,

$$
\varphi\left(\kappa_{j}\right)=\left(\lambda_{1} I_{n_{1}}, \ldots, \lambda_{r} I_{n_{r}}\right), \lambda_{i} \in \mathbb{C} .
$$

Claim.The matrix $\left[\kappa_{j}\right]$ of the module endomorphism $\mathbb{C}[G] \rightarrow \mathbb{C}[G]: v \mapsto \kappa_{j} \cdot v$ has integer entries.
(It is a sum of k_{j} permutation matrices.)
Claim. The λ_{i} 's are algebraic integers.

More algebraic integers

Let $K_{G}\left(g_{j}\right)$ be the conjugacy class of g_{j}, and let $\kappa_{j}=\sum_{g \in K_{G}\left(g_{j}\right)} g \in \mathbb{C}[G]$ be the class sum associated to g_{j}.

Claim. $\kappa_{j} \in Z(\mathbb{C}[G])$.
(See the argument for Theorem (8).)
Under the isomorphism $\varphi: \mathbb{C}[G] \xrightarrow{\sim} M_{n_{1}}(\mathbb{C}) \times \cdots \times M_{n_{r}}(\mathbb{C})$,

$$
\varphi\left(\kappa_{j}\right)=\left(\lambda_{1} I_{n_{1}}, \ldots, \lambda_{r} I_{n_{r}}\right), \lambda_{i} \in \mathbb{C}
$$

Claim.The matrix $\left[\kappa_{j}\right]$ of the module endomorphism $\mathbb{C}[G] \rightarrow \mathbb{C}[G]: v \mapsto \kappa_{j} \cdot v$ has integer entries.
(It is a sum of k_{j} permutation matrices.)
Claim. The λ_{i} 's are algebraic integers.
(They are e-values of $\left[\kappa_{j}\right]$.)
$\lambda_{i}=k_{j} \cdot \chi_{i}\left(g_{j}\right) / \chi_{i}(1)$

$\lambda_{i}=k_{j} \cdot \chi_{i}\left(g_{j}\right) / \chi_{i}(1)$

If $\mathbb{C}[G] \cong n_{1} S_{1} \oplus \cdots \oplus n_{r} S_{r}$, then the left-multiplication action of κ_{j} on S_{i} has matrix $\lambda_{i} I_{n_{i}}$

$\lambda_{i}=k_{j} \cdot \chi_{i}\left(g_{j}\right) / \chi_{i}(1)$

If $\mathbb{C}[G] \cong n_{1} S_{1} \oplus \cdots \oplus n_{r} S_{r}$, then the left-multiplication action of κ_{j} on S_{i} has matrix $\lambda_{i} I_{n_{i}}$ and also $\sum_{g \in K_{G}\left(g_{j}\right)}\left[\rho_{i}(g)\right]$.

$\lambda_{i}=k_{j} \cdot \chi_{i}\left(g_{j}\right) / \chi_{i}(1)$

If $\mathbb{C}[G] \cong n_{1} S_{1} \oplus \cdots \oplus n_{r} S_{r}$, then the left-multiplication action of κ_{j} on S_{i} has matrix $\lambda_{i} I_{n_{i}}$ and also $\sum_{g \in K_{G}\left(g_{j}\right)}\left[\rho_{i}(g)\right]$.
Equating traces yields $\lambda_{i} \cdot \chi_{i}(1)=k_{j} \cdot \chi_{i}\left(g_{j}\right)$,

$\lambda_{i}=k_{j} \cdot \chi_{i}\left(g_{j}\right) / \chi_{i}(1)$

If $\mathbb{C}[G] \cong n_{1} S_{1} \oplus \cdots \oplus n_{r} S_{r}$, then the left-multiplication action of κ_{j} on S_{i} has matrix $\lambda_{i} I_{n_{i}}$ and also $\sum_{g \in K_{G}\left(g_{j}\right)}\left[\rho_{i}(g)\right]$.
Equating traces yields $\lambda_{i} \cdot \chi_{i}(1)=k_{j} \cdot \chi_{i}\left(g_{j}\right)$, or $\lambda_{i}=k_{j} \cdot \chi_{i}\left(g_{j}\right) / \chi_{i}(1)$.

$$
\lambda_{i}=k_{j} \cdot \chi_{i}\left(g_{j}\right) / \chi_{i}(1)
$$

If $\mathbb{C}[G] \cong n_{1} S_{1} \oplus \cdots \oplus n_{r} S_{r}$, then the left-multiplication action of κ_{j} on S_{i} has matrix $\lambda_{i} I_{n_{i}}$ and also $\sum_{g \in K_{G}\left(g_{j}\right)}\left[\rho_{i}(g)\right]$.
Equating traces yields $\lambda_{i} \cdot \chi_{i}(1)=k_{j} \cdot \chi_{i}\left(g_{j}\right)$, or $\lambda_{i}=k_{j} \cdot \chi_{i}\left(g_{j}\right) / \chi_{i}(1)$.

