Basic Properties of Characters of Finite Groups.

In this note, G is a finite group, V is a finite dimensional $\mathbb{C}[G]$ -module, $\rho_V \colon G \to \mathrm{GL}(V)$ is the corresponding representation, and $\chi_V = \operatorname{tr} \circ \rho_V$ is the character afforded by ρ_V . (The subscripts will be omitted if they are irrelevant.) $\operatorname{Irr}(G)$ is the set of all irreducible characters of G. $K_G(g)$ is the conjugacy class of g in G.

Linear algebra.

- (1) $\rho(g)$ is diagonalizable.
- (2) $\chi_V(1) = \operatorname{tr}(I) = \dim_{\mathbb{C}}(V)$ is the degree of χ_V .
- (3) $\chi(hgh^{-1}) = \chi(g)$ (χ is a class function).
- (4) $\chi(g)$ is the sum of $\chi(1) |G|$ -th roots of unity.
- (5) $\chi(g^{-1}) = \chi(g)$.
- (6) $|\chi_V(g)| \leq \chi_V(1)$, with equality iff $\rho_V(g) = \omega I$ for some |G|-th root of unity ω .

Dimension.

- (7) $|G| = \dim_{\mathbb{C}}(\mathbb{C}[G]) = \sum_{\chi \in \operatorname{Irr}(G)} \chi(1)^2.$
- (8) The number of isomorphism types of simple G-modules = dim_{\mathbb{C}} $(Z(\mathbb{C}[G]))$ = the number of conjugacy classes of G.

Kernel and center.

- (9) $K_{\chi} := \{g \in G \mid \chi(g) = \chi(1)\}$ is a normal subgroup of G. $(K_{\chi}$ is the kernel of the associated representation, so it is called the *kernel* of χ .)
- (10) $Z_{\chi} := \{g \in G \mid |\chi(g)| = \chi(1)\}$ is a normal subgroup of G containing K_{χ} .
- (11) A subset $K \subseteq G$ is a normal subgroup iff $K = K_{\chi}$ for some not-necessarily-irreducible character χ .¹ Thus, Irr(G) determines the normal subgroups of G, the normal subgroup lattice of G, the indices [H : K] between comparable normal subgroups, whether or not G is solvable, and whether or not G is nilpotent.
- (12) $K_{\chi} \triangleleft Z_{\chi}$ and Z_{χ}/K_{χ} is cyclic.
- (13) $Z_{\chi}/K_{\chi} \subseteq Z(G/K_{\chi})$, with equality if $\chi \in Irr(G)$.
- (14) For normal subgroups $X, Y \triangleleft G$,

$$[G,X] \leq Y \longleftrightarrow (\forall \chi \in \operatorname{Irr}(G))(Y \leq K_{\chi} \to X \leq Z_{\chi}) \longleftrightarrow X \leq (Y \colon G).$$

Therefore, Irr(G) determines the functions $X \mapsto [G, X]$ and $Y \mapsto (Y : G)$ on Norm(G), and hence the descending & ascending central series.

- (15) $[G,G] = \bigcap_{\chi \text{ linear }} K_{\chi}.$
- (16) $Z(G) = \bigcap_{\chi \in \operatorname{Irr}(G)} Z_{\chi}.$

¹Every \cap -irreducible normal subgroup is K_{χ} for some irreducible χ .

 $\mathbf{2}$

Constructions of G-modules, and their characters. The constant homomorphism $\rho_1: G \to \operatorname{GL}(1, \mathbb{C}) = \mathbb{C}^{\times}: g \mapsto 1$ defines the trivial G-module; its character χ_1 is called the *principal character*. The principal character satisfies $\chi_1(g) = 1$ for all g.

If G acts on the set X via the homomorphism $\rho: G \to \text{Sym}(X)$, then it acts on the \mathbb{C} -space with basis X, \mathbb{C}^X , via the homomorphism $\hat{\rho}: G \to \text{GL}(\mathbb{C}^X)$ defined by $\hat{\rho}(g)(\sum_{x \in X} a_x x) = \sum_{x \in X} a_x \rho(g)(x)$. Such a $\hat{\rho}$ is called a *permutation representation*. The special case where X = G and G acts on X by left multiplication is called the *regular representation*.

- (17) A G-module U is isomorphic to a permutation representation of G if and only if U has a G-invariant basis.
- (18) If $\rho_X \colon G \to \text{Sym}(X)$ represents an action of G on X, then $\chi_X(g)$ equals the number of elements of X fixed by g.

(19) The character of the regular representation is $\chi_{\text{reg}}(g) = \begin{cases} |G| & \text{if } g = 1; \\ 0 & \text{otherwise.} \end{cases}$

- (20) The regular representation is faithful.
- $(21) \ \chi_{U\oplus V} = \chi_U + \chi_V.$
- (22) $\chi_{U\otimes V} = \chi_U \chi_V.$
- (23) If $\rho_X \colon G \to \operatorname{Sym}(X)$ represents an action of G on X, $\rho_Y \colon G \to \operatorname{Sym}(Y)$ represents an action of G on Y, and $\rho_{X \times Y} \colon G \to \operatorname{Sym}(X \times Y)$ represents the product action (g(x, y) = (gx, gy)), then $\mathbb{C}^X \otimes \mathbb{C}^Y \cong \mathbb{C}^{X \times Y}$ and $\chi_{X \times Y} = \chi_X \chi_Y$.

(24)
$$\chi_{U^*} = \overline{\chi_U}$$
.

