Integrality Properties

	1	k_2	• • •	k _r
G	1	<i>g</i> ₂	• • • •	g _r
χ_1	1	1	• • •	1
χ_2	d_2	$\chi_2(g_2)$	• • •	$\chi_2(g_r)$
÷	÷	•	·	:
χ_r	d_r	$\chi_r(g_2)$		$\chi_r(g_r)$

A complex number $\alpha \in \mathbb{C}$ is an *algebraic integer* if it satisfies a monic with integer coefficients.

A complex number $\alpha \in \mathbb{C}$ is an *algebraic integer* if it satisfies a monic with integer coefficients. (Equivalently, α is an eigenvalue of an integer matrix.)

A complex number $\alpha \in \mathbb{C}$ is an *algebraic integer* if it satisfies a monic with integer coefficients. (Equivalently, α is an eigenvalue of an integer matrix.) **Examples.**

A complex number $\alpha \in \mathbb{C}$ is an *algebraic integer* if it satisfies a monic with integer coefficients. (Equivalently, α is an eigenvalue of an integer matrix.) Examples. $i, \sqrt{2}, \cos(2\pi/n)$.

A complex number $\alpha \in \mathbb{C}$ is an *algebraic integer* if it satisfies a monic with integer coefficients. (Equivalently, α is an eigenvalue of an integer matrix.) **Examples.** $i, \sqrt{2}, \cos(2\pi/n)$.

The collection \mathbb{A} of all algebraic integers is a subring of \mathbb{C} , which contains all roots of unity, and which is invariant under all automorphisms of \mathbb{C} .

A complex number $\alpha \in \mathbb{C}$ is an *algebraic integer* if it satisfies a monic with integer coefficients. (Equivalently, α is an eigenvalue of an integer matrix.) Examples. $i, \sqrt{2}, \cos(2\pi/n)$.

The collection \mathbb{A} of all algebraic integers is a subring of \mathbb{C} , which contains all roots of unity, and which is invariant under all automorphisms of \mathbb{C} . A basic fact about this ring is $\mathbb{A} \cap \mathbb{Q} = \mathbb{Z}$.

A complex number $\alpha \in \mathbb{C}$ is an *algebraic integer* if it satisfies a monic with integer coefficients. (Equivalently, α is an eigenvalue of an integer matrix.) **Examples.** $i, \sqrt{2}, \cos(2\pi/n)$.

The collection \mathbb{A} of all algebraic integers is a subring of \mathbb{C} , which contains all roots of unity, and which is invariant under all automorphisms of \mathbb{C} . A basic fact about this ring is $\mathbb{A} \cap \mathbb{Q} = \mathbb{Z}$. (The "Rational Root Theorem".)

A complex number $\alpha \in \mathbb{C}$ is an *algebraic integer* if it satisfies a monic with integer coefficients. (Equivalently, α is an eigenvalue of an integer matrix.) **Examples.** $i, \sqrt{2}, \cos(2\pi/n)$.

The collection \mathbb{A} of all algebraic integers is a subring of \mathbb{C} , which contains all roots of unity, and which is invariant under all automorphisms of \mathbb{C} . A basic fact about this ring is $\mathbb{A} \cap \mathbb{Q} = \mathbb{Z}$. (The "Rational Root Theorem".)

Since $\chi(g)$ is a sum of roots of unity, $\chi(g) \in \mathbb{A}$ for any χ and g.

A complex number $\alpha \in \mathbb{C}$ is an *algebraic integer* if it satisfies a monic with integer coefficients. (Equivalently, α is an eigenvalue of an integer matrix.) **Examples.** $i, \sqrt{2}, \cos(2\pi/n)$.

The collection \mathbb{A} of all algebraic integers is a subring of \mathbb{C} , which contains all roots of unity, and which is invariant under all automorphisms of \mathbb{C} . A basic fact about this ring is $\mathbb{A} \cap \mathbb{Q} = \mathbb{Z}$. (The "Rational Root Theorem".)

Since $\chi(g)$ is a sum of roots of unity, $\chi(g) \in \mathbb{A}$ for any χ and g. We want to refine this observation.

Let $K_G(g_j)$ be the conjugacy class of g_j , and let $\kappa_j = \sum_{g \in K_G(g_j)} g \in \mathbb{C}[G]$ be the class sum associated to g_j .

Let $K_G(g_j)$ be the conjugacy class of g_j , and let $\kappa_j = \sum_{g \in K_G(g_j)} g \in \mathbb{C}[G]$ be the class sum associated to g_j .

Claim.

Let $K_G(g_j)$ be the conjugacy class of g_j , and let $\kappa_j = \sum_{g \in K_G(g_j)} g \in \mathbb{C}[G]$ be the class sum associated to g_j .

Claim. $\kappa_j \in Z(\mathbb{C}[G]).$

Let $K_G(g_j)$ be the conjugacy class of g_j , and let $\kappa_j = \sum_{g \in K_G(g_j)} g \in \mathbb{C}[G]$ be the class sum associated to g_j .

Claim. $\kappa_j \in Z(\mathbb{C}[G])$. (See the argument for Theorem (8).)

Let $K_G(g_j)$ be the conjugacy class of g_j , and let $\kappa_j = \sum_{g \in K_G(g_j)} g \in \mathbb{C}[G]$ be the class sum associated to g_j .

Claim. $\kappa_j \in Z(\mathbb{C}[G])$. (See the argument for Theorem (8).)