Summary.

$$
\lambda_{i}=k_{j} \cdot \chi_{i}\left(g_{j}\right) / \chi_{i}(1)
$$

If $\mathbb{C}[G] \cong n_{1} S_{1} \oplus \cdots \oplus n_{r} S_{r}$, then the left-multiplication action of κ_{j} on S_{i} has matrix $\lambda_{i} I_{n_{i}}$ and also $\sum_{g \in K_{G}\left(g_{j}\right)}\left[\rho_{i}(g)\right]$.
Equating traces yields $\lambda_{i} \cdot \chi_{i}(1)=k_{j} \cdot \chi_{i}\left(g_{j}\right)$, or $\lambda_{i}=k_{j} \cdot \chi_{i}\left(g_{j}\right) / \chi_{i}(1)$.
Summary. $k_{j} \cdot \chi_{i}\left(g_{j}\right) / \chi_{i}(1)$ is an algebraic integer for any i, j.

$$
\lambda_{i}=k_{j} \cdot \chi_{i}\left(g_{j}\right) / \chi_{i}(1)
$$

If $\mathbb{C}[G] \cong n_{1} S_{1} \oplus \cdots \oplus n_{r} S_{r}$, then the left-multiplication action of κ_{j} on S_{i} has matrix $\lambda_{i} I_{n_{i}}$ and also $\sum_{g \in K_{G}\left(g_{j}\right)}\left[\rho_{i}(g)\right]$.
Equating traces yields $\lambda_{i} \cdot \chi_{i}(1)=k_{j} \cdot \chi_{i}\left(g_{j}\right)$, or $\lambda_{i}=k_{j} \cdot \chi_{i}\left(g_{j}\right) / \chi_{i}(1)$.
Summary. $k_{j} \cdot \chi_{i}\left(g_{j}\right) / \chi_{i}(1)$ is an algebraic integer for any i, j.

Corollary.

$\lambda_{i}=k_{j} \cdot \chi_{i}\left(g_{j}\right) / \chi_{i}(1)$

If $\mathbb{C}[G] \cong n_{1} S_{1} \oplus \cdots \oplus n_{r} S_{r}$, then the left-multiplication action of κ_{j} on S_{i} has matrix $\lambda_{i} I_{n_{i}}$ and also $\sum_{g \in K_{G}\left(g_{j}\right)}\left[\rho_{i}(g)\right]$.
Equating traces yields $\lambda_{i} \cdot \chi_{i}(1)=k_{j} \cdot \chi_{i}\left(g_{j}\right)$, or $\lambda_{i}=k_{j} \cdot \chi_{i}\left(g_{j}\right) / \chi_{i}(1)$.
Summary. $k_{j} \cdot \chi_{i}\left(g_{j}\right) / \chi_{i}(1)$ is an algebraic integer for any i, j.
Corollary. If $\operatorname{gcd}\left(k_{j}, \chi_{i}(1)\right)=d$, then $\left(\frac{d}{\chi_{i}(1)}\right) \chi_{i}\left(g_{j}\right)$ is an algebraic integer.

$\lambda_{i}=k_{j} \cdot \chi_{i}\left(g_{j}\right) / \chi_{i}(1)$

If $\mathbb{C}[G] \cong n_{1} S_{1} \oplus \cdots \oplus n_{r} S_{r}$, then the left-multiplication action of κ_{j} on S_{i} has matrix $\lambda_{i} I_{n_{i}}$ and also $\sum_{g \in K_{G}\left(g_{j}\right)}\left[\rho_{i}(g)\right]$.
Equating traces yields $\lambda_{i} \cdot \chi_{i}(1)=k_{j} \cdot \chi_{i}\left(g_{j}\right)$, or $\lambda_{i}=k_{j} \cdot \chi_{i}\left(g_{j}\right) / \chi_{i}(1)$.
Summary. $k_{j} \cdot \chi_{i}\left(g_{j}\right) / \chi_{i}(1)$ is an algebraic integer for any i, j.
Corollary. If $\operatorname{gcd}\left(k_{j}, \chi_{i}(1)\right)=d$, then $\left(\frac{d}{\chi_{i}(1)}\right) \chi_{i}\left(g_{j}\right)$ is an algebraic integer.
Proof.

$\lambda_{i}=k_{j} \cdot \chi_{i}\left(g_{j}\right) / \chi_{i}(1)$

If $\mathbb{C}[G] \cong n_{1} S_{1} \oplus \cdots \oplus n_{r} S_{r}$, then the left-multiplication action of κ_{j} on S_{i} has matrix $\lambda_{i} I_{n_{i}}$ and also $\sum_{g \in K_{G}\left(g_{j}\right)}\left[\rho_{i}(g)\right]$.
Equating traces yields $\lambda_{i} \cdot \chi_{i}(1)=k_{j} \cdot \chi_{i}\left(g_{j}\right)$, or $\lambda_{i}=k_{j} \cdot \chi_{i}\left(g_{j}\right) / \chi_{i}(1)$.
Summary. $k_{j} \cdot \chi_{i}\left(g_{j}\right) / \chi_{i}(1)$ is an algebraic integer for any i, j.
Corollary. If $\operatorname{gcd}\left(k_{j}, \chi_{i}(1)\right)=d$, then $\left(\frac{d}{\chi_{i}(1)}\right) \chi_{i}\left(g_{j}\right)$ is an algebraic integer.
Proof. Choose $m, n \in \mathbb{Z}$ such that $m k_{j}+n \chi_{i}(1)=d$.

