The Group Commutator

The commutator of normal subgroups M and N is generated by all elements of the form $[m,n] := m^{-1}n^{-1}mn$, so it is natural to study this kind of "multiplication" of elements, and to consider the subgroup generated by these elements even in the case where M and N are not necessarily normal. Here are some of the basic properties of commutators of elements, subgroups and normal subgroups.

Commutator of elements. Let x, y, z be elements of some group. Define $[x_1, x_2, \ldots, x_n] =$ $[[x_1, x_2, \ldots, x_{n-1}], x_n].$

- (i) $[x, y]^{-1} = [y, x].$

- (i) $[x, y] = [x, z]^{y}[y, z]$ and $[x, yz] = [x, z][x, y]^{z}$. (ii) $[x, y^{-1}] = ([x, y]^{y^{-1}})^{-1}$ and $[x^{-1}, y] = ([x, y]^{x^{-1}})^{-1}$. (iv) (Hall-Witt Identity) $[x, y^{-1}, z]^{y}[y, z^{-1}, x]^{z}[z, x^{-1}, y]^{x} = 1$.

Commutator of subgroups. Let H, K and L be subgroups.

(v) (Three subgroups lemma.) If $[H, K, L] = \{1\}$ and $[K, L, H] = \{1\}$, then $[L, H, K] = \{1\}$ $\{1\}.$

Commutator of normal subgroups. In this part, all subgroups are normal.

Order-theoretic properties of the commutator.

- (vi) (Monotonicity) If $M_1 \le M_2$ and $N_1 \le N_2$, then $[M_1, N_1] \le [M_2, N_2]$.
- (vii) (Sub-meet) $[M, N] \leq M \cap N$.
- (viii) (Commutativity) [M, N] = [N, M].
- (ix) (Complete additivity) $[M, \bigvee_{i \in I} N_i] = \bigvee_{i \in I} [M, N_i].$

The last of these properties implies that for any $L, M \triangleleft G$ there is a largest $N \triangleleft G$ such that $[M, N] \leq L$. This largest N is denoted (L: M). (An important special case is $C_G(M) = (\{1\} : M).)$

HSP properties of the commutator.

- (x) [L/N, M/N] = [L, M]/N in G/N.
- (xi) If $H \leq G$, then $[M|_H, N|_H] \leq [M, N]|_H$. (For a subgroup $L \leq G$, its restriction to H is $L|_H := L \cap H$.)
- (xii) $[K_1 \times M_2, L_1 \times N_2] = [K, L]_1 \times [M, N]_2$ in the group $G_1 \times G_2$.

Solvable Groups.

Let $G^{(0)} := G, G^{(1)} = G' := [G, G]$, and $G^{(n+1)} := [G^{(n)}, G^{(n)}]$. Then $G \ge G^{(1)} \ge \cdots$ is the derived series. Each group in this series is verbal. G is k-step solvable if $G^{(k)} = \{1\}$ for some finite n.

(xiii) The relation " $M \sim N \Leftrightarrow [M \cap N, MN]$ is solvable" is a congruence on Norm(G).

Nilpotent Groups.

Let $\gamma_1(G) := G$ and $\gamma_{n+1}(G) = [G, \gamma_n(G)]$. Then $G = \gamma_1(G) \ge \cdots$ is the descending (or *lower*) central series. Each group in this series is verbal. G is k-step nilpotent if $\gamma_k(G) = \{1\}$ for some finite n.

Let $\zeta_0(G) := \{1\}, \zeta_1(G) = \zeta(G) := (\{1\} : G), \zeta_{\kappa+1}(G) := (\zeta_{\kappa}(G) : G), \text{ and } \zeta_{\lambda}(G) = \bigcup_{\kappa < \lambda} \zeta_{\kappa}(G) \text{ when } \lambda \text{ is a limit ordinal. Then } \{1\} \leq \zeta_1(G) \leq \zeta_2(G) \leq \cdots \text{ is the ascending (or upper) central series. The groups in this series are characteristic. The group <math>\zeta(G)$ is the center of G, and the union of all $\zeta_{\kappa}(G)$ is the hypercenter.