Under the isomorphism $\varphi \colon \mathbb{C}[G] \xrightarrow{\sim} M_{n_1}(\mathbb{C}) \times \cdots \times M_{n_r}(\mathbb{C})$,

Let $K_G(g_j)$ be the conjugacy class of g_j , and let $\kappa_j = \sum_{g \in K_G(g_j)} g \in \mathbb{C}[G]$ be the class sum associated to g_j .

Claim. $\kappa_j \in Z(\mathbb{C}[G])$. (See the argument for Theorem (8).)

Under the isomorphism $\varphi \colon \mathbb{C}[G] \xrightarrow{\sim} M_{n_1}(\mathbb{C}) \times \cdots \times M_{n_r}(\mathbb{C})$,

 $\varphi(\kappa_j) = (\lambda_1 I_{n_1}, \ldots, \lambda_r I_{n_r}), \ \lambda_i \in \mathbb{C}.$

Let $K_G(g_j)$ be the conjugacy class of g_j , and let $\kappa_j = \sum_{g \in K_G(g_j)} g \in \mathbb{C}[G]$ be the class sum associated to g_j .

Claim. $\kappa_j \in Z(\mathbb{C}[G])$. (See the argument for Theorem (8).)

Under the isomorphism $\varphi \colon \mathbb{C}[G] \xrightarrow{\sim} M_{n_1}(\mathbb{C}) \times \cdots \times M_{n_r}(\mathbb{C})$,

$$\varphi(\kappa_j) = (\lambda_1 I_{n_1}, \ldots, \lambda_r I_{n_r}), \ \lambda_i \in \mathbb{C}.$$

Claim.

Let $K_G(g_j)$ be the conjugacy class of g_j , and let $\kappa_j = \sum_{g \in K_G(g_j)} g \in \mathbb{C}[G]$ be the class sum associated to g_j .

Claim. $\kappa_j \in Z(\mathbb{C}[G])$. (See the argument for Theorem (8).)

Under the isomorphism $\varphi \colon \mathbb{C}[G] \xrightarrow{\sim} M_{n_1}(\mathbb{C}) \times \cdots \times M_{n_r}(\mathbb{C})$,

$$\varphi(\kappa_j) = (\lambda_1 I_{n_1}, \ldots, \lambda_r I_{n_r}), \ \lambda_i \in \mathbb{C}.$$

Claim.The matrix $[\kappa_j]$ of the module endomorphism $\mathbb{C}[G] \to \mathbb{C}[G]: v \mapsto \kappa_j \cdot v$ has integer entries.

Let $K_G(g_j)$ be the conjugacy class of g_j , and let $\kappa_j = \sum_{g \in K_G(g_j)} g \in \mathbb{C}[G]$ be the class sum associated to g_j .

Claim. $\kappa_j \in Z(\mathbb{C}[G])$. (See the argument for Theorem (8).)

Under the isomorphism $\varphi \colon \mathbb{C}[G] \xrightarrow{\sim} M_{n_1}(\mathbb{C}) \times \cdots \times M_{n_r}(\mathbb{C})$,

$$\varphi(\kappa_j) = (\lambda_1 I_{n_1}, \ldots, \lambda_r I_{n_r}), \ \lambda_i \in \mathbb{C}.$$

Claim.The matrix $[\kappa_j]$ of the module endomorphism $\mathbb{C}[G] \to \mathbb{C}[G]: v \mapsto \kappa_j \cdot v$ has integer entries. (It is a sum of k_j permutation matrices.)

Let $K_G(g_j)$ be the conjugacy class of g_j , and let $\kappa_j = \sum_{g \in K_G(g_j)} g \in \mathbb{C}[G]$ be the class sum associated to g_j .

Claim. $\kappa_j \in Z(\mathbb{C}[G])$. (See the argument for Theorem (8).)

Under the isomorphism $\varphi \colon \mathbb{C}[G] \xrightarrow{\sim} M_{n_1}(\mathbb{C}) \times \cdots \times M_{n_r}(\mathbb{C})$,

$$\varphi(\kappa_j) = (\lambda_1 I_{n_1}, \ldots, \lambda_r I_{n_r}), \ \lambda_i \in \mathbb{C}.$$

Claim.The matrix $[\kappa_j]$ of the module endomorphism $\mathbb{C}[G] \to \mathbb{C}[G]: v \mapsto \kappa_j \cdot v$ has integer entries. (It is a sum of k_j permutation matrices.)

Claim.

Let $K_G(g_j)$ be the conjugacy class of g_j , and let $\kappa_j = \sum_{g \in K_G(g_j)} g \in \mathbb{C}[G]$ be the class sum associated to g_j .

Claim. $\kappa_j \in Z(\mathbb{C}[G])$. (See the argument for Theorem (8).)

Under the isomorphism $\varphi \colon \mathbb{C}[G] \xrightarrow{\sim} M_{n_1}(\mathbb{C}) \times \cdots \times M_{n_r}(\mathbb{C})$,

$$\varphi(\kappa_j) = (\lambda_1 I_{n_1}, \ldots, \lambda_r I_{n_r}), \ \lambda_i \in \mathbb{C}.$$

Claim.The matrix $[\kappa_j]$ of the module endomorphism $\mathbb{C}[G] \to \mathbb{C}[G]: v \mapsto \kappa_j \cdot v$ has integer entries. (It is a sum of k_j permutation matrices.)

Claim. The λ_i 's are algebraic integers.