$\lambda_{i}=k_{j} \cdot \chi_{i}\left(g_{j}\right) / \chi_{i}(1)$

If $\mathbb{C}[G] \cong n_{1} S_{1} \oplus \cdots \oplus n_{r} S_{r}$, then the left-multiplication action of κ_{j} on S_{i} has matrix $\lambda_{i} I_{n_{i}}$ and also $\sum_{g \in K_{G}(g)}\left[\rho_{i}(g)\right]$.
Equating traces yields $\lambda_{i} \cdot \chi_{i}(1)=k_{j} \cdot \chi_{i}\left(g_{j}\right)$, or $\lambda_{i}=k_{j} \cdot \chi_{i}\left(g_{j}\right) / \chi_{i}(1)$.
Summary. $k_{j} \cdot \chi_{i}\left(g_{j}\right) / \chi_{i}(1)$ is an algebraic integer for any i, j.
Corollary. If $\operatorname{gcd}\left(k_{j}, \chi_{i}(1)\right)=d$, then $\left(\frac{d}{\chi_{i}(1)}\right) \chi_{i}\left(g_{j}\right)$ is an algebraic integer.
Proof. Choose $m, n \in \mathbb{Z}$ such that $m k_{j}+n \chi_{i}(1)=d$. Multiply by $\chi_{i}\left(g_{j}\right) / \chi_{i}(1)$:

$\lambda_{i}=k_{j} \cdot \chi_{i}\left(g_{j}\right) / \chi_{i}(1)$

If $\mathbb{C}[G] \cong n_{1} S_{1} \oplus \cdots \oplus n_{r} S_{r}$, then the left-multiplication action of κ_{j} on S_{i} has matrix $\lambda_{i} I_{n_{i}}$ and also $\sum_{g \in K_{G}(g)}\left[\rho_{i}(g)\right]$.
Equating traces yields $\lambda_{i} \cdot \chi_{i}(1)=k_{j} \cdot \chi_{i}\left(g_{j}\right)$, or $\lambda_{i}=k_{j} \cdot \chi_{i}\left(g_{j}\right) / \chi_{i}(1)$.
Summary. $k_{j} \cdot \chi_{i}\left(g_{j}\right) / \chi_{i}(1)$ is an algebraic integer for any i, j.
Corollary. If $\operatorname{gcd}\left(k_{j}, \chi_{i}(1)\right)=d$, then $\left(\frac{d}{\chi_{i}(1)}\right) \chi_{i}\left(g_{j}\right)$ is an algebraic integer.
Proof. Choose $m, n \in \mathbb{Z}$ such that $m k_{j}+n \chi_{i}(1)=d$. Multiply by $\chi_{i}\left(g_{j}\right) / \chi_{i}(1)$:

$$
m\left(k_{j} \cdot \chi_{i}\left(g_{j}\right) / \chi_{i}(1)\right)+n \chi_{i}\left(g_{j}\right)=\left(\frac{d}{\chi_{i}(1)}\right) \chi_{i}\left(g_{j}\right)
$$

$\lambda_{i}=k_{j} \cdot \chi_{i}\left(g_{j}\right) / \chi_{i}(1)$

If $\mathbb{C}[G] \cong n_{1} S_{1} \oplus \cdots \oplus n_{r} S_{r}$, then the left-multiplication action of κ_{j} on S_{i} has matrix $\lambda_{i} I_{n_{i}}$ and also $\sum_{g \in K_{G}(g)}\left[\rho_{i}(g)\right]$.
Equating traces yields $\lambda_{i} \cdot \chi_{i}(1)=k_{j} \cdot \chi_{i}\left(g_{j}\right)$, or $\lambda_{i}=k_{j} \cdot \chi_{i}\left(g_{j}\right) / \chi_{i}(1)$.
Summary. $k_{j} \cdot \chi_{i}\left(g_{j}\right) / \chi_{i}(1)$ is an algebraic integer for any i, j.
Corollary. If $\operatorname{gcd}\left(k_{j}, \chi_{i}(1)\right)=d$, then $\left(\frac{d}{\chi_{i}(1)}\right) \chi_{i}\left(g_{j}\right)$ is an algebraic integer.
Proof. Choose $m, n \in \mathbb{Z}$ such that $m k_{j}+n \chi_{i}(1)=d$. Multiply by $\chi_{i}\left(g_{j}\right) / \chi_{i}(1)$:

$$
m\left(k_{j} \cdot \chi_{i}\left(g_{j}\right) / \chi_{i}(1)\right)+n \chi_{i}\left(g_{j}\right)=\left(\frac{d}{\chi_{i}(1)}\right) \chi_{i}\left(g_{j}\right) . \square
$$

$\lambda_{i}=k_{j} \cdot \chi_{i}\left(g_{j}\right) / \chi_{i}(1)$

If $\mathbb{C}[G] \cong n_{1} S_{1} \oplus \cdots \oplus n_{r} S_{r}$, then the left-multiplication action of κ_{j} on S_{i} has matrix $\lambda_{i} I_{n_{i}}$ and also $\sum_{g \in K_{G}(g)}\left[\rho_{i}(g)\right]$.
Equating traces yields $\lambda_{i} \cdot \chi_{i}(1)=k_{j} \cdot \chi_{i}\left(g_{j}\right)$, or $\lambda_{i}=k_{j} \cdot \chi_{i}\left(g_{j}\right) / \chi_{i}(1)$.
Summary. $k_{j} \cdot \chi_{i}\left(g_{j}\right) / \chi_{i}(1)$ is an algebraic integer for any i, j.
Corollary. If $\operatorname{gcd}\left(k_{j}, \chi_{i}(1)\right)=d$, then $\left(\frac{d}{\chi_{i}(1)}\right) \chi_{i}\left(g_{j}\right)$ is an algebraic integer.
Proof. Choose $m, n \in \mathbb{Z}$ such that $m k_{j}+n \chi_{i}(1)=d$. Multiply by $\chi_{i}\left(g_{j}\right) / \chi_{i}(1)$:

$$
m\left(k_{j} \cdot \chi_{i}\left(g_{j}\right) / \chi_{i}(1)\right)+n \chi_{i}\left(g_{j}\right)=\left(\frac{d}{\chi_{i}(1)}\right) \chi_{i}\left(g_{j}\right) . \square
$$

Corollary.

