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(Group homomorphisms p: G — Aut(;V) correspond to k-algebra
homomorphisms p: k[G] — End(;V).)

@ If G is finite and |G| is not divisible by char(k), then k[G] is
“semisimple”.

© The structure of a semisimple k-algebra is provided by the
Wedderburn-Artin Theorem:

A =M, (D)) x---x M, (D)

where each D; is a k-division algebra. If d; = dimg(D;), then
dimk (A) = Z;:l I’Lizdi.
Q If k is algebraically closed and dimy(A) < oo, then k = D; for all i.
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Example 1. The rational representations of Z,, (p: Z, — Aut(gV))
correspond to representations of the rational group algebra

Q[Zy)
J(x—1) x QU]/ (@' + -+ 1)

111 1R

Thus a Q[Z,]-representation “is” _? .

Example 2. The real representations of Qg may be described in terms of the
R-algebra structure of R[Qg], and this is given by the isomorphism

R[Qs] ¥ RxR xR xR xH = M;(R) x M;(R) x M;(R) x M;(R) x M, (H).
The complex representations are describable through the isomorphism

C[Qg] ng((C) X Ml((C) X Ml(C) X Ml((C) X Mz((C)
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Simplicity and semisimplicity

An algebraic structure is called simple if it has two congruences. (A simple
structure is nontrivial, and any nontrivial homomorphic image is an
isomorphic image.)

Therefore, a group is simple if it has exactly two normal subgroups, a ring is
simple if it has exactly two 2-sided ideals, and a module is simple if it has
exactly two submodules.

We would like to say: A module is called semisimple is it is a direct sum of
simple modules. Instead we define a module to be semisimple if every
submodule has a complement. (Exercise: show that the potential definitions
agree!)

A ring or k-algebra, R, is called semisimple if every R-module is is
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(Simplicity and semisimplicity are independent properties for rings.)

Complex representations of finite groups



Semisimple rings and k-algebras

Complex representations of finite groups



Semisimple rings and k-algebras

Thm. Let A be a k-algebra (or ring). TFAE

@ Every A-module has a complemented submodule lattice.

Complex representations of finite groups



Semisimple rings and k-algebras

Thm. Let A be a k-algebra (or ring). TFAE
@ Every A-module has a complemented submodule lattice.

@ The 1-generated free A-module, 4 A, has a complemented submodule
lattice.

Complex representations of finite groups



Semisimple rings and k-algebras

Thm. Let A be a k-algebra (or ring). TFAE
@ Every A-module has a complemented submodule lattice.

@ The 1-generated free A-module, 4 A, has a complemented submodule
lattice.

© Every A-module is a direct sum of simple modules.

Complex representations of finite groups



Semisimple rings and k-algebras

Thm. Let A be a k-algebra (or ring). TFAE
@ Every A-module has a complemented submodule lattice.

@ The 1-generated free A-module, 4 A, has a complemented submodule
lattice.

© Every A-module is a direct sum of simple modules.

© Every exact sequence of A-modules splits.

Complex representations of finite groups



Semisimple rings and k-algebras

Thm. Let A be a k-algebra (or ring). TFAE
@ Every A-module has a complemented submodule lattice.

@ The 1-generated free A-module, 4 A, has a complemented submodule
lattice.

© Every A-module is a direct sum of simple modules.
© Every exact sequence of A-modules splits.

@ Every A-module is projective.

Complex representations of finite groups



Semisimple rings and k-algebras

Thm. Let A be a k-algebra (or ring). TFAE
@ Every A-module has a complemented submodule lattice.

@ The 1-generated free A-module, 4 A, has a complemented submodule
lattice.

© Every A-module is a direct sum of simple modules.
© Every exact sequence of A-modules splits.
@ Every A-module is projective.

@ Every A-module is injective.

Complex representations of finite groups 6/7



Semisimple rings and k-algebras

Thm. Let A be a k-algebra (or ring). TFAE
@ Every A-module has a complemented submodule lattice.

@ The 1-generated free A-module, 4 A, has a complemented submodule
lattice.

© Every A-module is a direct sum of simple modules.
© Every exact sequence of A-modules splits.

@ Every A-module is projective.

@ Every A-module is injective.

@ A is left Artinian and has non nonzero nilpotent ideal.

Complex representations of finite groups 6/7



Semisimple rings and k-algebras

Thm. Let A be a k-algebra (or ring). TFAE
@ Every A-module has a complemented submodule lattice.

@ The 1-generated free A-module, 4 A, has a complemented submodule
lattice.

© Every A-module is a direct sum of simple modules.
© Every exact sequence of A-modules splits.

@ Every A-module is projective.

@ Every A-module is injective.

@ A is left Artinian and has non nonzero nilpotent ideal.

Q A is isomorphic to a finite direct product of matrix algebras over division
algebras.
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