Let $K_G(g_j)$ be the conjugacy class of g_j , and let $\kappa_j = \sum_{g \in K_G(g_j)} g \in \mathbb{C}[G]$ be the class sum associated to g_j .

Claim. $\kappa_j \in Z(\mathbb{C}[G])$. (See the argument for Theorem (8).)

Under the isomorphism $\varphi \colon \mathbb{C}[G] \xrightarrow{\sim} M_{n_1}(\mathbb{C}) \times \cdots \times M_{n_r}(\mathbb{C})$,

$$\varphi(\kappa_j) = (\lambda_1 I_{n_1}, \ldots, \lambda_r I_{n_r}), \ \lambda_i \in \mathbb{C}.$$

Claim.The matrix $[\kappa_j]$ of the module endomorphism $\mathbb{C}[G] \to \mathbb{C}[G]: v \mapsto \kappa_j \cdot v$ has integer entries. (It is a sum of k_j permutation matrices.)

Claim. The λ_i 's are algebraic integers. (They are e-values of $[\kappa_j]$.)

If $\mathbb{C}[G] \cong n_1 S_1 \oplus \cdots \oplus n_r S_r$, then the left-multiplication action of κ_j on S_i has matrix $\lambda_i I_{n_i}$

If $\mathbb{C}[G] \cong n_1 S_1 \oplus \cdots \oplus n_r S_r$, then the left-multiplication action of κ_j on S_i has matrix $\lambda_i I_{n_i}$ and also $\sum_{g \in K_G(g_i)} [\rho_i(g)]$.

If $\mathbb{C}[G] \cong n_1 S_1 \oplus \cdots \oplus n_r S_r$, then the left-multiplication action of κ_j on S_i has matrix $\lambda_i I_{n_i}$ and also $\sum_{g \in K_G(g_j)} [\rho_i(g)]$. Equating traces yields $\lambda_i \cdot \chi_i(1) = k_j \cdot \chi_i(g_j)$,

If $\mathbb{C}[G] \cong n_1 S_1 \oplus \cdots \oplus n_r S_r$, then the left-multiplication action of κ_j on S_i has matrix $\lambda_i I_{n_i}$ and also $\sum_{g \in K_G(g_j)} [\rho_i(g)]$. Equating traces yields $\lambda_i \cdot \chi_i(1) = k_j \cdot \chi_i(g_j)$, or $\lambda_i = k_j \cdot \chi_i(g_j)/\chi_i(1)$.

If $\mathbb{C}[G] \cong n_1 S_1 \oplus \cdots \oplus n_r S_r$, then the left-multiplication action of κ_j on S_i has matrix $\lambda_i I_{n_i}$ and also $\sum_{g \in K_G(g_j)} [\rho_i(g)]$. Equating traces yields $\lambda_i \cdot \chi_i(1) = k_j \cdot \chi_i(g_j)$, or $\lambda_i = k_j \cdot \chi_i(g_j)/\chi_i(1)$.

Summary.

If $\mathbb{C}[G] \cong n_1 S_1 \oplus \cdots \oplus n_r S_r$, then the left-multiplication action of κ_j on S_i has matrix $\lambda_i I_{n_i}$ and also $\sum_{g \in K_G(g_j)} [\rho_i(g)]$. Equating traces yields $\lambda_i \cdot \chi_i(1) = k_i \cdot \chi_i(g_i)$, or $\lambda_i = k_i \cdot \chi_i(g_i)/\chi_i(1)$.

Summary. $k_j \cdot \chi_i(g_j)/\chi_i(1)$ is an algebraic integer for any *i*, *j*.

If $\mathbb{C}[G] \cong n_1 S_1 \oplus \cdots \oplus n_r S_r$, then the left-multiplication action of κ_j on S_i has matrix $\lambda_i I_{n_i}$ and also $\sum_{g \in K_G(g_j)} [\rho_i(g)]$. Equating traces yields $\lambda_i \cdot \chi_i(1) = k_i \cdot \chi_i(g_i)$, or $\lambda_i = k_i \cdot \chi_i(g_i)/\chi_i(1)$.

Summary. $k_j \cdot \chi_i(g_j)/\chi_i(1)$ is an algebraic integer for any *i*, *j*.

Corollary.

If $\mathbb{C}[G] \cong n_1 S_1 \oplus \cdots \oplus n_r S_r$, then the left-multiplication action of κ_j on S_i has matrix $\lambda_i I_{n_i}$ and also $\sum_{g \in K_G(g_j)} [\rho_i(g)]$. Equating traces yields $\lambda_i \cdot \chi_i(1) = k_j \cdot \chi_i(g_j)$, or $\lambda_i = k_j \cdot \chi_i(g_j)/\chi_i(1)$.

Summary. $k_j \cdot \chi_i(g_j)/\chi_i(1)$ is an algebraic integer for any *i*, *j*.

Corollary. If $gcd(k_j, \chi_i(1)) = d$, then $\left(\frac{d}{\chi_i(1)}\right) \chi_i(g_j)$ is an algebraic integer.

If $\mathbb{C}[G] \cong n_1 S_1 \oplus \cdots \oplus n_r S_r$, then the left-multiplication action of κ_j on S_i has matrix $\lambda_i I_{n_i}$ and also $\sum_{g \in K_G(g_j)} [\rho_i(g)]$. Equating traces yields $\lambda_i \cdot \chi_i(1) = k_j \cdot \chi_i(g_j)$, or $\lambda_i = k_j \cdot \chi_i(g_j)/\chi_i(1)$. **Summary.** $k_j \cdot \chi_i(g_j)/\chi_i(1)$ is an algebraic integer for any i, j. **Corollary.** If $gcd(k_j, \chi_i(1)) = d$, then $\left(\frac{d}{\chi_i(1)}\right) \chi_i(g_j)$ is an algebraic integer.