$\lambda_{i}=k_{j} \cdot \chi_{i}\left(g_{j}\right) / \chi_{i}(1)$

If $\mathbb{C}[G] \cong n_{1} S_{1} \oplus \cdots \oplus n_{r} S_{r}$, then the left-multiplication action of κ_{j} on S_{i} has matrix $\lambda_{i} I_{n_{i}}$ and also $\sum_{g \in K_{G}(g)}\left[\rho_{i}(g)\right]$.
Equating traces yields $\lambda_{i} \cdot \chi_{i}(1)=k_{j} \cdot \chi_{i}\left(g_{j}\right)$, or $\lambda_{i}=k_{j} \cdot \chi_{i}\left(g_{j}\right) / \chi_{i}(1)$.
Summary. $k_{j} \cdot \chi_{i}\left(g_{j}\right) / \chi_{i}(1)$ is an algebraic integer for any i, j.
Corollary. If $\operatorname{gcd}\left(k_{j}, \chi_{i}(1)\right)=d$, then $\left(\frac{d}{\chi_{i}(1)}\right) \chi_{i}\left(g_{j}\right)$ is an algebraic integer.
Proof. Choose $m, n \in \mathbb{Z}$ such that $m k_{j}+n \chi_{i}(1)=d$. Multiply by $\chi_{i}\left(g_{j}\right) / \chi_{i}(1)$:

$$
m\left(k_{j} \cdot \chi_{i}\left(g_{j}\right) / \chi_{i}(1)\right)+n \chi_{i}\left(g_{j}\right)=\left(\frac{d}{\chi_{i}(1)}\right) \chi_{i}\left(g_{j}\right) . \square
$$

Corollary. If $\operatorname{gcd}\left(k_{j}, \chi_{i}(1)\right)=1$, then $\chi_{i}\left(g_{j}\right) / \chi_{i}(1)$ is an algebraic integer.

$\lambda_{i}=k_{j} \cdot \chi_{i}\left(g_{j}\right) / \chi_{i}(1)$

If $\mathbb{C}[G] \cong n_{1} S_{1} \oplus \cdots \oplus n_{r} S_{r}$, then the left-multiplication action of κ_{j} on S_{i} has matrix $\lambda_{i} I_{n_{i}}$ and also $\sum_{g \in K_{G}(g)}\left[\rho_{i}(g)\right]$.
Equating traces yields $\lambda_{i} \cdot \chi_{i}(1)=k_{j} \cdot \chi_{i}\left(g_{j}\right)$, or $\lambda_{i}=k_{j} \cdot \chi_{i}\left(g_{j}\right) / \chi_{i}(1)$.
Summary. $k_{j} \cdot \chi_{i}\left(g_{j}\right) / \chi_{i}(1)$ is an algebraic integer for any i, j.
Corollary. If $\operatorname{gcd}\left(k_{j}, \chi_{i}(1)\right)=d$, then $\left(\frac{d}{\chi_{i}(1)}\right) \chi_{i}\left(g_{j}\right)$ is an algebraic integer.
Proof. Choose $m, n \in \mathbb{Z}$ such that $m k_{j}+n \chi_{i}(1)=d$. Multiply by $\chi_{i}\left(g_{j}\right) / \chi_{i}(1)$:

$$
m\left(k_{j} \cdot \chi_{i}\left(g_{j}\right) / \chi_{i}(1)\right)+n \chi_{i}\left(g_{j}\right)=\left(\frac{d}{\chi_{i}(1)}\right) \chi_{i}\left(g_{j}\right) . \square
$$

Corollary. If $\operatorname{gcd}\left(k_{j}, \chi_{i}(1)\right)=1$, then $\chi_{i}\left(g_{j}\right) / \chi_{i}(1)$ is an algebraic integer.

Zeros in the character table

Zeros in the character table

Thm.

Zeros in the character table

Thm. If $\chi_{i}\left(g_{j}\right) / \chi_{i}(1)$ is an algebraic integer, then $\chi_{i}\left(g_{j}\right)=0$ or $g_{j} \in\left(\chi_{i}\right)_{Z}$.

Zeros in the character table

Thm. If $\chi_{i}\left(g_{j}\right) / \chi_{i}(1)$ is an algebraic integer, then $\chi_{i}\left(g_{j}\right)=0$ or $g_{j} \in\left(\chi_{i}\right)_{Z}$. Proof.

Zeros in the character table

Thm. If $\chi_{i}\left(g_{j}\right) / \chi_{i}(1)$ is an algebraic integer, then $\chi_{i}\left(g_{j}\right)=0$ or $g_{j} \in\left(\chi_{i}\right)_{Z}$. Proof. Let $z=\chi_{i}\left(g_{j}\right) / \chi_{i}(1)$.

Zeros in the character table

Thm. If $\chi_{i}\left(g_{j}\right) / \chi_{i}(1)$ is an algebraic integer, then $\chi_{i}\left(g_{j}\right)=0$ or $g_{j} \in\left(\chi_{i}\right)_{Z}$. Proof. Let $z=\chi_{i}\left(g_{j}\right) / \chi_{i}(1)$.
Let ω be a $|G|$-th root of unity.

