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5.2.10. Find Frat(D2n) and Frat(D∞).

Proof. Throughout this proof we use the following representations for D2n and D∞,

D2n = 〈r, s | rn = s2 = (rs)2 = 1〉

D∞ = 〈r, s | s2 = (rs)2 = 1〉.

We will show that if n = pa11 · · · p
ak
k , then

Frat(D2n) = 〈rp1p2···pk〉 ' Zn/(p1···pk).

We will also show that
Frat(D∞) = {1}.

Claim 1: 〈r〉 ≤ D2n and 〈r〉 ≤ D∞ are maximal.

Proof of Claim 1. In the finite case, |〈r〉| = n ⇒ [D2n : 〈r〉] = 2. Since 〈r〉 has prime index
in D2n, 〈r〉 is maximal in D2n.

In the infinite case, let 〈r〉 = H. Then H and sH are the left cosets of H. These cosets
are distinct since s 6∈ H. These are all the cosets since for all x ∈ D∞, we can write x = sbra

for some integers a and 0 ≤ b ≤ 1. Then xH = sbraH = sbH, since ra ∈ H. If b = 0,
xH = H and if b = 1, xH = sH. Therefore, [D∞ : H] = 2. So 〈r〉 has prime index and is
therefore maximal in D∞. Claim 1

Claim 2: Let p be prime. Then 〈rp, s〉 ≤ D∞ is maximal. If p | n, then 〈rp, s〉 ≤ D2n is
maximal.

Proof of Claim 2. Let H = 〈rp, s〉 ≤ D∞. We will show that S = {H, rH, r2H, . . . , rp−1H}
are the distinct left cosets of H in D∞. To see that these cosets are distinct, let 0 ≤ ` ≤ k < p
and note that rkH = r`H ⇔ rk−` ∈ H. Thus, 0 ≤ k−` < p with rk−` ∈ H. But H = 〈rp, s〉,
so H must contain only elements of that can be represented in the form rmpsb where m ∈ Z
and 0 ≤ b ≤ 1. Therefore, k − ` = 0 ⇒ k = ` ⇒ rk = r`. Now we show that S contains
all of the left cosets of H. Let x ∈ D∞. So, x = rasb for a ∈ Z and 0 ≤ b ≤ 1. Consider
xH = rasbH = raH, using the fact that s ∈ H. By the division algorithm, there exists k ∈ Z
and 0 ≤ m < p such that a = kp+m. So, raH = rmrkpH = rmH, which is an element of S.
Thus, we have that [D∞ : H] = |S| = p, a prime, so H is maximal in D∞.

Now let H = 〈rp, s〉 ≤ D2n. The proof is the same as the infinite case except for one
detail. In the infinite case we immediately knew that elements of H were only elements that
could be represented in the form rmpsb, m ∈ Z and 0 ≤ b ≤ 1 (this used the fact that r had
infinite order). In the finite case, if we assume that p | n, then we get the same result (only
products of r raised to integer multiples of p and s can appear in H). Therefore, if p | n,
then H ≤ D2n is maximal following from the previous paragraph. Claim 2

Now we can show that Frat(D∞) = {1}. By Claims 1 and 2,

Frat(D∞) ≤

( ⋂
p prime

〈rp, s〉

)
∩ 〈r〉 =

⋂
p prime

〈rp〉 = {1}.
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To see that the last equality is true, suppose n 6= 0 and rn ∈
⋂

p prime〈rp〉. Then n must
be divisible by every prime p. But this is impossible since there are an infinite number of
primes. Clearly we have {1} ≤ Frat(D∞), so we have shown that Frat(D∞) = {1}.

In the finite case, let n = pa11 · · · p
ak
k be the unique prime factorization of n. We have the

following similar result following from Claims 1 and 2:

Frat(D2n) ≤

 ⋂
p prime p|n

〈rp, s〉

 ∩ 〈r〉 =
⋂
p|n

〈rp〉 = 〈rp1〉 ∩ · · · ∩ 〈rpk〉

= 〈rlcm(p1,...,pk)〉 = 〈rp1···pk〉.

Thus, Frat(D2n) ≤ 〈rp1···pk〉. We want to show the reverse containment. We do this by
proving the following claim.

Claim 3: Let n = pa11 · · · p
ak
k . Then rp1···pk is a nongenerator of D2n.

Proof of Claim 3. Let X ⊂ D2n so that 〈rp1···pk , X〉 = D2n. We want to show that 〈X〉 = D2n.
First, we will show that r ∈ 〈X〉. Note that r ∈ 〈rp1···pk , X〉. It follows that r =

(rp1···pk)`rm where `,m ∈ Z and rm ∈ 〈X〉 (we obtain this expression using the equation
rs = sr−1 to remove any s from the expression and then collect all powers of rp1···pk).
Therefore, we have that r = rp1···pk`+m ⇒ p1 · · · pk`+m ≡ 1 (mod n). We claim that pi does
not divide m for all i. Suppose for a contradiction that pi divides m. So, m = pit for some
integer t. Then,

pi(p1 · · · p̂i · · · pk` + t) ≡ 1 (mod n).

Thus, pi is a unit mod n. But this is impossible since pi | n. So we have a contradiction,
therefore pi does not divide m. Since the pi are prime, we have that gcd(p1 · · · pk,m) = 1⇒
gcd(n,m) = 1. Since 〈r〉 is a cyclic group of order n and gcd(n,m) = 1, we have that rm is
also a generator of 〈r〉. Recall rm ∈ 〈X〉. Thus, 〈r〉 = 〈rm〉 ⊂ 〈X〉 ⇒ r ∈ 〈X〉.

Now we will show that s ∈ 〈X〉. We can represent the elements of X as xi = rbisci where
0 ≤ bi < n and 0 ≤ ci ≤ 1. Suppose for all xi, ci = 0. Then 〈rp1···pk , X〉 ⊂ 〈r〉, which is a
proper subgroup of D2n. This contradicts the fact that 〈rp1···pk , X〉 = D2n. So, there must
exist some x ∈ X such that x = rbs. Since r ∈ 〈X〉 ⇒ r−b ∈ 〈X〉 and x ∈ X ⇒ x ∈ 〈X〉, we
have that r−bx = r−brbs = s ∈ 〈X〉.

Since r and s generate D2n and r, s ∈ 〈X〉, we have shown that 〈X〉 = D2n. Therefore
rp1···pk is a nongenerator of D2n. Claim 3

Since Frat(D2n) is the set of nongenerators of D2n, we have that rp1···pk ∈ Frat(D2n) by
Claim 3. Therefore, 〈rp1···pk〉 ≤ Frat(D2n). Since 〈rp1···pk〉 ≤ 〈r〉, a cyclic group of order n
with p1 · · · pk dividing n, we have that 〈rp1···pk〉 is cyclic of order n/(p1 · · · pk). Hence, we
have shown that

Frat(D2n) = 〈rp1p2···pk〉 ' Zn/(p1···pk).
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