Proof.

If $\mathbb{C}[G] \cong n_1 S_1 \oplus \cdots \oplus n_r S_r$, then the left-multiplication action of κ_j on S_i has matrix $\lambda_i I_{n_i}$ and also $\sum_{g \in K_G(g_j)} [\rho_i(g)]$. Equating traces yields $\lambda_i \cdot \chi_i(1) = k_j \cdot \chi_i(g_j)$, or $\lambda_i = k_j \cdot \chi_i(g_j)/\chi_i(1)$. **Summary.** $k_j \cdot \chi_i(g_j)/\chi_i(1)$ is an algebraic integer for any i, j. **Corollary.** If $gcd(k_j, \chi_i(1)) = d$, then $\left(\frac{d}{\chi_i(1)}\right) \chi_i(g_j)$ is an algebraic integer. *Proof.* Choose $m, n \in \mathbb{Z}$ such that $mk_i + n\chi_i(1) = d$.

If $\mathbb{C}[G] \cong n_1 S_1 \oplus \cdots \oplus n_r S_r$, then the left-multiplication action of κ_j on S_i has matrix $\lambda_i I_{n_i}$ and also $\sum_{g \in K_G(g_j)} [\rho_i(g)]$. Equating traces yields $\lambda_i \cdot \chi_i(1) = k_j \cdot \chi_i(g_j)$, or $\lambda_i = k_j \cdot \chi_i(g_j)/\chi_i(1)$. **Summary.** $k_j \cdot \chi_i(g_j)/\chi_i(1)$ is an algebraic integer for any i, j. **Corollary.** If $gcd(k_j, \chi_i(1)) = d$, then $\left(\frac{d}{\chi_i(1)}\right) \chi_i(g_j)$ is an algebraic integer. *Proof.* Choose $m, n \in \mathbb{Z}$ such that $mk_j + n\chi_i(1) = d$. Multiply by $\chi_i(g_j)/\chi_i(1)$:

If $\mathbb{C}[G] \cong n_1 S_1 \oplus \cdots \oplus n_r S_r$, then the left-multiplication action of κ_j on S_i has matrix $\lambda_i I_{n_i}$ and also $\sum_{g \in K_G(g_j)} [\rho_i(g)]$. Equating traces yields $\lambda_i \cdot \chi_i(1) = k_j \cdot \chi_i(g_j)$, or $\lambda_i = k_j \cdot \chi_i(g_j)/\chi_i(1)$. **Summary.** $k_j \cdot \chi_i(g_j)/\chi_i(1)$ is an algebraic integer for any i, j. **Corollary.** If $gcd(k_j, \chi_i(1)) = d$, then $\left(\frac{d}{\chi_i(1)}\right) \chi_i(g_j)$ is an algebraic integer. *Proof.* Choose $m, n \in \mathbb{Z}$ such that $mk_j + n\chi_i(1) = d$. Multiply by $\chi_i(g_j)/\chi_i(1)$:

$$m(k_j \cdot \chi_i(g_j)/\chi_i(1)) + n\chi_i(g_j) = \left(\frac{d}{\chi_i(1)}\right)\chi_i(g_j).$$

If $\mathbb{C}[G] \cong n_1 S_1 \oplus \cdots \oplus n_r S_r$, then the left-multiplication action of κ_j on S_i has matrix $\lambda_i I_{n_i}$ and also $\sum_{g \in K_G(g_j)} [\rho_i(g)]$. Equating traces yields $\lambda_i \cdot \chi_i(1) = k_j \cdot \chi_i(g_j)$, or $\lambda_i = k_j \cdot \chi_i(g_j)/\chi_i(1)$. **Summary.** $k_j \cdot \chi_i(g_j)/\chi_i(1)$ is an algebraic integer for any i, j. **Corollary.** If $gcd(k_j, \chi_i(1)) = d$, then $\left(\frac{d}{\chi_i(1)}\right) \chi_i(g_j)$ is an algebraic integer. *Proof.* Choose $m, n \in \mathbb{Z}$ such that $mk_j + n\chi_i(1) = d$. Multiply by $\chi_i(g_j)/\chi_i(1)$:

$$m(k_j \cdot \chi_i(g_j)/\chi_i(1)) + n\chi_i(g_j) = \left(\frac{d}{\chi_i(1)}\right)\chi_i(g_j).\square$$

If $\mathbb{C}[G] \cong n_1 S_1 \oplus \cdots \oplus n_r S_r$, then the left-multiplication action of κ_j on S_i has matrix $\lambda_i I_{n_i}$ and also $\sum_{g \in K_G(g_j)} [\rho_i(g)]$. Equating traces yields $\lambda_i \cdot \chi_i(1) = k_j \cdot \chi_i(g_j)$, or $\lambda_i = k_j \cdot \chi_i(g_j)/\chi_i(1)$. **Summary.** $k_j \cdot \chi_i(g_j)/\chi_i(1)$ is an algebraic integer for any i, j. **Corollary.** If $gcd(k_j, \chi_i(1)) = d$, then $\left(\frac{d}{\chi_i(1)}\right) \chi_i(g_j)$ is an algebraic integer. *Proof.* Choose $m, n \in \mathbb{Z}$ such that $mk_j + n\chi_i(1) = d$. Multiply by $\chi_i(g_j)/\chi_i(1)$:

$$m(k_j \cdot \chi_i(g_j)/\chi_i(1)) + n\chi_i(g_j) = \left(\frac{d}{\chi_i(1)}\right)\chi_i(g_j).\square$$

Corollary.

