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1. Show that SpecGrp(k) = 2 iff one the following is true.

(a) k = p1 · · · pr is square-free and there is exactly one relation pi | (pj − 1) among the
prime divisors.

(b) The prime factorization of k is p1 · · · pr·q2 (exactly one exponent ̸= 1, and that exponent
is 2), and there are no relations among the primes. Here pi or q is related to pj means
“pi | (pj − 1)” or “q | (pj − 1)”, while pj is related to q2 means “pj | (q2 − 1)”.

Proof. ‘⇒’ Suppose that SpecGrp(k) = 2. Consider the prime factorization k = pa11 · · · parr .
First we claim that either ai = 1 for all i or aj = 2 for some unique j and ai = 1 for all i ̸= j.
Suppose to the contrary that neither of these cases hold. Thus, there exists distinct i, j
such that both ai ≥ 2 and aj ≥ 2. WLOG (up to reordering of the prime factors), suppose
that i = 1 and j = 2. Then by the Structure Theorem for Abelian Groups, there exists the
following three nonisomorphic abelian groups of order k,

G1 = Zp
a1
1
× Zp

a2
2
× Zp

a3
3
× · · · × Zparr ,

G2 = Z
p
a1−1
1

× Zp1 × Zp
a2
2
× Zp

a3
3
× · · · × Zparr ,

G3 = Zp
a1
1
× Z

p
a2−1
2

× Zp2 × Zp
a3
3
× · · · × Zparr .

But this contradicts the assumption that SpecGrp(k) = 2, so we have proven the claim. Note
that the first case of the claim implies that k = p1 · · · pr is square-free and the second case
of the claim implies that k = p1 · · · pr · q2, where q = pj. Therefore we proceed in each of
these cases to show that either (a) holds or (b) holds.

First consider the case when k = p1 · · · pr. We want to show there is exactly one relation
pi | (pj − 1) among the prime divisors. Suppose to the contrary that either there are no
relations or there is more than one relation. If there are no relations, then k is a cyclic
number, so SpecGrp(k) = 1 ̸= 2, a contradiction. So we only need to consider the case where
there is more than one relation. WLOG, suppose p1 | (p2 − 1) and p3 | (p4 − 1). Then
there exists nontrivial actions α : Zp1 → Aut (Zp2p3···pr) and β : Zp3 → Aut (Zp1p2p4···pr). So,
Zp2p3···pr ⋊ Zp1 and Zp1p2p4···pr ⋊ Zp3 are nonisomorphic, nonabelian groups of order k. We
have that Zk is an abelian group of order k, and therefore witnesses a different isotype than
the two semidirect products listed above, so SpecGrp(k) ≥ 3, which is a contradiction.

Now consider the case when k = p1 · · · pr · q2. We want to show there are no relations
among the prime divisors of k. WLOG (up to reordering), suppose to the contrary that
either p1 | (p2 − 1) or q | (p2 − 1) or p1 | (q2 − 1). By the Structure Theorem for Abelian
Groups there are two isotypes of abelian groups of order k, specifically Zk and Zk/q × Zq.
So, it suffices to show in each case that there exists a nonabelian group of order k, because
then SpecGrp(k) ≥ 3, which is a contradiction. If p1 | (p2 − 1) then there exists a nontrivial
action α : Zp1 → Aut (Zp2p3···prq2), so Zp2p3···prq2 ⋊ Zp1 is a nonabelian group of order k, a
contradiction. By an almost identical argument, if q | (p2 − 1), then a nonabelian group of
order k is given by Zp1···prq⋊Zq. If p1 | (q2−1), then recall that Aut(Zq×Zq) ∼= GL2(F2

q) and
|GL2(F2

q)| = (q2 − 1)(q2 − q). So q2 − 1 divides the order of Aut (Zp2p3···prq × Zq). Therefore,
there exists a nontrivial action α : Zp1 → Aut (Zp2p3···prq × Zq), so there exists a nonabelian
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group of order k given by (Zp2p3···prq × Zq) ⋊ Zp1 . Thus we have shown that there must be
no relations among the primes, so (b) holds.

‘⇐’ Let G be a group with |G| = k. Suppose first that (a) holds, so k = p1 · · · pk and there
is exactly one relation pi | (pj − 1). Since k is square free, G has cyclic Sylow subgroups,
thus G ∼= Zm ⋊ Zn where gcd(m,n) = 1. Reorder the primes so that m = p1 · · · pt and
n = pt+1 · · · pr. Note that although we have re-indexed, we will still refer to the related
primes as pi and pj where pi | (pj−1). The structure of the semidirect product is determined
by the action

α : Zn → Aut(Zm).

