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11. Let G be a finite, 2-step nilpotent, p-group.

(a) Show that if p is odd, then G has an abelian word w(z,y). That is, if t By = w(x,y),
then (G;z @ y) is an abelian group.

(b) Is the same assertion true if p is even?

(c) Is the same assertion true if G is 3-step nilpotent?

Proof.

(a) Let ¢ be an integer such that 2c+1 = |G'|. Then, ¢ is well defined because G is a finite
p-group, with p odd so |G’| is also odd and finite. Now, we can define

r @y = xylx,yl-.

We claim that (G;z @ y) is an abelian group. Observe, 1 € G is the identity element
for the relation since

r@l=x-1-[2,1)°=2- 2 2)=2=1-2-[1,2]°=1@ .

Further, we have,

1 c -1 -1

r@r t=ar r, o =@ rr- ) =1=0"t2 2] =0 Do,
so the operation has inverses. Next, we can see that the relation is commutative by

observing that

1 1

= aylz, y) [z, y]y a7 = [z

2¢+1 — 1

(z®y)(y® )" =ayle,y)(yzly 2]°) " Ly

Here, the second to last equality comes from expanding the commutators and noticing
that the pattern xyz—'y~! = [z~ y~!] repeats 2c + 1 times in the expansion. Finally,
to see that the relation is associative observe that

@ (Y z) = wyzly, 2)°[v, yzly, 2]°° = wvyzly, 2|2, y2]© = vyz[z,y) [z, 2]y, 2]°
and
(z DY) © 2 = aylz, y|2[vylr, y]%, 2]° = vyzlr, y] vy, 2]° = 2yzle, y][z, 2]y, 2]°

where the equalites follow from the realization that all elements of G commute with
commutators in G since

alb, c] = [b, clala, [b, c]] = [b, cla

due to G being 2-step nilpotent. Thus @ is associative, hence, (G;z @ y) is an abelian
group.
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(b)

The assertion is not true if p is even, that is, it is not true if p = 2. This is because
there is no integer ¢ such that 2c+1 = 0 mod |G’| when the order of G is a power
of 2. One might ask if there is another word that works, however, because G is 2-step
nilpotent, every word can be written as

w(z,y) = zy’[z, y]°,

so we will show that the only possible abelian word is the one from part (a). If
w(z,y) = 2%°[x, y|°, we claim that the only possible identity for wis 1. Let e € G be an
identity for w(z,y) and let e~! be its inverse with respect to the original multiplication
in G. We see

l=w(e,1)=¢* and 1=w(le)=c¢".

So, the order of e in G divides both a and b. Then, we see
et =w(e, e =e(e ) =1,

where the first equality follows from the identity property of e, the second equality
follows from the definition of w and the last equality comes from the fact that e* =1
and that the order of e~! is the same as the order of e, hence, (e‘l)b =1 as well. Thus,
the only candidate for an identity for our word is the identity in the group. From this
we deduce that a must be equal to b in order for the word to have an inverse and that
a =1 mod exp(G) for the word to have an identity'. This is because if a is larger, we
see that
w(z, 1) = 2°1°[2, 1]° = 2°,

which is not always equal to x unless a =1 mod exp(G) since G is a p-group. We get
that @ = b by observing
2’ =w(l,r) =w(r, 1) =2

Finally, we see that ¢ must satisfy 2c +1 = 0 mod |G’| by the computation we used
in part (a) to show commutativity.

The same assertion is not true if G is 3-step nilpotent since the assertion fails for p = 3.
To see this, we provide a counter example. Consider the group with the presentation

G = <047577 | ag = 63 = 73 = ]_,04/8 = 504,704’7_1 - 05/6_177/87_1 — ()Z3/B>a

which is a 3-step nilpotent group of order 3* = 81. By way of contradiction, assume
that GG has an abelian word

w(z,y) = 2*y°[z,y) [z, y, 2]y, z, y]°.

We will show that (G;w(z,y)) is not isomorphic to any abelian group of order 81. By
the arguments made in part (b), we see that a = b = 1. This tells us that under
w(z,y), the element « has order 9 in (G;w(z,y)) since it has order 9 in (G;-). This
tells us that (G;w(x,y)) is not isomorphic to Zs X Zz X Zs X Zs.

Here, exp(G) is the exponent of G
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Next, since w(z,y) is composed of multiplication and inverses, every subgroup of (G; -)
is also a subgroup of (G;w(z,y)). Using GAP, we found that (G;-) has 50 distinct
subgroups. Since each distinct subgroup of (G;-) is also a subgroup (G;w(zx,y)), we
can eliminate Zg, Z3 X Zo7, and Zg X Zg as they all have less than 50 distinct subgroups.
Now, the only abelian group we have left to eliminate is Z3 x Zs3 X Zg. This can be
eliminated by observing that (G; w(z,y)) has 31 subgroups of order 3, while Zs X Zs X Zqg
has 13, which is too few. Thus no such w(z,y) exists.

]