- (25) $\chi_{\operatorname{Hom}_{\mathbb{C}}(U,V)} = \overline{\chi_U}\chi_V.$
- (26) dim_{\mathbb{C}}(V^G) = $\frac{1}{|G|} \sum_{g \in G} \chi_V(g)$.

Inner Product. Let $\alpha, \beta \colon G \to \mathbb{C}$ be functions. Write $\langle \alpha, \beta \rangle$ for $\frac{1}{|G|} \sum_{g \in G} \overline{\alpha(g)} \beta(g)$, which is the usual hermitian inner product on \mathbb{C}^G weighted by the factor 1/|G|.

- (27) $\langle \chi_V, \chi_U \rangle = \langle \chi_V \overline{\chi_U}, \chi_1 \rangle = \langle \chi_{\operatorname{Hom}_{\mathbb{C}}(U,V)}, \chi_1 \rangle = \dim_{\mathbb{C}} \operatorname{Hom}_{\mathbb{C}[G]}(U,V) = \langle \chi_U, \chi_V \rangle.$
- (28) (Row Orthogonality) If $\chi_i, \chi_j \in \operatorname{Irr}(G)$, then $\langle \chi_i, \chi_j \rangle = \frac{1}{|G|} \sum_{g \in G} \overline{\chi_i(g)} \chi_j(g) = \delta_{ij}$.
- (29) (Column Orthogonality) If $g, h \in G$ are not conjugate, then $\sum_{\chi \in Irr(G)} \chi(g)\chi(h) = 0$. Otherwise this sum is $|C_G(g)|$ (the order of the centralizer of g). The second part of this claim generalizes (7) above.
- (30) χ is irreducible iff $\langle \chi, \chi \rangle = 1$.
- (31) χ_U is the character of a *G*-module *U* and $\{\chi_1, \ldots, \chi_r\}$ are the distinct irreducible characters of *G*, then $\chi_U = \sum \langle \chi_i, \chi_U \rangle \cdot \chi_i$. In particular, the isomorphism type of a *G*-module is determined by its character.
- (32) (Burnside's Lm, Not-Burnside's Lm, Cauchy-Frobenius Lm) If G acts on X with permutation character χ_x , then the number of orbits of the action is $\langle \chi_x, \chi_1 \rangle$.

(33) Let G act on X with permutation character χ_X . The action is 2-transitive iff $\chi_X = \chi_1 + \chi$ for some $\chi \in Irr(G) - \{\chi_1\}$.

Integrality Properties.

- (34) $\chi(g)$ is an algebraic integer.
- (35) If $\chi_i \in \operatorname{Irr}(G)$, then $k_i \cdot \chi_i(g_i) / \chi_i(1)$ is an algebraic integer.
- (36) If $\chi_i \in \operatorname{Irr}(G)$ and $\operatorname{gcd}(\chi_i(1), k_j) = 1$, then $\chi_i(g_j)/\chi_i(1)$ is an algebraic integer.
- (37) If $\chi_i(g_j)/\chi_i(1)$ is an algebraic integer, then either $g_j \in Z_{\chi_i}$ or $\chi_i(g_j) = 0$.
- (38) If $\chi_i \in \operatorname{Irr}(G)$, then $\chi_i(1)$ divides |G|.

Strengthenings:

- (i) $\chi(1) \mid [G:Z_{\chi}].$
- (ii) $\chi(1)^2 \le [G:Z_{\chi}].$
- (iii) $\chi(1) \leq [G:A]$ if $A \leq G$ and $[A,A] \leq K_{\chi}$.
- (iv) $\chi(1) \mid [G:A]$ if $A \triangleleft G$ and $[A,A] \leq K_{\chi}$.

Example 1. (A character table.) The character table of a finite group G is the concatenation of the function tables of the irreducible characters of G. The first natural attempt to write down such a table for the group $S_3 \cong D_3$ would produce:

S_3	1	$(1\ 2)$	$(1\ 3)$	$(2\ 3)$	$(1\ 2\ 3)$	$(1\ 3\ 2)$
χ_1	1	1	1	1	1	1
χ_2	1	-1	-1	-1	1	1
χ_3	2	0	0	0	-1	-1

But since each character is a class function, columns corresponding to conjugate group elements are identical. A more compact representation of the same information results from identifying duplicate columns. To record the details of the identification, choose a list of representatives $1 = g_1, g_2, \ldots, g_r$ for the conjugacy classes. Now delete all columns except those indexed by these elements. Record the size $k_i := |K_G(g_i)|$ of each class above the class representative. In general, the result is the table on the left, while the table for S_3 is given on the right.

	1	k_2		k_r] .				
G	1	g_2		g_r			1	3	2
χ_1	1	1	•••	1		S_3	1	$(1\ 2)$	$(1\ 2\ 3)$
χ_2	d_2	$\chi_2(g_2)$	•••	$\chi_2(g_r)$		χ_1	1	1	1
•		•		•		χ_2	1	-1	1
:	:	•	•.	:	j	χ_3	2	0	-1
χ_r	d_r	$\chi_r(g_2)$		$\chi_r(g_r)$		/10	1		<u> </u>

It is a convention to let the first column be that of the conjugacy class $\{1\}$, and the first row to be that of the principal character. (On the left, $d_i = \chi_i(1)$ is the degree of χ_i .)

References

- Alperin, J. L.; Bell, Rowen B., Groups and representations. Graduate Texts in Mathematics, 162. Springer-Verlag, New York, 1995.
 (See Chapters 5 & 6: Sections 12-15.)
- [2] Isaacs, I. Martin, Character theory of finite groups. Corrected reprint of the 1976 original AMS Chelsea Publishing, Providence, RI, 2006.
 (See Chapters 1-4.)