If $\mathbb{C}[G] \cong n_1 S_1 \oplus \cdots \oplus n_r S_r$, then the left-multiplication action of κ_j on S_i has matrix $\lambda_i I_{n_i}$ and also $\sum_{g \in K_G(g_j)} [\rho_i(g)]$. Equating traces yields $\lambda_i \cdot \chi_i(1) = k_j \cdot \chi_i(g_j)$, or $\lambda_i = k_j \cdot \chi_i(g_j)/\chi_i(1)$. **Summary.** $k_j \cdot \chi_i(g_j)/\chi_i(1)$ is an algebraic integer for any i, j. **Corollary.** If $gcd(k_j, \chi_i(1)) = d$, then $\left(\frac{d}{\chi_i(1)}\right) \chi_i(g_j)$ is an algebraic integer. *Proof.* Choose $m, n \in \mathbb{Z}$ such that $mk_j + n\chi_i(1) = d$. Multiply by $\chi_i(g_j)/\chi_i(1)$:

$$m(k_j \cdot \chi_i(g_j)/\chi_i(1)) + n\chi_i(g_j) = \left(\frac{d}{\chi_i(1)}\right)\chi_i(g_j).\square$$

Corollary. If $gcd(k_j, \chi_i(1)) = 1$, then $\chi_i(g_j)/\chi_i(1)$ is an algebraic integer.

If $\mathbb{C}[G] \cong n_1 S_1 \oplus \cdots \oplus n_r S_r$, then the left-multiplication action of κ_j on S_i has matrix $\lambda_i I_{n_i}$ and also $\sum_{g \in K_G(g_j)} [\rho_i(g)]$. Equating traces yields $\lambda_i \cdot \chi_i(1) = k_j \cdot \chi_i(g_j)$, or $\lambda_i = k_j \cdot \chi_i(g_j)/\chi_i(1)$. **Summary.** $k_j \cdot \chi_i(g_j)/\chi_i(1)$ is an algebraic integer for any i, j. **Corollary.** If $gcd(k_j, \chi_i(1)) = d$, then $\left(\frac{d}{\chi_i(1)}\right) \chi_i(g_j)$ is an algebraic integer. *Proof.* Choose $m, n \in \mathbb{Z}$ such that $mk_j + n\chi_i(1) = d$. Multiply by $\chi_i(g_j)/\chi_i(1)$:

$$m(k_j \cdot \chi_i(g_j)/\chi_i(1)) + n\chi_i(g_j) = \left(\frac{d}{\chi_i(1)}\right)\chi_i(g_j).\square$$

Corollary. If $gcd(k_j, \chi_i(1)) = 1$, then $\chi_i(g_j)/\chi_i(1)$ is an algebraic integer.

Thm.

Thm. If $\chi_i(g_j)/\chi_i(1)$ is an algebraic integer, then $\chi_i(g_j) = 0$ or $g_j \in (\chi_i)_Z$.

Thm. If $\chi_i(g_j)/\chi_i(1)$ is an algebraic integer, then $\chi_i(g_j) = 0$ or $g_j \in (\chi_i)_Z$. *Proof.*

Thm. If $\chi_i(g_j)/\chi_i(1)$ is an algebraic integer, then $\chi_i(g_j) = 0$ or $g_j \in (\chi_i)_Z$. *Proof.* Let $z = \chi_i(g_j)/\chi_i(1)$.

Thm. If $\chi_i(g_j)/\chi_i(1)$ is an algebraic integer, then $\chi_i(g_j) = 0$ or $g_j \in (\chi_i)_Z$. *Proof.* Let $z = \chi_i(g_j)/\chi_i(1)$. Let ω be a |G|-th root of unity.

Thm. If $\chi_i(g_j)/\chi_i(1)$ is an algebraic integer, then $\chi_i(g_j) = 0$ or $g_j \in (\chi_i)_Z$. *Proof.* Let $z = \chi_i(g_j)/\chi_i(1)$. Let ω be a |G|-th root of unity. Let $\mathbb{L} = \mathbb{Q}[\omega]$.

Thm. If $\chi_i(g_j)/\chi_i(1)$ is an algebraic integer, then $\chi_i(g_j) = 0$ or $g_j \in (\chi_i)_Z$. *Proof.* Let $z = \chi_i(g_j)/\chi_i(1)$. Let ω be a |G|-th root of unity. Let $\mathbb{L} = \mathbb{Q}[\omega]$. Let $\alpha \in$ Gal be any automorphism of \mathbb{L} .

Thm. If $\chi_i(g_j)/\chi_i(1)$ is an algebraic integer, then $\chi_i(g_j) = 0$ or $g_j \in (\chi_i)_Z$.

Proof. Let $z = \chi_i(g_j)/\chi_i(1)$. Let ω be a |G|-th root of unity. Let $\mathbb{L} = \mathbb{Q}[\omega]$. Let $\alpha \in \text{Gal}$ be any automorphism of \mathbb{L} . $|\alpha(z)| = \frac{|\omega^{e_1} + \dots + \omega^{e_r}|}{|1 + \dots + 1|} \leq 1.$

Thm. If $\chi_i(g_j)/\chi_i(1)$ is an algebraic integer, then $\chi_i(g_j) = 0$ or $g_j \in (\chi_i)_Z$.

