Group Theory Dan Lyness
Assignment 2 Matt Watson

5.2.10. Find Frat(Dy,) and Frat(Dy,).

Proof. Throughout this proof we use the following representations for D,, and D,
Doy = (r,s | 1" = 5% = (rs)* =1)

Dy = (r,s| 5% = (rs)* = 1).
We will show that if n = p{*---p*, then

Frat(Dgn) = <7”p1p2'"pk> ~ Zn/(plwpk)-

We will also show that
Frat(Dy) = {1}.

Claim 1: (r) < Dy, and (r) < D, are maximal.

Proof of Claim 1. In the finite case, |(r)| = n = [Da, : (r)] = 2. Since (r) has prime index
in Dy, (r) is maximal in Dy,.

In the infinite case, let (r) = H. Then H and sH are the left cosets of H. These cosets
are distinct since s € H. These are all the cosets since for all z € D, we can write z = s°r¢
for some integers @ and 0 < b < 1. Then zH = s7°H = s’H, since r* € H. If b = 0,
xH = H and if b =1, vH = sH. Therefore, [Dy, : H|] = 2. So (r) has prime index and is
therefore maximal in D.. OClaim 1

Claim 2: Let p be prime. Then (r?,s) < D, is maximal. If p | n, then (r?,s) < Dy, is
maximal.

Proof of Claim 2. Let H = (r?,s) < D,,. We will show that S = {H,rH,r?H,... ,r""'H}
are the distinct left cosets of H in D,. To see that these cosets are distinct, let 0 </ < k <p
and note that r*H = r*H < r** € H. Thus, 0 < k—{ < pwithr7*~¢ € H. But H = (1P, s),
so H must contain only elements of that can be represented in the form r"?s® where m € Z
and 0 < b < 1. Therefore, k —¢ =0 =k = ¢ = r* = r!. Now we show that S contains
all of the left cosets of H. Let € Dy. So, x = r%s® for a € Z and 0 < b < 1. Consider
xH = r®s"H = r®H, using the fact that s € H. By the division algorithm, there exists k € Z
and 0 < m < p such that a = kp+m. So, r*H = r™rk¥P [ = y™H which is an element of S.
Thus, we have that [Dy, : H] = |S| = p, a prime, so H is maximal in D..

Now let H = (rP,s) < Ds,. The proof is the same as the infinite case except for one
detail. In the infinite case we immediately knew that elements of H were only elements that
could be represented in the form r™Ps® m € Z and 0 < b < 1 (this used the fact that r had
infinite order). In the finite case, if we assume that p | n, then we get the same result (only
products of r raised to integer multiples of p and s can appear in H). Therefore, if p | n,
then H < D,,, is maximal following from the previous paragraph. OClaim 2

Now we can show that Frat(D.) = {1}. By Claims 1 and 2,

Frat(Dy) < ( N <7‘p,s>) N{ry= [ " ={1}.
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To see that the last equality is true, suppose n # 0 and r" € ﬂp prime<rp>. Then n must
be divisible by every prime p. But this is impossible since there are an infinite number of
primes. Clearly we have {1} < Frat(D), so we have shown that Frat(D.,) = {1}.

In the finite case, let n = p{* - - - p* be the unique prime factorization of n. We have the
following similar result following from Claims 1 and 2:

Frat(DQn) < ﬂ <74p7 3> N <7»> — ﬂ(ﬂ’) - <7=P1> N---N <7npk>

p prime p|n pln
— <Tlcm(P11-~-,Pk)> = (rProPE),

Thus, Frat(Ds,) < (rPr"P). We want to show the reverse containment. We do this by
proving the following claim.

Claim 3: Let n = pi* - - - pi*. Then rP*"P* is a nongenerator of Ds,,.

Proof of Claim 3. Let X C Dy, so that (rP*"Pr X) = Dy,. We want to show that (X) = Ds,.

First, we will show that r € (X). Note that r € (rP"Px X). It follows that r =
(rPr-Pe)frm where £, m € Z and r™ € (X) (we obtain this expression using the equation
rs = sr—! to remove any s from the expression and then collect all powers of rPi7r).
Therefore, we have that r = rP1Pe+m = p ...l +m =1 (mod n). We claim that p; does
not divide m for all 2. Suppose for a contradiction that p; divides m. So, m = p;t for some
integer t. Then,

pi(pr--pi---pel +1) =1 (mod n).

Thus, p; is a unit mod n. But this is impossible since p; | n. So we have a contradiction,
therefore p; does not divide m. Since the p; are prime, we have that ged(p; -+ pg,m) =1 =
ged(n,m) = 1. Since (r) is a cyclic group of order n and ged(n,m) = 1, we have that r™ is
also a generator of (r). Recall 7™ € (X). Thus, (r) = (r™) C (X) = r € (X).

Now we will show that s € (X). We can represent the elements of X as z; = r%s% where
0<b <nand0<¢ <1. Suppose for all z;, ¢; = 0. Then (rPPx X) C (r), which is a
proper subgroup of Dy,. This contradicts the fact that (rP*"Px X) = D,,. So, there must
exist some € X such that z = 7%s. Sincer € (X) = r e (X)andz € X = z € (X), we
have that 722 = r~brbs = s € (X).

Since r and s generate Do, and r,s € (X), we have shown that (X) = Ds,. Therefore
rP1Pk is a nongenerator of Do,. OClaim 3

Since Frat(Dy,) is the set of nongenerators of Ds,, we have that r7*" P& € Frat(Dy,) by
Claim 3. Therefore, (rP*"?*) < Frat(Ds,). Since (rP*"Pr) < (r), a cyclic group of order n
with py -+ - py dividing n, we have that (rP*"P) is cyclic of order n/(p; ---px). Hence, we
have shown that

Frat(Day) = (rP"P27Pk) o~ o spycoopp) -



