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Main ideas

1 A group representation of G in the category of k-vector spaces contains
the same information as the corrsponding k-algebra representation of
k[G] in the category of k-vector spaces.
(Group homomorphisms ρ : G→ Aut(kV) correspond to k-algebra
homomorphisms ρ̂ : k[G]→ End(kV).)

2 If G is finite and |G| is not divisible by char(k), then k[G] is
“semisimple”.

3 The structure of a semisimple k-algebra is provided by the
Wedderburn-Artin Theorem:

A ∼= Mn1(D1)× · · · ×Mnr(Dr)

where each Di is a k-division algebra. If di = dimk(Di), then
dimk(A) =

∑r
i=1 n2

i di.
4 If k is algebraically closed and dimk(A) <∞, then k = Di for all i.
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Examples

Example 1. The rational representations of Zp (ρ : Zp → Aut(QV))
correspond to representations of the rational group algebra

Q[Zp] ∼= Q[x]/(xp − 1)
∼= Q[x]/(x− 1)×Q[x]/(xp−1 + · · ·+ 1)
∼= Q×Q[ω]
∼= M1(Q)×M1(Q[ω]).

Thus a Q[Zp]-representation “is” ? .

Example 2. The real representations of Q8 may be described in terms of the
R-algebra structure of R[Q8], and this is given by the isomorphism

R[Q8] ∼= R×R×R×R×H ∼= M1(R)×M1(R)×M1(R)×M1(R)×M1(H).

The complex representations are describable through the isomorphism

C[Q8] ∼= M1(C)×M1(C)×M1(C)×M1(C)×M2(C).

Complex representations of finite groups 3 / 7



Examples

Example 1.

The rational representations of Zp (ρ : Zp → Aut(QV))
correspond to representations of the rational group algebra

Q[Zp] ∼= Q[x]/(xp − 1)
∼= Q[x]/(x− 1)×Q[x]/(xp−1 + · · ·+ 1)
∼= Q×Q[ω]
∼= M1(Q)×M1(Q[ω]).

Thus a Q[Zp]-representation “is” ? .

Example 2. The real representations of Q8 may be described in terms of the
R-algebra structure of R[Q8], and this is given by the isomorphism

R[Q8] ∼= R×R×R×R×H ∼= M1(R)×M1(R)×M1(R)×M1(R)×M1(H).

The complex representations are describable through the isomorphism

C[Q8] ∼= M1(C)×M1(C)×M1(C)×M1(C)×M2(C).

Complex representations of finite groups 3 / 7



Examples

Example 1. The rational representations of Zp

(ρ : Zp → Aut(QV))
correspond to representations of the rational group algebra

Q[Zp] ∼= Q[x]/(xp − 1)
∼= Q[x]/(x− 1)×Q[x]/(xp−1 + · · ·+ 1)
∼= Q×Q[ω]
∼= M1(Q)×M1(Q[ω]).

Thus a Q[Zp]-representation “is” ? .

Example 2. The real representations of Q8 may be described in terms of the
R-algebra structure of R[Q8], and this is given by the isomorphism

R[Q8] ∼= R×R×R×R×H ∼= M1(R)×M1(R)×M1(R)×M1(R)×M1(H).

The complex representations are describable through the isomorphism

C[Q8] ∼= M1(C)×M1(C)×M1(C)×M1(C)×M2(C).

Complex representations of finite groups 3 / 7



Examples

Example 1. The rational representations of Zp (ρ : Zp → Aut(QV))

correspond to representations of the rational group algebra

Q[Zp] ∼= Q[x]/(xp − 1)
∼= Q[x]/(x− 1)×Q[x]/(xp−1 + · · ·+ 1)
∼= Q×Q[ω]
∼= M1(Q)×M1(Q[ω]).

Thus a Q[Zp]-representation “is” ? .

Example 2. The real representations of Q8 may be described in terms of the
R-algebra structure of R[Q8], and this is given by the isomorphism

R[Q8] ∼= R×R×R×R×H ∼= M1(R)×M1(R)×M1(R)×M1(R)×M1(H).

