Basic Properties of Characters of Finite Groups.

In this note, G is a finite group, V' is a finite dimensional C[G]-module, py: G — GL(V)
is the corresponding representation, and xy = tr o py is the character afforded by py. (The
subscripts will be omitted if they are irrelevant.) Irr(G) is the set of all irreducible characters
of G. Kg(g) is the conjugacy class of g in G.

Linear algebra.

(1) p(g) is diagonalizable.

(2) xv(1) = tr(I) = dimc(V) is the degree of xy .

(3) x(hgh™") = x(g) (x is a class function).

(4) x(g) is the sum of x(1) |G|-th roots of unity.

(5) x(¢7") = x(9)-

(6) Ixv(9)| < xv(1), with equality iff py(g) = wl for some |G|-th root of unity w.

Dimension.

(7) |G| = dime(C[G]) = 3 cpraey X(1)*-
(8) The number of isomorphism types of simple G-modules = dimc(Z(C[G])) = the
number of conjugacy classes of G.

Kernel and center.

(9) K, :={g € G| x(9) = x(1)} is a normal subgroup of G. (K, is the kernel of the
associated representation, so it is called the kernel of x.)

(10) Z, :={g € G| |x(g)] = x(1)} is a normal subgroup of G' containing K.

(11) A subset K C G is a normal subgroup iff K’ = K, for some not-necessarily-irreducible
character x.! Thus, Irr(G) determines the normal subgroups of G, the normal sub-
group lattice of G, the indices [H : K| between comparable normal subgroups,
whether or not G is solvable, and whether or not G is nilpotent.

(12) K, < Z, and Z, /K, is cyclic.
(13) Z,/K, C Z(G/K,), with equality if x € Irr(G).
(14) For normal subgroups X,Y < G,
G X]<Y+— (Welr(G) (Y<K, X<Z)+—X<(Y:G).

Therefore, Irr(G) determines the functions X — [G,X] and ¥ — (Y : G) on
Norm(G), and hence the descending & ascending central series.

(15) [G, G] = mxlinear KX'
(16) Z<G) = meIrr(G) ZX'

'Every N-irreducible normal subgroup is K y for some irreducible .
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Constructions of G-modules, and their characters. The constant homomorphism
p1: G — GL(1,C) = C*: g + 1 defines the trivial G-module; its character x; is called the
principal character. The principal character satisfies x1(g) = 1 for all g.

If G acts on the set X via the homomorphism p: G — Sym(X), then it acts on the C-space
with basis X, C¥, via the homomorphism p: G — GL(C¥) defined by p(g)(>_,cx @) =
Y sex @zp(g)(x). Such a pis called a permutation representation. The special case where
X = G and G acts on X by left multiplication is called the regular representation.

(17) A G-module U is isomorphic to a permutation representation of G if and only if U
has a G-invariant basis.

(18) If px: G — Sym(X) represents an action of G on X, then x,(g) equals the number
of elements of X fixed by g¢.

G| ifg=1;

(19) The character of the regular representation is xreg(g9) = ,
0  otherwise.

20) The regular representation is faithful.
21) xvev = xv + Xv-
22) xvev = XUXV-

23) If px: G — Sym(X) represents an action of G on X, py: G — Sym(Y) represents
an action of G on Y, and pyxxy: G — Sym(X X Y') represents the product action
(9(z,y) = (g2, gy)), then C¥ @ C" = C¥ and X, ., = X\ Xy -

(24) xv- =X

(25) XHome(U,v) = XUXV -

(26) dime(VE) = &3, o (9).

Inner Product. Let «,3: G — C be functions. Write («, ) for ﬁzgeca(g)ﬁ(g),
which is the usual hermitian inner product on C¢ weighted by the factor 1/|G].

(27) (xv, xv) = (XvXU: X1) = (XHome(,v): X1) = dimcHomeg) (U, V) = (xv, xv)-
(28) (Row Orthogonality) If x;, x; € Irr(G), then (x;, x;) = ﬁ >gea Xi(9)x;(g) = dij.

(29) (Column Orthogonality) If g, h € G' are not conjugate, then > e X(g)x(h) = 0.
Otherwise this sum is |Cg(g)| (the order of the centralizer of g) The second part of
this claim generalizes (7) above.

(30) x is irreducible iff (x, x) = 1.

(31) xp is the character of a G-module U and {xi,...,x,} are the distinct irreducible
characters of G, then yy = > (xi, xv) - Xi- In particular, the isomorphism type of a
G-module is determined by its character.

(32) (Burnside’s Lm, Not-Burnside’s Lm, Cauchy-Frobenius Lm) If G acts on X with
permutation character y,, then the number of orbits of the action is (x, x1)-
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(33) Let G act on X with permutation character x,. The action is 2-transitive iff x, =
x1 + x for some x € Irr(G) — {x1}-

Integrality Properties.
(34) x(g) is an algebraic integer.
(35) If x; € Irr(G), then k; - x;(g;)/x:(1) is an algebraic integer.
(36) If x; € Irr(G) and ged(xi(1), kj) = 1, then x;(g;)/x:(1) is an algebraic integer.
(37) If x:(gj)/xi(1) is an algebraic integer, then either g; € Z,, or x;(g;) = 0.
(38) If x; € Irr(G), then x;(1) divides |G]|.
Strengthenings:
(i) x(1) | [G Z ]
i) x(1)* < [G: Z,).
i) x(1) < [G A} if A<Gand [A A <K,.
x(1) | [G:A]if A< G and [A, Al < K,.

Example 1. (A character table.) The character table of a finite group G is the concatenation
of the function tables of the irreducible characters of G. The first natural attempt to write
down such a table for the group S3(= D3) would produce:

(S [1](12)[(13)[(23)[(123)][(132)]
i [1] 1] 1] 1 1 1
21| =1 | =1 | =1 1 1
xs|2] O] o 0] -1 | —1

But since each character is a class function, columns corresponding to conjugate group
elements are identical. A more compact representation of the same information results from
identifying duplicate columns. To record the details of the identification, choose a list of
representatives 1 = ¢q, g2, ..., g, for the conjugacy classes. Now delete all columns except
those indexed by these elements. Record the size k; := |K¢(g;)| of each class above the class
representative. In general, the result is the table on the left, while the table for Sj is given
on the right.

clil o . T
x|l 1 = gf Sy 1 1(12)(123)
X2 | d2 | x2(g2) | -+ | x2(gr) X1 1 1 1
: : : . . X2 1| -1 1
X‘T dr Xr(92> : Xr(Qr) s 2 0 -1

It is a convention to let the first column be that of the conjugacy class {1}, and the first
row to be that of the principal character. (On the left, d; = x;(1) is the degree of x;.)
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