Proof. Let $z = \chi_i(g_j)/\chi_i(1)$. Let ω be a |G|-th root of unity. Let $\mathbb{L} = \mathbb{Q}[\omega]$. Let $\alpha \in \text{Gal}$ be any automorphism of \mathbb{L} . $|\alpha(z)| = \frac{|\omega^{e_1} + \dots + \omega^{e_r}|}{|1 + \dots + 1|} \leq 1$. Then $N_{\mathbb{L}/\mathbb{Q}}(z) = \prod_{\alpha \in \text{Gal}} \alpha(z)$ is a rational integer

Thm. If $\chi_i(g_j)/\chi_i(1)$ is an algebraic integer, then $\chi_i(g_j) = 0$ or $g_j \in (\chi_i)_Z$.

Proof. Let $z = \chi_i(g_j)/\chi_i(1)$. Let ω be a |G|-th root of unity. Let $\mathbb{L} = \mathbb{Q}[\omega]$. Let $\alpha \in \text{Gal}$ be any automorphism of \mathbb{L} . $|\alpha(z)| = \frac{|\omega^{e_1} + \dots + \omega^{e_r}|}{|1 + \dots + 1|} \leq 1$. Then $N_{\mathbb{L}/\mathbb{Q}}(z) = \prod_{\alpha \in \text{Gal}} \alpha(z)$ is a rational integer and $0 \leq |N_{\mathbb{L}/\mathbb{Q}}(z)| = |\prod_{\alpha \in \text{Gal}} \alpha(z)| = \prod_{\alpha \in \text{Gal}} |\alpha(z)| \leq 1$.

Thm. If $\chi_i(g_j)/\chi_i(1)$ is an algebraic integer, then $\chi_i(g_j) = 0$ or $g_j \in (\chi_i)_Z$.

Proof. Let $z = \chi_i(g_j)/\chi_i(1)$. Let ω be a |G|-th root of unity. Let $\mathbb{L} = \mathbb{Q}[\omega]$. Let $\alpha \in \text{Gal}$ be any automorphism of \mathbb{L} . $|\alpha(z)| = \frac{|\omega^{e_1} + \dots + \omega^{e_r}|}{|1 + \dots + 1|} \leq 1$. Then $N_{\mathbb{L}/\mathbb{Q}}(z) = \prod_{\alpha \in \text{Gal}} \alpha(z)$ is a rational integer and $0 \leq |N_{\mathbb{L}/\mathbb{Q}}(z)| = |\prod_{\alpha \in \text{Gal}} \alpha(z)| = \prod_{\alpha \in \text{Gal}} |\alpha(z)| \leq 1$. $|N_{\mathbb{L}/\mathbb{Q}}(z)| = 0$

Thm. If $\chi_i(g_j)/\chi_i(1)$ is an algebraic integer, then $\chi_i(g_j) = 0$ or $g_j \in (\chi_i)_Z$.

Proof. Let $z = \chi_i(g_j)/\chi_i(1)$. Let ω be a |G|-th root of unity. Let $\mathbb{L} = \mathbb{Q}[\omega]$. Let $\alpha \in \text{Gal}$ be any automorphism of \mathbb{L} . $|\alpha(z)| = \frac{|\omega^{e_1} + \dots + \omega^{e_r}|}{|1 + \dots + 1|} \leq 1$. Then $N_{\mathbb{L}/\mathbb{Q}}(z) = \prod_{\alpha \in \text{Gal}} \alpha(z)$ is a rational integer and $0 \leq |N_{\mathbb{L}/\mathbb{Q}}(z)| = |\prod_{\alpha \in \text{Gal}} \alpha(z)| = \prod_{\alpha \in \text{Gal}} |\alpha(z)| \leq 1$. $|N_{\mathbb{L}/\mathbb{Q}}(z)| = 0$ iff |z| = 0

Thm. If $\chi_i(g_j)/\chi_i(1)$ is an algebraic integer, then $\chi_i(g_j) = 0$ or $g_j \in (\chi_i)_Z$.

Proof. Let $z = \chi_i(g_j)/\chi_i(1)$. Let ω be a |G|-th root of unity. Let $\mathbb{L} = \mathbb{Q}[\omega]$. Let $\alpha \in \text{Gal}$ be any automorphism of \mathbb{L} . $|\alpha(z)| = \frac{|\omega^{e_1} + \dots + \omega^{e_r}|}{|1 + \dots + 1|} \leq 1$. Then $N_{\mathbb{L}/\mathbb{Q}}(z) = \prod_{\alpha \in \text{Gal}} \alpha(z)$ is a rational integer and $0 \leq |N_{\mathbb{L}/\mathbb{Q}}(z)| = |\prod_{\alpha \in \text{Gal}} \alpha(z)| = \prod_{\alpha \in \text{Gal}} |\alpha(z)| \leq 1$. $|N_{\mathbb{L}/\mathbb{Q}}(z)| = 0$ iff |z| = 0 iff $\chi_i(g_j) = 0$.

Thm. If $\chi_i(g_j)/\chi_i(1)$ is an algebraic integer, then $\chi_i(g_j) = 0$ or $g_j \in (\chi_i)_Z$.