The complex representations are describable through the isomorphism

C[Q8] ∼= M1(C)×M1(C)×M1(C)×M1(C)×M2(C).

Complex representations of finite groups 3 / 7



Examples

Example 1. The rational representations of Zp (ρ : Zp → Aut(QV))
correspond to representations of the rational group algebra

Q[Zp] ∼= Q[x]/(xp − 1)
∼= Q[x]/(x− 1)×Q[x]/(xp−1 + · · ·+ 1)
∼= Q×Q[ω]
∼= M1(Q)×M1(Q[ω]).

Thus a Q[Zp]-representation “is” ? .

Example 2. The real representations of Q8 may be described in terms of the
R-algebra structure of R[Q8], and this is given by the isomorphism

R[Q8] ∼= R×R×R×R×H ∼= M1(R)×M1(R)×M1(R)×M1(R)×M1(H).

The complex representations are describable through the isomorphism

C[Q8] ∼= M1(C)×M1(C)×M1(C)×M1(C)×M2(C).

Complex representations of finite groups 3 / 7



Examples

Example 1. The rational representations of Zp (ρ : Zp → Aut(QV))
correspond to representations of the rational group algebra

Q[Zp]

∼= Q[x]/(xp − 1)
∼= Q[x]/(x− 1)×Q[x]/(xp−1 + · · ·+ 1)
∼= Q×Q[ω]
∼= M1(Q)×M1(Q[ω]).

Thus a Q[Zp]-representation “is” ? .

Example 2. The real representations of Q8 may be described in terms of the
R-algebra structure of R[Q8], and this is given by the isomorphism

R[Q8] ∼= R×R×R×R×H ∼= M1(R)×M1(R)×M1(R)×M1(R)×M1(H).

The complex representations are describable through the isomorphism

C[Q8] ∼= M1(C)×M1(C)×M1(C)×M1(C)×M2(C).

Complex representations of finite groups 3 / 7



Examples

Example 1. The rational representations of Zp (ρ : Zp → Aut(QV))
correspond to representations of the rational group algebra

Q[Zp] ∼= Q[x]/(xp − 1)

∼= Q[x]/(x− 1)×Q[x]/(xp−1 + · · ·+ 1)
∼= Q×Q[ω]
∼= M1(Q)×M1(Q[ω]).

Thus a Q[Zp]-representation “is” ? .

Example 2. The real representations of Q8 may be described in terms of the
R-algebra structure of R[Q8], and this is given by the isomorphism

R[Q8] ∼= R×R×R×R×H ∼= M1(R)×M1(R)×M1(R)×M1(R)×M1(H).

The complex representations are describable through the isomorphism

C[Q8] ∼= M1(C)×M1(C)×M1(C)×M1(C)×M2(C).

Complex representations of finite groups 3 / 7



Examples

Example 1. The rational representations of Zp (ρ : Zp → Aut(QV))
correspond to representations of the rational group algebra

Q[Zp] ∼= Q[x]/(xp − 1)
∼= Q[x]/(x− 1)×Q[x]/(xp−1 + · · ·+ 1)

∼= Q×Q[ω]
∼= M1(Q)×M1(Q[ω]).

Thus a Q[Zp]-representation “is” ? .

Example 2. The real representations of Q8 may be described in terms of the
R-algebra structure of R[Q8], and this is given by the isomorphism

R[Q8] ∼= R×R×R×R×H ∼= M1(R)×M1(R)×M1(R)×M1(R)×M1(H).

The complex representations are describable through the isomorphism

C[Q8] ∼= M1(C)×M1(C)×M1(C)×M1(C)×M2(C).

Complex representations of finite groups 3 / 7



Examples

Example 1. The rational representations of Zp (ρ : Zp → Aut(QV))
correspond to representations of the rational group algebra

Q[Zp] ∼= Q[x]/(xp − 1)
∼= Q[x]/(x− 1)×Q[x]/(xp−1 + · · ·+ 1)
∼= Q×Q[ω]

∼= M1(Q)×M1(Q[ω]).