Zeros in the character table

Thm. If $\chi_{i}\left(g_{j}\right) / \chi_{i}(1)$ is an algebraic integer, then $\chi_{i}\left(g_{j}\right)=0$ or $g_{j} \in\left(\chi_{i}\right)_{Z}$.
Proof. Let $z=\chi_{i}\left(g_{j}\right) / \chi_{i}(1)$.
Let ω be a $|G|$-th root of unity.
Let $\mathbb{L}=\mathbb{Q}[\omega]$.

Zeros in the character table

Thm. If $\chi_{i}\left(g_{j}\right) / \chi_{i}(1)$ is an algebraic integer, then $\chi_{i}\left(g_{j}\right)=0$ or $g_{j} \in\left(\chi_{i}\right)_{Z}$.
Proof. Let $z=\chi_{i}\left(g_{j}\right) / \chi_{i}(1)$.
Let ω be a $|G|$-th root of unity.
Let $\mathbb{L}=\mathbb{Q}[\omega]$.
Let $\alpha \in$ Gal be any automorphism of \mathbb{L}.

Zeros in the character table

Thm. If $\chi_{i}\left(g_{j}\right) / \chi_{i}(1)$ is an algebraic integer, then $\chi_{i}\left(g_{j}\right)=0$ or $g_{j} \in\left(\chi_{i}\right)_{Z}$.
Proof. Let $z=\chi_{i}\left(g_{j}\right) / \chi_{i}(1)$.
Let ω be a $|G|$-th root of unity.
Let $\mathbb{L}=\mathbb{Q}[\omega]$.
Let $\alpha \in$ Gal be any automorphism of \mathbb{L}.
$|\alpha(z)|=\frac{\left|\omega^{e_{1}}+\cdots+\omega^{e_{r}}\right|}{|1+\cdots+1|} \leq 1$.

Zeros in the character table

Thm. If $\chi_{i}\left(g_{j}\right) / \chi_{i}(1)$ is an algebraic integer, then $\chi_{i}\left(g_{j}\right)=0$ or $g_{j} \in\left(\chi_{i}\right)_{Z}$.
Proof. Let $z=\chi_{i}\left(g_{j}\right) / \chi_{i}(1)$.
Let ω be a $|G|$-th root of unity.
Let $\mathbb{L}=\mathbb{Q}[\omega]$.
Let $\alpha \in$ Gal be any automorphism of \mathbb{L}.
$|\alpha(z)|=\frac{\left|\omega^{e_{1}}+\cdots+\omega^{e_{r}}\right|}{|1+\cdots+1|} \leq 1$.
Then $N_{\mathbb{L} / \mathbb{Q}}(z)=\prod_{\alpha \in \mathrm{Gal}} \alpha(z)$ is a rational integer

Zeros in the character table

Thm. If $\chi_{i}\left(g_{j}\right) / \chi_{i}(1)$ is an algebraic integer, then $\chi_{i}\left(g_{j}\right)=0$ or $g_{j} \in\left(\chi_{i}\right)_{Z}$.
Proof. Let $z=\chi_{i}\left(g_{j}\right) / \chi_{i}(1)$.
Let ω be a $|G|$-th root of unity.
Let $\mathbb{L}=\mathbb{Q}[\omega]$.
Let $\alpha \in$ Gal be any automorphism of \mathbb{L}.
$|\alpha(z)|=\frac{\left|\omega^{e_{1}}+\cdots+\omega^{e_{r}}\right|}{|1+\cdots+1|} \leq 1$.
Then $N_{\mathbb{L} / \mathbb{Q}}(z)=\prod_{\alpha \in \mathrm{Gal}} \alpha(z)$ is a rational integer and
$0 \leq\left|N_{\mathbb{L} / \mathbb{Q}}(z)\right|=\left|\prod_{\alpha \in \text { Gal }} \alpha(z)\right|=\prod_{\alpha \in \text { Gal }}|\alpha(z)| \leq 1$.

Zeros in the character table

Thm. If $\chi_{i}\left(g_{j}\right) / \chi_{i}(1)$ is an algebraic integer, then $\chi_{i}\left(g_{j}\right)=0$ or $g_{j} \in\left(\chi_{i}\right)_{Z}$.
Proof. Let $z=\chi_{i}\left(g_{j}\right) / \chi_{i}(1)$.
Let ω be a $|G|$-th root of unity.
Let $\mathbb{L}=\mathbb{Q}[\omega]$.
Let $\alpha \in$ Gal be any automorphism of \mathbb{L}.
$|\alpha(z)|=\frac{\mid \omega^{e_{1}+\cdots+\omega^{e_{r}} \mid}}{|1+\cdots+1|} \leq 1$.
Then $N_{\mathbb{L} / \mathbb{Q}}(z)=\prod_{\alpha \in \mathrm{Gal}} \alpha(z)$ is a rational integer and
$0 \leq\left|N_{\mathbb{L} / \mathbb{Q}}(z)\right|=\left|\prod_{\alpha \in \text { Gal }} \alpha(z)\right|=\prod_{\alpha \in \text { Gal }}|\alpha(z)| \leq 1$.
$\left|N_{\mathbb{L} / \mathbb{Q}}(z)\right|=0$