Proof. Let $z = \chi_i(g_j)/\chi_i(1)$. Let ω be a |G|-th root of unity. Let $\mathbb{L} = \mathbb{Q}[\omega]$. Let $\alpha \in \text{Gal}$ be any automorphism of \mathbb{L} . $|\alpha(z)| = \frac{|\omega^{e_1} + \dots + \omega^{e_r}|}{|1 + \dots + 1|} \leq 1$. Then $N_{\mathbb{L}/\mathbb{Q}}(z) = \prod_{\alpha \in \text{Gal}} \alpha(z)$ is a rational integer and $0 \leq |N_{\mathbb{L}/\mathbb{Q}}(z)| = |\prod_{\alpha \in \text{Gal}} \alpha(z)| = \prod_{\alpha \in \text{Gal}} |\alpha(z)| \leq 1$. $|N_{\mathbb{L}/\mathbb{Q}}(z)| = 0$ iff |z| = 0 iff $\chi_i(g_j) = 0$. $|N_{\mathbb{L}/\mathbb{Q}}(z)| = 1$

Thm. If $\chi_i(g_j)/\chi_i(1)$ is an algebraic integer, then $\chi_i(g_j) = 0$ or $g_j \in (\chi_i)_Z$.

Proof. Let $z = \chi_i(g_j)/\chi_i(1)$. Let ω be a |G|-th root of unity. Let $\mathbb{L} = \mathbb{Q}[\omega]$. Let $\alpha \in \text{Gal}$ be any automorphism of \mathbb{L} . $|\alpha(z)| = \frac{|\omega^{e_1} + \dots + \omega^{e_r}|}{|1 + \dots + 1|} \leq 1$. Then $N_{\mathbb{L}/\mathbb{Q}}(z) = \prod_{\alpha \in \text{Gal}} \alpha(z)$ is a rational integer and $0 \leq |N_{\mathbb{L}/\mathbb{Q}}(z)| = |\prod_{\alpha \in \text{Gal}} \alpha(z)| = \prod_{\alpha \in \text{Gal}} |\alpha(z)| \leq 1$. $|N_{\mathbb{L}/\mathbb{Q}}(z)| = 0$ iff |z| = 0 iff $\chi_i(g_j) = 0$. $|N_{\mathbb{L}/\mathbb{Q}}(z)| = 1$ iff |z| = 1

Thm. If $\chi_i(g_j)/\chi_i(1)$ is an algebraic integer, then $\chi_i(g_j) = 0$ or $g_j \in (\chi_i)_Z$.

Proof. Let $z = \chi_i(g_j)/\chi_i(1)$. Let ω be a |G|-th root of unity. Let $\mathbb{L} = \mathbb{Q}[\omega]$. Let $\alpha \in \text{Gal}$ be any automorphism of \mathbb{L} . $|\alpha(z)| = \frac{|\omega^{e_1} + \dots + \omega^{e_r}|}{|1 + \dots + 1|} \leq 1$. Then $N_{\mathbb{L}/\mathbb{Q}}(z) = \prod_{\alpha \in \text{Gal}} \alpha(z)$ is a rational integer and $0 \leq |N_{\mathbb{L}/\mathbb{Q}}(z)| = |\prod_{\alpha \in \text{Gal}} \alpha(z)| = \prod_{\alpha \in \text{Gal}} |\alpha(z)| \leq 1$. $|N_{\mathbb{L}/\mathbb{Q}}(z)| = 0$ iff |z| = 0 iff $\chi_i(g_j) = 0$. $|N_{\mathbb{L}/\mathbb{Q}}(z)| = 1$ iff |z| = 1 iff $|\chi_i(g_j)| = \chi_i(1)$

Thm. If $\chi_i(g_j)/\chi_i(1)$ is an algebraic integer, then $\chi_i(g_j) = 0$ or $g_j \in (\chi_i)_Z$.

Proof. Let $z = \chi_i(g_j)/\chi_i(1)$. Let ω be a |G|-th root of unity. Let $\mathbb{L} = \mathbb{Q}[\omega]$. Let $\alpha \in \text{Gal}$ be any automorphism of \mathbb{L} . $|\alpha(z)| = \frac{|\omega^{e_1} + \dots + \omega^{e_r}|}{|1 + \dots + 1|} \leq 1$. Then $N_{\mathbb{L}/\mathbb{Q}}(z) = \prod_{\alpha \in \text{Gal}} \alpha(z)$ is a rational integer and $0 \leq |N_{\mathbb{L}/\mathbb{Q}}(z)| = |\prod_{\alpha \in \text{Gal}} \alpha(z)| = \prod_{\alpha \in \text{Gal}} |\alpha(z)| \leq 1$. $|N_{\mathbb{L}/\mathbb{Q}}(z)| = 0$ iff |z| = 0 iff $\chi_i(g_j) = 0$. $|N_{\mathbb{L}/\mathbb{Q}}(z)| = 1$ iff |z| = 1 iff $|\chi_i(g_j)| = \chi_i(1)$ iff $g_j \in (\chi_i)_Z$.

Thm. If $\chi_i(g_j)/\chi_i(1)$ is an algebraic integer, then $\chi_i(g_j) = 0$ or $g_j \in (\chi_i)_Z$.