Let $\{1\} = G_0 \leq \cdots \leq G_n = G$ be any series of normal subgroups such that $[G, G_{i+1}] \leq G_i$. Then

(xiv) $G_i \leq \zeta_i(G)$ for all *i*, and

(xv) $\gamma_i(G) \leq G_{n-i+1}$.

Hence $\gamma_{n+1}(G) = \{1\}$ iff $\zeta_n(G) = G$.

Examples 1.

- (i) *p*-groups are nilpotent. (Proof #1: Use the class equation to prove that the center is nontrivial. Use induction to prove that the ascending central series cannot terminate until it reaches G.) (Proof #2: Embed the *p*-group P into a Sylow *p*-subgroup of S_n , and use the structure of such groups to prove that P has a normal subgroup of index p. Continue by induction to produce a normal series with factors isomorphic to \mathbb{Z}_p . Show G acts trivially on the series.)
- (ii) Unipotent groups are nilpotent. (A matrix $M \in GL(n, \mathbb{F})$ is unipotent if it satisfies $(x-1)^n = 0$, equivalently if all of its eigenvalues are 1. The group of all upper triangular unipotent matrices in $GL(n, \mathbb{F})$ is called the unipotent group, $U(n, \mathbb{F})$.) (Proof of nilpotence: It helps to write unipotent matrices in the form I + N where N is strictly upper triangular, and then to do calculations in the matrix ring $M_n(\mathbb{F})$. With this in mind, argue by induction that $\gamma_k(U(n, \mathbb{F}))$ consists only of matrices of the form $I + N_k$ where $N_k = [a_{ij}]$ and $a_{ij} = 0$ unless $j i \ge k$.) (Interesting fact: by considering orders, one can show that $U(n, \mathbb{F}_q)$ is a Sylow *p*-subgroup of $GL(n, \mathbb{F}_q)$ when $q = p^r$. Thus every finite *p*-group is embeddable in a finite unipotent *p*-group.)

Commutator collection.

There is a normal form for words in the class of k-step nilpotent groups. To describe it, define the *weight* of commutator word inductively by $wt(x_i) = 1$ and $wt([c_i, c_j]) = wt(c_i) + wt(c_j)$. The goal of the process is to rewrite a word $w(x_1, \ldots, x_n)$ in the form

$$x_1^{e_1} \cdots x_n^{e_n} \cdot \left(\prod_{i < j} [x_i, x_j]^{e_{ij}}\right) \cdot \left(\prod_{i < j < k} [x_i, x_j, x_k]^{e_{ijk}}\right) \cdot (\text{higher weight commutators}) \cdots$$

2

The collection process is based on the strategy of moving lower weight commutators to the left by replacing yx with $xy[x, y]^{-1}$, when wt(x) < wt(y). Nilpotence is needed to guarantee termination.

More on the three subgroup lemma.

(xvi) If $H, K, L \triangleleft G$, then $[H, K, L] \leq [K, L, H][L, H, K]$. Consequences include: (xvii) $[\gamma_i(G), \gamma_j(G)] \leq \gamma_{i+j}(G)$. (xviii) $\gamma_i(\gamma_j(G)) \leq \gamma_{ij}(G)$. (xix) $[\gamma_n(G), \zeta_{n+k}(G)] \leq \zeta_k(G)$. (xx) $G^{(i)} \leq \gamma_{2^i}(G)$. (Use (xviii) repeatedly with i = 2.) (This limits the derived length of a nilpotent group.)

Characterizations of nilpotence.

Theorem 2. The following are equivalent for a finite group.

- (1) G is nilpotent.
- (2) Every subgroup of G is subnormal.
- (3) If H < G, then $H < N_G(H)$.
- (4) Every maximal subgroup of G is normal.
- (5) Every Sylow subgroup of G is normal.
- (6) G is the product of its Sylow subgroups.