Zeros in the character table

Thm. If $\chi_{i}\left(g_{j}\right) / \chi_{i}(1)$ is an algebraic integer, then $\chi_{i}\left(g_{j}\right)=0$ or $g_{j} \in\left(\chi_{i}\right)_{Z}$.
Proof. Let $z=\chi_{i}\left(g_{j}\right) / \chi_{i}(1)$.
Let ω be a $|G|$-th root of unity.
Let $\mathbb{L}=\mathbb{Q}[\omega]$.
Let $\alpha \in$ Gal be any automorphism of \mathbb{L}.
$|\alpha(z)|=\frac{\mid \omega^{e_{1}+\cdots+\omega^{e_{r}} \mid}}{|1+\cdots+1|} \leq 1$.
Then $N_{\mathbb{L} / \mathbb{Q}}(z)=\prod_{\alpha \in \mathrm{Gal}} \alpha(z)$ is a rational integer and
$0 \leq\left|N_{\mathbb{L} / \mathbb{Q}}(z)\right|=\left|\prod_{\alpha \in \text { Gal }} \alpha(z)\right|=\prod_{\alpha \in \text { Gal }}|\alpha(z)| \leq 1$.
$\left|N_{\mathbb{L} / \mathbb{Q}}(z)\right|=0$ iff $|z|=0$

Zeros in the character table

Thm. If $\chi_{i}\left(g_{j}\right) / \chi_{i}(1)$ is an algebraic integer, then $\chi_{i}\left(g_{j}\right)=0$ or $g_{j} \in\left(\chi_{i}\right)_{Z}$.
Proof. Let $z=\chi_{i}\left(g_{j}\right) / \chi_{i}(1)$.
Let ω be a $|G|$-th root of unity.
Let $\mathbb{L}=\mathbb{Q}[\omega]$.
Let $\alpha \in$ Gal be any automorphism of \mathbb{L}.
$|\alpha(z)|=\frac{\mid \omega^{e_{1}+\cdots+\omega^{e_{r}} \mid}}{|1+\cdots+1|} \leq 1$.
Then $N_{\mathbb{L} / \mathbb{Q}}(z)=\prod_{\alpha \in \mathrm{Gal}} \alpha(z)$ is a rational integer and
$0 \leq\left|N_{\mathbb{L} / \mathbb{Q}}(z)\right|=\left|\prod_{\alpha \in \text { Gal }} \alpha(z)\right|=\prod_{\alpha \in \text { Gal }}|\alpha(z)| \leq 1$.
$\left|N_{\mathbb{L} / \mathbb{Q}}(z)\right|=0$ iff $|z|=0$ iff $\chi_{i}\left(g_{j}\right)=0$.

Zeros in the character table

Thm. If $\chi_{i}\left(g_{j}\right) / \chi_{i}(1)$ is an algebraic integer, then $\chi_{i}\left(g_{j}\right)=0$ or $g_{j} \in\left(\chi_{i}\right)_{Z}$.
Proof. Let $z=\chi_{i}\left(g_{j}\right) / \chi_{i}(1)$.
Let ω be a $|G|$-th root of unity.
Let $\mathbb{L}=\mathbb{Q}[\omega]$.
Let $\alpha \in$ Gal be any automorphism of \mathbb{L}.
$|\alpha(z)|=\frac{\mid \omega^{e_{1}+\cdots+\omega^{e_{r}} \mid}}{|1+\cdots+1|} \leq 1$.
Then $N_{\mathbb{L} / \mathbb{Q}}(z)=\prod_{\alpha \in \mathrm{Gal}} \alpha(z)$ is a rational integer and
$0 \leq\left|N_{\mathbb{L} / \mathbb{Q}}(z)\right|=\left|\prod_{\alpha \in \text { Gal }} \alpha(z)\right|=\prod_{\alpha \in \text { Gal }}|\alpha(z)| \leq 1$.
$\left|N_{\mathbb{L} / \mathbb{Q}}(z)\right|=0$ iff $|z|=0$ iff $\chi_{i}\left(g_{j}\right)=0$.
$\left|N_{\mathbb{L} / \mathbb{Q}}(z)\right|=1$

Zeros in the character table

Thm. If $\chi_{i}\left(g_{j}\right) / \chi_{i}(1)$ is an algebraic integer, then $\chi_{i}\left(g_{j}\right)=0$ or $g_{j} \in\left(\chi_{i}\right)_{Z}$.
Proof. Let $z=\chi_{i}\left(g_{j}\right) / \chi_{i}(1)$.
Let ω be a $|G|$-th root of unity.
Let $\mathbb{L}=\mathbb{Q}[\omega]$.
Let $\alpha \in$ Gal be any automorphism of \mathbb{L}.
$|\alpha(z)|=\frac{\mid \omega^{e_{1}+\cdots+\omega^{e_{r}} \mid}}{|1+\cdots+1|} \leq 1$.
Then $N_{\mathbb{L} / \mathbb{Q}}(z)=\prod_{\alpha \in \text { Gal }} \alpha(z)$ is a rational integer and
$0 \leq\left|N_{\mathbb{L} / \mathbb{Q}}(z)\right|=\left|\prod_{\alpha \in \text { Gal }} \alpha(z)\right|=\prod_{\alpha \in \text { Gal }}|\alpha(z)| \leq 1$.
$\left|N_{\mathbb{L} / \mathbb{Q}}(z)\right|=0$ iff $|z|=0$ iff $\chi_{i}\left(g_{j}\right)=0$.
$\left|N_{\mathbb{L} / \mathbb{Q}}(z)\right|=1$ iff $|z|=1$