Proof. Let $z = \chi_i(g_j)/\chi_i(1)$. Let ω be a |G|-th root of unity. Let $\mathbb{L} = \mathbb{Q}[\omega]$. Let $\alpha \in \text{Gal}$ be any automorphism of \mathbb{L} . $|\alpha(z)| = \frac{|\omega^{e_1} + \dots + \omega^{e_r}|}{|1 + \dots + 1|} \leq 1$. Then $N_{\mathbb{L}/\mathbb{Q}}(z) = \prod_{\alpha \in \text{Gal}} \alpha(z)$ is a rational integer and $0 \leq |N_{\mathbb{L}/\mathbb{Q}}(z)| = |\prod_{\alpha \in \text{Gal}} \alpha(z)| = \prod_{\alpha \in \text{Gal}} |\alpha(z)| \leq 1$. $|N_{\mathbb{L}/\mathbb{Q}}(z)| = 0$ iff |z| = 0 iff $\chi_i(g_j) = 0$. $|N_{\mathbb{L}/\mathbb{Q}}(z)| = 1$ iff |z| = 1 iff $|\chi_i(g_j)| = \chi_i(1)$ iff $g_j \in (\chi_i)_Z$. \Box

Thm.

Thm. If χ_i is irreducible, then the integer $\chi_i(1)$ divides |G|.

Thm. If χ_i is irreducible, then the integer $\chi_i(1)$ divides |G|. *Proof.*

Thm. If χ_i is irreducible, then the integer $\chi_i(1)$ divides |G|. *Proof.* Using Row Orthogonality on the *i*-th row

Thm. If χ_i is irreducible, then the integer $\chi_i(1)$ divides |G|. *Proof.*

$$\mathbb{Z} \stackrel{?}{\ni} \frac{|G|}{\chi_i(1)}$$

Thm. If χ_i is irreducible, then the integer $\chi_i(1)$ divides |G|.

Proof.

$$\mathbb{Z} \stackrel{?}{\ni} rac{|G|}{\chi_i(1)} = rac{|G|}{\chi_i(1)} \cdot 1$$

Thm. If χ_i is irreducible, then the integer $\chi_i(1)$ divides |G|.

Proof.

$$\mathbb{Z} \stackrel{?}{\ni} \frac{|G|}{\chi_i(1)} = \frac{|G|}{\chi_i(1)} \cdot 1 = \frac{|G|}{\chi_i(1)} \cdot \frac{1}{|G|} \sum_{j=1}^r k_j \overline{\chi_i}(g_j) \chi_i(g_j)$$

Thm. If χ_i is irreducible, then the integer $\chi_i(1)$ divides |G|.

Proof.

$$\mathbb{Z} \stackrel{?}{\ni} \frac{|G|}{\chi_i(1)} = \frac{|G|}{\chi_i(1)} \cdot 1 = \frac{|G|}{\chi_i(1)} \cdot \frac{1}{|G|} \sum_{j=1}^r k_j \overline{\chi_i}(g_j) \chi_i(g_j)$$
$$= \sum_{j=1}^r \left(\frac{k_j \chi_i(g_j) / \chi_i(1)}{\chi_i(g_j)} \right) \overline{\chi_i}(g_j)$$

Thm. If χ_i is irreducible, then the integer $\chi_i(1)$ divides |G|.

Proof.

$$\mathbb{Z} \stackrel{?}{\ni} \frac{|G|}{\chi_i(1)} = \frac{|G|}{\chi_i(1)} \cdot 1 = \frac{|G|}{\chi_i(1)} \cdot \frac{1}{|G|} \sum_{j=1}^r k_j \overline{\chi_i}(g_j) \chi_i(g_j)$$
$$= \sum_{j=1}^r \left(\frac{k_j \chi_i(g_j) / \chi_i(1)}{k_j \chi_i(g_j) / \chi_i(1)} \right) \frac{\overline{\chi_i}(g_j)}{\overline{\chi_i}(g_j)}$$
$$\in \mathbb{A} \cap \mathbb{Q}$$

Thm. If χ_i is irreducible, then the integer $\chi_i(1)$ divides |G|.

Proof.

$$\mathbb{Z} \stackrel{?}{\ni} \frac{|G|}{\chi_i(1)} = \frac{|G|}{\chi_i(1)} \cdot 1 = \frac{|G|}{\chi_i(1)} \cdot \frac{1}{|G|} \sum_{j=1}^r k_j \overline{\chi_i}(g_j) \chi_i(g_j)$$
$$= \sum_{j=1}^r \left(\frac{k_j \chi_i(g_j) / \chi_i(1)}{k_j \chi_i(g_j) / \chi_i(1)} \right) \frac{\overline{\chi_i}(g_j)}{\overline{\chi_i}(g_j)}$$
$$\in \mathbb{A} \cap \mathbb{Q} = \mathbb{Z}.$$

Thm. If χ_i is irreducible, then the integer $\chi_i(1)$ divides |G|.

Proof.

$$\mathbb{Z} \stackrel{?}{\ni} \frac{|G|}{\chi_i(1)} = \frac{|G|}{\chi_i(1)} \cdot 1 = \frac{|G|}{\chi_i(1)} \cdot \frac{1}{|G|} \sum_{j=1}^r k_j \overline{\chi_i}(g_j) \chi_i(g_j)$$
$$= \sum_{j=1}^r \left(\frac{k_j \chi_i(g_j) / \chi_i(1)}{k_j \chi_i(g_j) / \chi_i(1)} \right) \frac{\overline{\chi_i}(g_j)}{\overline{\chi_i}(g_j)}$$
$$\in \mathbb{A} \cap \mathbb{Q} = \mathbb{Z}.\square$$