Thus a Q[Zp]-representation “is” ? .

Example 2. The real representations of Q8 may be described in terms of the
R-algebra structure of R[Q8], and this is given by the isomorphism

R[Q8] ∼= R×R×R×R×H ∼= M1(R)×M1(R)×M1(R)×M1(R)×M1(H).

The complex representations are describable through the isomorphism

C[Q8] ∼= M1(C)×M1(C)×M1(C)×M1(C)×M2(C).

Complex representations of finite groups 3 / 7



Examples

Example 1. The rational representations of Zp (ρ : Zp → Aut(QV))
correspond to representations of the rational group algebra

Q[Zp] ∼= Q[x]/(xp − 1)
∼= Q[x]/(x− 1)×Q[x]/(xp−1 + · · ·+ 1)
∼= Q×Q[ω]
∼= M1(Q)×M1(Q[ω]).

Thus a Q[Zp]-representation “is” ? .

Example 2. The real representations of Q8 may be described in terms of the
R-algebra structure of R[Q8], and this is given by the isomorphism

R[Q8] ∼= R×R×R×R×H ∼= M1(R)×M1(R)×M1(R)×M1(R)×M1(H).

The complex representations are describable through the isomorphism

C[Q8] ∼= M1(C)×M1(C)×M1(C)×M1(C)×M2(C).

Complex representations of finite groups 3 / 7



Examples

Example 1. The rational representations of Zp (ρ : Zp → Aut(QV))
correspond to representations of the rational group algebra

Q[Zp] ∼= Q[x]/(xp − 1)
∼= Q[x]/(x− 1)×Q[x]/(xp−1 + · · ·+ 1)
∼= Q×Q[ω]
∼= M1(Q)×M1(Q[ω]).

Thus a Q[Zp]-representation “is” ? .

Example 2. The real representations of Q8 may be described in terms of the
R-algebra structure of R[Q8], and this is given by the isomorphism

R[Q8] ∼= R×R×R×R×H ∼= M1(R)×M1(R)×M1(R)×M1(R)×M1(H).

The complex representations are describable through the isomorphism

C[Q8] ∼= M1(C)×M1(C)×M1(C)×M1(C)×M2(C).

Complex representations of finite groups 3 / 7



Examples

Example 1. The rational representations of Zp (ρ : Zp → Aut(QV))
correspond to representations of the rational group algebra

Q[Zp] ∼= Q[x]/(xp − 1)
∼= Q[x]/(x− 1)×Q[x]/(xp−1 + · · ·+ 1)
∼= Q×Q[ω]
∼= M1(Q)×M1(Q[ω]).

Thus a Q[Zp]-representation “is” ? .

Example 2.

The real representations of Q8 may be described in terms of the
R-algebra structure of R[Q8], and this is given by the isomorphism

R[Q8] ∼= R×R×R×R×H ∼= M1(R)×M1(R)×M1(R)×M1(R)×M1(H).

The complex representations are describable through the isomorphism

C[Q8] ∼= M1(C)×M1(C)×M1(C)×M1(C)×M2(C).

Complex representations of finite groups 3 / 7



Examples

Example 1. The rational representations of Zp (ρ : Zp → Aut(QV))
correspond to representations of the rational group algebra

Q[Zp] ∼= Q[x]/(xp − 1)
∼= Q[x]/(x− 1)×Q[x]/(xp−1 + · · ·+ 1)
∼= Q×Q[ω]
∼= M1(Q)×M1(Q[ω]).

Thus a Q[Zp]-representation “is” ? .

Example 2. The real representations of Q8

may be described in terms of the
R-algebra structure of R[Q8], and this is given by the isomorphism

R[Q8] ∼= R×R×R×R×H ∼= M1(R)×M1(R)×M1(R)×M1(R)×M1(H).

