
Solutions to HW 10.

1. How many 5-card poker hands have cards of every suit?
(The game of poker uses a deck of 52 cards. Each card has a “suit” and a “number”.
Their are 4 suits (♠,♥,♦,♣) and 13 numbers (A, 2, 3, 4, 5, 6, 7, 8, 9, 10, J,Q,K), and
the deck has exactly one card of each suit and number. A poker hand is a 5-card
subset of the deck, for example {A♦, 5♣, 7♠, 7♣; , K♥}.)

To count the number of hands that have cards of every suit, we will use inclusion/exclusion.
Let H be the set of all 5-card hands. Let H♦ be the set of 5-card hands that have no
♦’s, let H♣ be the set of 5-card hands that have no ♣’s, let H♠ be the set of 5-card hands
that have no ♠’s, and let H♥ be the set of 5-card hands that have no ♥’s. Our goal is to
calculate

|H| − |H♦ ∪H♣ ∪H♠ ∪H♥|.
It is easy to see that

• |H| =
(
52
5

)
.

• |H♦| =
(
52−13

5

)
=

(
39
5

)
(= |H♣| = |H♠| = |H♥|).

• |H♦ ∩H♣| =
(
52−13−13

5

)
=

(
26
5

)
.

• |H♦ ∩H♣ ∩H♠| =
(
52−13−13−13

5

)
=

(
13
5

)
.

• |H♦ ∪H♣ ∩H♠ ∩H♥| =
(
0
5

)
.

By inclusion/exclusion

|H|−|H♦∪H♣∪H♠∪H♥| =
(

52

5

)
−
((

4

1

)(
39

5

)
−

(
4

2

)(
26

5

)
+

(
4

3

)(
13

5

)
−
(

4

4

)(
0

5

))
= 685464.

2. (a) How many binary relations on the set X = {x1, x2, . . . , xn} are there?
(b) How many binary relations on X are reflexive?
(c) How many binary relations on X are reflexive and symmetric?
(d) Explain why there are Bn binary relations on X that are reflexive, symmetric,

and transitive.

(a) A binary relation R on X is a subset R ⊆ X×X. There are |P(X×X)| = 2|X×X| =

2n
2

of these subsets.
(b) Let D = {(x1, x1), . . . , (xn, xn)} be the diagonal of X ×X. A relation R ⊆ X ×X is

reflexive if and only if it contains D. Therefore, a binary relation R on X is reflexive
exactly when it has the form R = D ∪ S for some subset S ⊆ ((X ×X)−D). (This
says that R must contain the full diagonal D and some part S of the off-diagonal,
(X ×X)−D.) To count such relations, we need to count the number of choices for

S, which is |P((X ×X)−D)| = 2|((X×X)−D)| = 2n
2−n.

(c) To count the reflexive, symmetric relations we must count the relations of the form
R = D ∪ S for some symmetric subset S ⊆ ((X × X) − D). Let U = {(xi, xj) ∈
X × X | i < j} be the “upper half” of the off-diagonal, and let L = {(xi, xj) ∈
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X ×X | i > j} be the “lower half”. A typical reflexive, symmetric relation has the
form R = D ∪ U0 ∪ L0 where U0 ⊆ U , L0 ⊆ L, and (xi, xj) ∈ U0 ⇔ (xj, xi) ∈ L0. To
count these, it is enough to count the possibilities for U0 (which is the part of R in

the upper half of X ×X). This number is |P(U)| = 2|U | = 2(n
2) = 2(n2−n)/2.

(d) Any reflexive, symmetric, transitive relation on X is an equivalence relation on X.
There is a bijective correspondence between the set of equivalence relations on X
and the set of partitions of X. The number Bn counts the number of partitions
of an n-element set, so must also count the number of equivalence relations on any
n-element set (like X).

3. These problems are about seating people at a round table. Two seating arrangements
are considered the same if they differ by a rotation. (So, for example, the arrangement
ABCDEF is the same as BCDEFA.)
(a) How many ways are there to seat 3 couples at a round table?
(b) What if couples must sit together?
(c) What if couples are not allowed to sit together?

(a) Order the 6 people in a sequence. (There are 6! ways to do this.) Now choose and
fix one chair, and call it the “head chair”. Seat the sequence of people around the
table by having the first person sit in the head chair, then second person sit to the
left of the first person, the third next to the left, and so on. Call this seating, where
we specify which is the head chair, a “sequential seating”.

Now define an equivalence relation on sequential seatings. Call two seatings “equiv-
alent” if they differ by a rotation. That is, any seating ABCDEF is equivalent to
BCDEFA and CDEFAB and DEFABC and EFABCD and FABCDE. This defines
an equivalence relation on the set of sequential seatings where each equivalence class
has 6 elements. The number of equivalence classes, which is 6!/6 = 120 counts the
number of “circular seatings”.

(b) Now we assume that couples must sit together. Assume that the couples are {A,α},
{B, β}, {C, γ}. Consider these 2-element sets to be “blocks” which we wish to
arrange around the table in a circular manner. There are three blocks to arrange
around the table, so by an argument like that in Part (a) there are 3!/3 = 2 ways to
arrange these blocks.

Next, within the block {A,α} we have to choose whether to seat the couple as Aα
or as αA. There are 2 choices for each block, so the total number of arrangements is

(Arrange the 3 blocks)(order couple Aα)(order couple Bβ)(order couple Cγ)
= (2)(2)(2)(2) = 16.

This is the number of ways to seat the three couples around the table if the couples
must sit together.
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(c) We use inclusion/exclusion to count the number of arrangements where the couples
are not allowed to sit together. That is, let S be the number of all circular seatings
of the couples {A,α}, {B, β}, and {C, γ}, let SAα be the number of seatings where
A and α sit together, let SBβ be the number of seatings where B and β sit together,
and let SCγ be the number of seatings where C and γ sit together. Our goal is to
calculate |S| − |SAα ∪ SBβ ∪ SCγ|.
• |S| = 6!/6 = 120.
• |SAα| = (5!/5) · (2) = 48. (Circularly order 5 blocks {A,α}, {B}, {β}, {C}, {γ},

then choose one of the two arrangements of the first block as either Aα or αA.)
• |SAα∩SB,β| = (4!/4)(2)(2) = 24. (Circularly order 4 blocks {A,α}, {B, β}, {C},
{γ}, then arrange the order of elements in the first two blocks.)
• |SAα ∩ SB,β ∩ SC,γ| = (3!/3)(2)(2)(2) = 16.

Hence, there are

|S| − |SAα ∪ SBβ ∪ SCγ| = 120−
(

3

1

)
· 48 +

(
3

2

)
· 24−

(
3

3

)
· 16 = 32

ways to arrange the six people if couples are not allowed to sit together.


