
The Group Commutator

The commutator of normal subgroups M and N is generated by all elements of the form
[m,n] := m−1n−1mn, so it is natural to study this kind of “multiplication” of elements, and
to consider the subgroup generated by these elements even in the case where M and N are
not necessarily normal. Here are some of the basic properties of commutators of elements,
subgroups and normal subgroups.

Commutator of elements. Let x, y, z be elements of some group. Define [x1, x2, . . . , xn] =
[[x1, x2, . . . , xn−1], xn].

(i) [x, y]−1 = [y, x].
(ii) [xy, z] = [x, z]y[y, z] and [x, yz] = [x, z][x, y]z.

(iii) [x, y−1] =
(

[x, y]y
−1
)−1

and [x−1, y] =
(

[x, y]x
−1
)−1

.

(iv) (Hall-Witt Identity) [x, y−1, z]y[y, z−1, x]z[z, x−1, y]x = 1.

Commutator of subgroups. Let H,K and L be subgroups.

(v) (Three subgroups lemma.) If [H,K,L] = {1} and [K,L,H] = {1}, then [L,H,K] =
{1}.

Commutator of normal subgroups. In this part, all subgroups are normal.

Order-theoretic properties of the commutator.

(vi) (Monotonicity) If M1 ≤M2 and N1 ≤ N2, then [M1, N1] ≤ [M2, N2].
(vii) (Sub-meet) [M,N ] ≤M ∩N .
(viii) (Commutativity) [M,N ] = [N,M ].
(ix) (Complete additivity) [M,

∨
i∈I Ni] =

∨
i∈I [M,Ni].

The last of these properties implies that for any L,M � G there is a largest N � G
such that [M,N ] ≤ L. This largest N is denoted (L : M). (An important special case is
CG(M) = ({1} : M).)

HSP properties of the commutator.

(x) [L/N,M/N ] = [L,M ]/N in G/N .
(xi) If H ≤ G, then [M |H , N |H ] ≤ [M,N ]|H . (For a subgroup L ≤ G, its restriction to

H is L|H := L ∩H.)
(xii) [K1 ×M2, L1 ×N2] = [K,L]1 × [M,N ]2 in the group G1 ×G2.

Solvable Groups.

Let G(0) := G, G(1) = G′ := [G,G], and G(n+1) := [G(n), G(n)]. Then G ≥ G(1) ≥ · · · is
the derived series. Each group in this series is verbal. G is k-step solvable if G(k) = {1} for
some finite n.
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(xiii) The relation “M ∼ N ⇔ [M ∩N,MN ] is solvable” is a congruence on Norm(G).

Nilpotent Groups.

Let γ1(G) := G and γn+1(G) = [G, γn(G)]. Then G = γ1(G) ≥ · · · is the descending (or
lower) central series. Each group in this series is verbal. G is k-step nilpotent if γk(G) = {1}
for some finite n.

Let ζ0(G) := {1}, ζ1(G) = ζ(G) := ({1} : G), ζκ+1(G) := (ζκ(G) : G), and ζλ(G) =⋃
κ<λ ζκ(G) when λ is a limit ordinal. Then {1} ≤ ζ1(G) ≤ ζ2(G) ≤ · · · is the ascending

(or upper) central series. The groups in this series are characteristic. The group ζ(G) is the
center of G, and the union of all ζκ(G) is the hypercenter.

Let {1} = G0 ≤ · · · ≤ Gn = G be any series of normal subgroups such that [G,Gi+1] ≤ Gi.
Then

(xiv) Gi ≤ ζi(G) for all i, and
(xv) γi(G) ≤ Gn−i+1.

Hence γn+1(G) = {1} iff ζn(G) = G.

Examples 1.

(i) p-groups are nilpotent. (Proof #1: Use the class equation to prove that the center is
nontrivial. Use induction to prove that the ascending central series cannot terminate
until it reaches G.) (Proof #2: Embed the p-group P into a Sylow p-subgroup of
Sn, and use the structure of such groups to prove that P has a normal subgroup of
index p. Continue by induction to produce a normal series with factors isomorphic
to Zp. Show G acts trivially on the series.)

(ii) Unipotent groups are nilpotent. (A matrix M ∈ GL(n,F) is unipotent if it satisfies
(x − 1)n = 0, equivalently if all of its eigenvalues are 1. The group of all upper
triangular unipotent matrices in GL(n,F) is callled the unipotent group, U(n,F).)
(Proof of nilpotence: It helps to write unipotent matrices in the form I + N where
N is strictly upper triangular, and then to do calculations in the matrix ring Mn(F).
With this in mind, argue by induction that γk(U(n,F)) consists only of matrices of
the form I +Nk where Nk = [aij] and aij = 0 unless j− i ≥ k.) (Interesting fact: by
considering orders, one can show that U(n,Fq) is a Sylow p-subgroup of GL(n,Fq)
when q = pr. Thus every finite p-group is embeddable in a finite unipotent p-group.)

Commutator collection.

There is a normal form for words in the class of k-step nilpotent groups. To describe it,
define the weight of commutator word inductively by wt(xi) = 1 and wt([ci, cj]) = wt(ci) +
wt(cj). The goal of the process is to rewrite a word w(x1, . . . , xn) in the form

xe11 · · ·xenn ·

(∏
i<j

[xi, xj]
eij

)
·

( ∏
i<j<k

[xi, xj, xk]
eijk

)
· (higher weight commutators) · · · .
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The collection process is based on the strategy of moving lower weight commutators to the
left by replacing yx with xy[x, y]−1” when wt(x) < wt(y). Nilpotence is needed to guarantee
termination.

More on the three subgroup lemma.

(xvi) If H,K,L�G, then [H,K,L] ≤ [K,L,H][L,H,K].

Consequences include:

(xvii) [γi(G), γj(G)] ≤ γi+j(G).
(xviii) γi(γj(G)) ≤ γij(G).
(xix) [γn(G), ζn+k(G)] ≤ ζk(G).
(xx) G(i) ≤ γ2i(G). (Use (xviii) repeatedly with i = 2.)

(This limits the derived length of a nilpotent group.)

Characterizations of nilpotence.

Theorem 2. The following are equivalent for a finite group.

(1) G is nilpotent.
(2) Every subgroup of G is subnormal.
(3) If H < G, then H < NG(H).
(4) Every maximal subgroup of G is normal.
(5) Every Sylow subgroup of G is normal.
(6) G is the product of its Sylow subgroups.