Note that the domain has cardinality n = pt+1 · · · pr and the codomain has cardinality
ϕ(m) = (p1 − 1) · · · (pt − 1). Note that either pi | n or pi | m and either pj | n or pj | m,
so we consider the following four cases. If pi | n and pj | n, then since no other primes are
related we have that α must be the trivial action. Likewise, if pi | m and pj | m, then α
must be the trivial action. So in both of these cases, G ∼= Zmn. If pi | m and pj | n, then we
still have that gcd(|Zn|, |Aut(Zm)|) = 1, so α must be the trivial action, therefore G ∼= Zmn.
If pi | n and pj | m, then since pi | (pj − 1) and there are no other relations, we have that
gcd(|Zn|, |Aut(Zm)|) = pi. So there exists nontrivial actions α : Zn → Aut(Zm) in this case.
Moreover, if a nontrivial action α : Zn → Aut(Zm) exists, then |α(Zn)| must be a nonunit
divisor of both |Zn| and |Aut(Zm)|. The only nonunit divisor of both |Zn| and |Aut(Zm)| is
pi, so |α(Zn)| = pi. Reindex the prime divisors of k so that n = p1 · · · pj−1 and m = pj · · · pr
with p1 | (pj − 1). If the action α is trivial, we get that G ∼= Zk again. We will now prove
the following claim:

Claim: If α1, α2 : Zn → Aut(Zm) are distinct nontrivial actions as described above
(where p1|n and pj|m and p1|(pj − 1) is the only relation among primes), then G ∼= Zm ⋊α1

Zn
∼= Zm ⋊α2 Zn, in other words there is only one other possible isotype for G.

Proof of Claim: We will show that α1 (Zn) = α2 (Zn) in Aut (Zm). Recall from above
that |α1 (Zn) | = |α2 (Zn) | = p1. We will first show that Aut (Zm) has a cyclic subgroup of
order pj − 1. Note that Aut (Zm) ∼= Aut

(
Zpj × · · · × Zpr

)
. Choose g to be any generator

of the cyclic group
(
Zpj

)×
. Note that pj ̸= 2 since p1 | p2 − 1, so if pj = 2, then p1 = 1,

which is not prime. Since pj ̸= 2 there exists nontrivial φ ∈ Aut
(
Zpj × · · · × Zpr

)
defined

by φ(apj , apj+1
, . . . , apr) = (gapj , apj+1

, . . . , apr). We then have that φk(apj , apj+1
, . . . , apr) =

(gkapj , apj+1
, . . . , apr). φk = id if and only if gka ≡ a mod pj for all a ∈ Zpj if and only if

a(gk − 1) ≡ 0 mod pj. Since Zpj is an integral domain and a is not always 0, we have that

gk ≡ 1 mod pj. By the fact that g is a generator of
(
Zpj

)×
, we have that the least value k

so that φk = id is k = pj − 1. Therefore, φ is an element of order pj − 1, so Aut
(
Zpj ···pr

)
has a cyclic subgroup of order pj − 1. Call this subgroup K.

Next, note that p1 | pj − 1 so we can consider the p1-Sylow subgroup P of Aut
(
Zpj ···pr

)
(the Sylow subgroup is unique since the automorphism group is abelian). P has order pk1
and we will show that P ⊂ K. Since p1 | pj − 1, by Cauchy’s Theorem K has a subgroup of
order p1. This subgroup is contained in a Sylow p1-subgroup, and hence contained in P , so
|P ∩K| ≥ p1. Suppose P ̸⊂ K, then |P ∩K| = pa1, 1 ≤ a < k. Consider the subgroup PK
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of Aut
(
Zpj ···pr

)
. We have that

|PK| = |P ||K|
|P ∩K|

= (pj − 1)pk−a
1 .