Zeros in the character table

Thm. If $\chi_{i}\left(g_{j}\right) / \chi_{i}(1)$ is an algebraic integer, then $\chi_{i}\left(g_{j}\right)=0$ or $g_{j} \in\left(\chi_{i}\right)_{Z}$.
Proof. Let $z=\chi_{i}\left(g_{j}\right) / \chi_{i}(1)$.
Let ω be a $|G|$-th root of unity.
Let $\mathbb{L}=\mathbb{Q}[\omega]$.
Let $\alpha \in$ Gal be any automorphism of \mathbb{L}.
$|\alpha(z)|=\frac{\mid \omega^{e_{1}+\cdots+\omega^{e_{r}} \mid}}{|1+\cdots+1|} \leq 1$.
Then $N_{\mathbb{L} / \mathbb{Q}}(z)=\prod_{\alpha \in \text { Gal }} \alpha(z)$ is a rational integer and
$0 \leq\left|N_{\mathbb{L} / \mathbb{Q}}(z)\right|=\left|\prod_{\alpha \in \text { Gal }} \alpha(z)\right|=\prod_{\alpha \in \text { Gal }}|\alpha(z)| \leq 1$.
$\left|N_{\mathbb{L} / \mathbb{Q}}(z)\right|=0$ iff $|z|=0$ iff $\chi_{i}\left(g_{j}\right)=0$.
$\left|N_{\mathbb{L} / \mathbb{Q}}(z)\right|=1$ iff $|z|=1$ iff $\left|\chi_{i}\left(g_{j}\right)\right|=\chi_{i}(1)$

Zeros in the character table

Thm. If $\chi_{i}\left(g_{j}\right) / \chi_{i}(1)$ is an algebraic integer, then $\chi_{i}\left(g_{j}\right)=0$ or $g_{j} \in\left(\chi_{i}\right)_{Z}$.
Proof. Let $z=\chi_{i}\left(g_{j}\right) / \chi_{i}(1)$.
Let ω be a $|G|$-th root of unity.
Let $\mathbb{L}=\mathbb{Q}[\omega]$.
Let $\alpha \in$ Gal be any automorphism of \mathbb{L}.
$|\alpha(z)|=\frac{\mid \omega^{e_{1}+\cdots+\omega^{e_{r}} \mid}}{|1+\cdots+1|} \leq 1$.
Then $N_{\mathbb{L} / \mathbb{Q}}(z)=\prod_{\alpha \in \mathrm{Gal}} \alpha(z)$ is a rational integer and
$0 \leq\left|N_{\mathbb{L} / \mathbb{Q}}(z)\right|=\left|\prod_{\alpha \in \text { Gal }} \alpha(z)\right|=\prod_{\alpha \in \text { Gal }}|\alpha(z)| \leq 1$.
$\left|N_{\mathbb{L} / \mathbb{Q}}(z)\right|=0$ iff $|z|=0$ iff $\chi_{i}\left(g_{j}\right)=0$.
$\left|N_{\mathbb{L} / \mathbb{Q}}(z)\right|=1$ iff $|z|=1$ iff $\left|\chi_{i}\left(g_{j}\right)\right|=\chi_{i}(1)$ iff $g_{j} \in\left(\chi_{i}\right)_{Z}$.

Zeros in the character table

Thm. If $\chi_{i}\left(g_{j}\right) / \chi_{i}(1)$ is an algebraic integer, then $\chi_{i}\left(g_{j}\right)=0$ or $g_{j} \in\left(\chi_{i}\right)_{Z}$.
Proof. Let $z=\chi_{i}\left(g_{j}\right) / \chi_{i}(1)$.
Let ω be a $|G|$-th root of unity.
Let $\mathbb{L}=\mathbb{Q}[\omega]$.
Let $\alpha \in$ Gal be any automorphism of \mathbb{L}.
$|\alpha(z)|=\frac{\mid \omega^{e_{1}+\cdots+\omega^{e_{r}} \mid}}{|1+\cdots+1|} \leq 1$.
Then $N_{\mathbb{L} / \mathbb{Q}}(z)=\prod_{\alpha \in \text { Gal }} \alpha(z)$ is a rational integer and
$0 \leq\left|N_{\mathbb{L} / \mathbb{Q}}(z)\right|=\left|\prod_{\alpha \in \text { Gal }} \alpha(z)\right|=\prod_{\alpha \in \text { Gal }}|\alpha(z)| \leq 1$.
$\left|N_{\mathbb{L} / \mathbb{Q}}(z)\right|=0$ iff $|z|=0$ iff $\chi_{i}\left(g_{j}\right)=0$.
$\left|N_{\mathbb{L} / \mathbb{Q}}(z)\right|=1$ iff $|z|=1$ iff $\left|\chi_{i}\left(g_{j}\right)\right|=\chi_{i}(1)$ iff $g_{j} \in\left(\chi_{i}\right)_{Z} . \square$

Irreducible character degrees divide $|G|$

Irreducible character degrees divide $|G|$

Thm.

Irreducible character degrees divide $|G|$

Thm. If χ_{i} is irreducible, then the integer $\chi_{i}(1)$ divides $|G|$.

Irreducible character degrees divide $|G|$

Thm. If χ_{i} is irreducible, then the integer $\chi_{i}(1)$ divides $|G|$.
Proof.