The complex representations are describable through the isomorphism

C[Q8] ∼= M1(C)×M1(C)×M1(C)×M1(C)×M2(C).

Complex representations of finite groups 3 / 7



Examples

Example 1. The rational representations of Zp (ρ : Zp → Aut(QV))
correspond to representations of the rational group algebra

Q[Zp] ∼= Q[x]/(xp − 1)
∼= Q[x]/(x− 1)×Q[x]/(xp−1 + · · ·+ 1)
∼= Q×Q[ω]
∼= M1(Q)×M1(Q[ω]).

Thus a Q[Zp]-representation “is” ? .

Example 2. The real representations of Q8 may be described in terms of the
R-algebra structure of R[Q8], and this is given by the isomorphism

R[Q8] ∼= R×R×R×R×H ∼= M1(R)×M1(R)×M1(R)×M1(R)×M1(H).

The complex representations are describable through the isomorphism

C[Q8] ∼= M1(C)×M1(C)×M1(C)×M1(C)×M2(C).

Complex representations of finite groups 3 / 7



Examples

Example 1. The rational representations of Zp (ρ : Zp → Aut(QV))
correspond to representations of the rational group algebra

Q[Zp] ∼= Q[x]/(xp − 1)
∼= Q[x]/(x− 1)×Q[x]/(xp−1 + · · ·+ 1)
∼= Q×Q[ω]
∼= M1(Q)×M1(Q[ω]).

Thus a Q[Zp]-representation “is” ? .

Example 2. The real representations of Q8 may be described in terms of the
R-algebra structure of R[Q8], and this is given by the isomorphism

R[Q8] ∼=

R×R×R×R×H ∼= M1(R)×M1(R)×M1(R)×M1(R)×M1(H).

The complex representations are describable through the isomorphism

C[Q8] ∼= M1(C)×M1(C)×M1(C)×M1(C)×M2(C).

Complex representations of finite groups 3 / 7



Examples

Example 1. The rational representations of Zp (ρ : Zp → Aut(QV))
correspond to representations of the rational group algebra

Q[Zp] ∼= Q[x]/(xp − 1)
∼= Q[x]/(x− 1)×Q[x]/(xp−1 + · · ·+ 1)
∼= Q×Q[ω]
∼= M1(Q)×M1(Q[ω]).

Thus a Q[Zp]-representation “is” ? .

Example 2. The real representations of Q8 may be described in terms of the
R-algebra structure of R[Q8], and this is given by the isomorphism

R[Q8] ∼= R×R×R×R×H ∼=

M1(R)×M1(R)×M1(R)×M1(R)×M1(H).

The complex representations are describable through the isomorphism

C[Q8] ∼= M1(C)×M1(C)×M1(C)×M1(C)×M2(C).

Complex representations of finite groups 3 / 7



Examples

Example 1. The rational representations of Zp (ρ : Zp → Aut(QV))
correspond to representations of the rational group algebra

Q[Zp] ∼= Q[x]/(xp − 1)
∼= Q[x]/(x− 1)×Q[x]/(xp−1 + · · ·+ 1)
∼= Q×Q[ω]
∼= M1(Q)×M1(Q[ω]).

Thus a Q[Zp]-representation “is” ? .

Example 2. The real representations of Q8 may be described in terms of the
R-algebra structure of R[Q8], and this is given by the isomorphism

R[Q8] ∼= R×R×R×R×H ∼= M1(R)×M1(R)×M1(R)×M1(R)×M1(H).

The complex representations are describable through the isomorphism

C[Q8] ∼= M1(C)×M1(C)×M1(C)×M1(C)×M2(C).

Complex representations of finite groups 3 / 7



Examples

Example 1. The rational representations of Zp (ρ : Zp → Aut(QV))
correspond to representations of the rational group algebra

Q[Zp] ∼= Q[x]/(xp − 1)
∼= Q[x]/(x− 1)×Q[x]/(xp−1 + · · ·+ 1)
∼= Q×Q[ω]
∼= M1(Q)×M1(Q[ω]).