By Lagrange’s Theorem, (pj−1)pk−a
1 | (pj−1) · · · (pr−1), therefore pk−a

1 | (pj+1−1) · · · (pr−1).
Since 1 ≤ k−a < k and p1 is prime, p1 | (pi−1) for some j+1 ≤ i ≤ r, which is a contradiction
since this is a new relation on the primes. Thus, P ⊂ K. So P must be cyclic and therefore
contains a unique cyclic subgroup of order p1. Any other cyclic subgroup of Aut

(
Zpj ···pr

)
of

order p1 would be contained in P . Thus, Aut
(
Zpj ···pr

)
has a unique cyclic group of order

p1 so α1(Zn) = α2(Zn). The original claim about semi-direct products then immediately
follows from the result of Exercise 6 in Section 5.5 of Dummit and Foote. Claim.

In all cases, the only possible isotypes for G were the cyclic group of order k or Zm⋊αZn.
Therefore, we have shown that (a) implies SpecGrp(k) = 2.

Now suppose (b) holds. So k = p1 · · · pr · q2 with no relations. We claim that any group
G with |G| = k = p1 · · · pr · q2 with no relations is abelian. We proceed by induction on r. If
r = 0, then k = q2, so G is abelian. Suppose now that for some arbitrary r ≥ 0, we have that
if k has r linear prime factors and exactly one square factor (k is of the form k = p1 · · · pr ·q2)
with no relations and G is a group with |G| = k, then G is abelian. Consider an arbitrary k of
the form k = p1 · · · pr ·pr+1q

2 and let G be a group of order k. Let P be a Sylow p1-subgroup
of G. We will show that P has a normal complement. Note first that P ∼= Zp1 is abelian.
By Burnside’s Normal Complement Theorem, it suffices to show that NG(P ) = CG(P ). We
know that NG(P ) acts on P by conjugation. In other words, there exists a homomorphism
α : NG(P ) → Aut(P ) ∼= Zp1−1 defined as g 7→ α(g) : P → P via α(g)(x) = g−1xg.
Notice that ker(α) = CG(P ) (g ∈ ker(α) ⇔ α(g)(x) = x for all x ∈ P ⇔ g−1xg = x,
x ∈ P ⇔ gx = xg, x ∈ P ⇔ g ∈ CG(P )). Suppose for a contradiction that NG(P ) ̸= ker(α).
So we can choose g ∈ NG(P )\ker(α). So, |α(g)| divides p1−1 and |α(g)| ≠ 1. But, |α(g)| | |g|
and |g| | k since g ∈ G. So |α(g)| | k, hence |α(g)| = pa11 · · · parr · par+1

r+1 · qb where aj ∈ {0, 1}
and b ∈ {0, 1, 2}. Since |α(g)| | (p1− 1), p1 does not divide p1− 1, and |α(g)| ≠ 1, it must be
the case that some ai = 1 with i ̸= 1 or b ̸= 0. In either case since |α(g)| | (p1 − 1), we then
have that either some pi | (p1 − 1) or q | (p1 − 1), which is a contradiction in either case to
the fact that there are no relations among the primes. Therefore NG(P ) = ker(α) = CG(P ).
So by Burnside’s Normal Complement Theorem, P has a normal complement which we will
call N . So we have that G ∼= N ⋊ P . Since N is a group of order p2 · · · pr · pr+1q

2 with no
relations among the primes, by the inductive hypothesis N is abelian. So N ∼= Zp2···pr+1·q2 or
N ∼= Zp2···pr+1·q × Zq. If N ∼= Zp2···pr+1·q2 , then P can only act trivially on N since |P | = p1
and |Aut(N)| = (p2 − 1) · · · (pr − 1)(pr+1 − 1)q(q − 1) so the existence of a nontrivial action
would imply that p1 divides some pj − 1 or q − 1 (p1 cannot divide q since q is prime and
p1 ̸= q), which contradicts the assumption that there are no relations. If N ∼= Zp2···pr+1·q×Zq,

then Aut(N) ∼=
(
Zp2···pr+1

)××GL2(Fq), so |Aut(N)| = (p2−1) · · · (pr+1−1) · (q2−1)q(q−1).
The existence of a nontrivial action of P on Aut(N) would imply that p1 divides some pj −1
or q − 1 or q2 − 1, which is a contradiction in all cases. Therefore, G ∼= N × P . So G is
the product of two abelian groups and so G is abelian. By the principle of mathematical
induction, we have shown that for any r ≥ 0, if k = p1 · · · pr · q2 with no relations among the
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primes, then any group of order k is abelian. By the Structure Theorem for Abelian Groups,
SpecGrp(k) = 2 (the only possible isotypes for G are given by Zk and Zk/q × Zq).
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