Irreducible character degrees divide $|G|$

Thm. If χ_{i} is irreducible, then the integer $\chi_{i}(1)$ divides $|G|$.
Proof.
Using Row Orthogonality on the i-th row

Irreducible character degrees divide $|G|$

Thm. If χ_{i} is irreducible, then the integer $\chi_{i}(1)$ divides $|G|$.
Proof.
Using Row Orthogonality on the i-th row

$$
\mathbb{Z} \stackrel{?}{\ni} \frac{|G|}{\chi_{i}(1)}
$$

Irreducible character degrees divide $|G|$

Thm. If χ_{i} is irreducible, then the integer $\chi_{i}(1)$ divides $|G|$.
Proof.
Using Row Orthogonality on the i-th row

$$
\mathbb{Z} \xlongequal{\ni} \frac{|G|}{\chi_{i}(1)}=\frac{|G|}{\chi_{i}(1)} \cdot 1
$$

Irreducible character degrees divide $|G|$

Thm. If χ_{i} is irreducible, then the integer $\chi_{i}(1)$ divides $|G|$.
Proof.
Using Row Orthogonality on the i-th row

$$
\mathbb{Z} \xlongequal{\ni} \frac{|G|}{\chi_{i}(1)}=\frac{|G|}{\chi_{i}(1)} \cdot 1=\frac{|G|}{\chi_{i}(1)} \cdot \frac{1}{|G|} \sum_{j=1}^{r} k_{j} \overline{\chi_{i}}\left(g_{j}\right) \chi_{i}\left(g_{j}\right)
$$

Irreducible character degrees divide $|G|$

Thm. If χ_{i} is irreducible, then the integer $\chi_{i}(1)$ divides $|G|$.
Proof.
Using Row Orthogonality on the i-th row

$$
\begin{aligned}
\mathbb{Z} \xlongequal{\ni} \frac{|G|}{\chi_{i}(1)}=\frac{|G|}{\chi_{i}(1)} \cdot 1 & =\frac{|G|}{\chi_{i}(1)} \cdot \frac{1}{|G|} \sum_{j=1}^{r} k_{j} \overline{\chi_{i}}\left(g_{j}\right) \chi_{i}\left(g_{j}\right) \\
& =\sum_{j=1}^{r}\left(\underline{k_{j} \chi_{i}\left(g_{j}\right) / \chi_{i}(1)}\right) \underline{\chi_{i}\left(g_{j}\right)}
\end{aligned}
$$

Irreducible character degrees divide $|G|$

Thm. If χ_{i} is irreducible, then the integer $\chi_{i}(1)$ divides $|G|$.
Proof.
Using Row Orthogonality on the i-th row

$$
\begin{aligned}
\mathbb{Z} \stackrel{?}{\ni} \frac{|G|}{\chi_{i}(1)}=\frac{|G|}{\chi_{i}(1)} \cdot 1 & =\frac{|G|}{\chi_{i}(1)} \cdot \frac{1}{|G|} \sum_{j=1}^{r} k_{j} \overline{\chi_{i}}\left(g_{j}\right) \chi_{i}\left(g_{j}\right) \\
& =\sum_{j=1}^{r}\left(\underline{k_{j} \chi_{i}\left(g_{j}\right) / \chi_{i}(1)}\right) \underline{\overline{\chi_{i}}\left(g_{j}\right)} \\
& \in \mathbb{A} \cap \mathbb{Q}
\end{aligned}
$$

Irreducible character degrees divide $|G|$

Thm. If χ_{i} is irreducible, then the integer $\chi_{i}(1)$ divides $|G|$.
Proof.
Using Row Orthogonality on the i-th row

$$
\begin{aligned}
\mathbb{Z} \stackrel{?}{\ni} \frac{|G|}{\chi_{i}(1)}=\frac{|G|}{\chi_{i}(1)} \cdot 1 & =\frac{|G|}{\chi_{i}(1)} \cdot \frac{1}{|G|} \sum_{j=1}^{r} k_{j} \overline{\chi_{i}}\left(g_{j}\right) \chi_{i}\left(g_{j}\right) \\
& =\sum_{j=1}^{r}\left(\underline{k_{j} \chi_{i}\left(g_{j}\right) / \chi_{i}(1)}\right) \underline{\overline{\chi_{i}}\left(g_{j}\right)} \\
& \in \mathbb{A} \cap \mathbb{Q}=\mathbb{Z} .
\end{aligned}
$$

Irreducible character degrees divide $|G|$

Thm. If χ_{i} is irreducible, then the integer $\chi_{i}(1)$ divides $|G|$.
Proof.
Using Row Orthogonality on the i-th row

$$
\begin{aligned}
\mathbb{Z} \stackrel{?}{\ni} \frac{|G|}{\chi_{i}(1)}=\frac{|G|}{\chi_{i}(1)} \cdot 1 & =\frac{|G|}{\chi_{i}(1)} \cdot \frac{1}{|G|} \sum_{j=1}^{r} k_{j} \overline{\chi_{i}}\left(g_{j}\right) \chi_{i}\left(g_{j}\right) \\
& =\sum_{j=1}^{r}\left(\underline{k_{j} \chi_{i}\left(g_{j}\right) / \chi_{i}(1)}\right) \underline{\overline{\chi_{i}}\left(g_{j}\right)} \\
& \in \mathbb{A} \cap \mathbb{Q}=\mathbb{Z} . \square
\end{aligned}
$$