Thus a Q[Zp]-representation “is” ? .

Example 2. The real representations of Q8 may be described in terms of the
R-algebra structure of R[Q8], and this is given by the isomorphism

R[Q8] ∼= R×R×R×R×H ∼= M1(R)×M1(R)×M1(R)×M1(R)×M1(H).

The complex representations are describable through the isomorphism

C[Q8] ∼= M1(C)×M1(C)×M1(C)×M1(C)×M2(C).

Complex representations of finite groups 3 / 7



Examples

Example 1. The rational representations of Zp (ρ : Zp → Aut(QV))
correspond to representations of the rational group algebra

Q[Zp] ∼= Q[x]/(xp − 1)
∼= Q[x]/(x− 1)×Q[x]/(xp−1 + · · ·+ 1)
∼= Q×Q[ω]
∼= M1(Q)×M1(Q[ω]).

Thus a Q[Zp]-representation “is” ? .

Example 2. The real representations of Q8 may be described in terms of the
R-algebra structure of R[Q8], and this is given by the isomorphism

R[Q8] ∼= R×R×R×R×H ∼= M1(R)×M1(R)×M1(R)×M1(R)×M1(H).

The complex representations are describable through the isomorphism

C[Q8] ∼= M1(C)×M1(C)×M1(C)×M1(C)×M2(C).

Complex representations of finite groups 3 / 7



Reducing reps of groups to reps of algebras

G ⊆ k[G] is a k-basis for k[G]. In particular, k[G] = 〈G〉k-alg.
Thm. There is a (natural) bijection

Homk-alg(k[G],A) ∼−→ HomGrp(G,A×) : ϕ 7→ ϕ|G.

Proof.

ϕ(1k-alg) = ϕ(1G) = 1A.
ϕ(G) ⊆ A×.
ϕ|G a group hom.
If ϕ|G = ψ|G, then ϕ = ψ.
If θ : G→ A× (⊆ A) is any function, there is a unique linear extension
θ̂ : k[G]→ A.
θ̂ is a k-algebra homomorphism.
θ̂|G = θ.
2
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Simplicity and semisimplicity

An algebraic structure is called simple if it has two congruences. (A simple
structure is nontrivial, and any nontrivial homomorphic image is an
isomorphic image.)

Therefore, a group is simple if it has exactly two normal subgroups, a ring is
simple if it has exactly two 2-sided ideals, and a module is simple if it has
exactly two submodules.

We would like to say: A module is called semisimple is it is a direct sum of
simple modules. Instead we define a module to be semisimple if every
submodule has a complement. (Exercise: show that the potential definitions
agree!)

A ring or k-algebra, R, is called semisimple if every R-module is is
semisimple.
(Simplicity and semisimplicity are independent properties for rings.)
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Semisimple rings and k-algebras

Thm. Let A be a k-algebra (or ring). TFAE

1 Every A-module has a complemented submodule lattice.
2 The 1-generated free A-module, AA, has a complemented submodule

lattice.
3 Every A-module is a direct sum of simple modules.
4 Every exact sequence of A-modules splits.
5 Every A-module is projective.
6 Every A-module is injective.
7 A is left Artinian and has non nonzero nilpotent ideal.
8 A is isomorphic to a finite direct product of matrix algebras over division

algebras.
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Maschke’s Theorem

M’s Thm. If G is finite and |G| · 1k is invertible in the field k, then k[G] is
semisimple.

Proof. (“The averaging argument”)

Let N ≤ M be k[G]-modules.

Let r : M → N be a k-space retraction.

Average the conjugates of r over G:

r̂ :=
1
|G|

∑
g∈G

rg, r̂(v) =
1
|G|

∑
g∈G

g−1r(g(v)).

r̂ is k-linear and G-linear, so k[G]-linear.

r̂ : M → N is a k[G]-retraction.

ker(̂r) is a k[G]-submodule that complements N.
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