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11. Let G be a finite, 2-step nilpotent, p-group.

(a) Show that if p is odd, then G has an abelian word w(x, y). That is, if x⊕ y = w(x, y),
then 〈G;x⊕ y〉 is an abelian group.

(b) Is the same assertion true if p is even?

(c) Is the same assertion true if G is 3-step nilpotent?

Proof.

(a) Let c be an integer such that 2c+1 = |G′|. Then, c is well defined because G is a finite
p-group, with p odd so |G′| is also odd and finite. Now, we can define

x⊕ y = xy[x, y]c.

We claim that 〈G;x ⊕ y〉 is an abelian group. Observe, 1 ∈ G is the identity element
for the relation since

x⊕ 1 = x · 1 · [x, 1]c = x · (x−1x)c = x = 1 · x · [1, x]c = 1⊕ x.

Further, we have,

x⊕ x−1 = xx−1[x, x−1] = (x−1 · x · x · x−1)c = 1 = x−1x[x−1, x] = x−1 ⊕ x,

so the operation has inverses. Next, we can see that the relation is commutative by
observing that

(x⊕ y)(y ⊕ x)−1 = xy[x, y]c(yx[y, x]c)−1 = xy[x, y]c[x, y]cy−1x−1 = [x−1, y−1]2c+1 = 1.

Here, the second to last equality comes from expanding the commutators and noticing
that the pattern xyx−1y−1 = [x−1, y−1] repeats 2c+ 1 times in the expansion. Finally,
to see that the relation is associative observe that

x⊕ (y ⊕ z) = xyz[y, z]c[x, yz[y, z]c]c = xyz[y, z]c[x, yz]c = xyz[x, y]c[x, z]c[y, z]c

and

(x⊕ y)⊕ z = xy[x, y]cz[xy[x, y]c, z]c = xyz[x, y]c[xy, z]c = xyz[x, y]c[x, z]c[y, z]c

where the equalites follow from the realization that all elements of G commute with
commutators in G since

a[b, c] = [b, c]a[a, [b, c]] = [b, c]a

due to G being 2-step nilpotent. Thus ⊕ is associative, hence, 〈G;x⊕ y〉 is an abelian
group.
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(b) The assertion is not true if p is even, that is, it is not true if p = 2. This is because
there is no integer c such that 2c + 1 ≡ 0 mod |G′| when the order of G is a power
of 2. One might ask if there is another word that works, however, because G is 2-step
nilpotent, every word can be written as

w(x, y) = xayb[x, y]c,

so we will show that the only possible abelian word is the one from part (a). If
w(x, y) = xayb[x, y]c, we claim that the only possible identity for w is 1. Let e ∈ G be an
identity for w(x, y) and let e−1 be its inverse with respect to the original multiplication
in G. We see

1 = w(e, 1) = ea and 1 = w(1, e) = eb.

So, the order of e in G divides both a and b. Then, we see

e−1 = w(e, e−1) = ea(e−1)b = 1,

where the first equality follows from the identity property of e, the second equality
follows from the definition of w and the last equality comes from the fact that ea = 1
and that the order of e−1 is the same as the order of e, hence, (e−1)b = 1 as well. Thus,
the only candidate for an identity for our word is the identity in the group. From this
we deduce that a must be equal to b in order for the word to have an inverse and that
a ≡ 1 mod exp(G) for the word to have an identity1. This is because if a is larger, we
see that

w(x, 1) = xa1b[x, 1]c = xa,

which is not always equal to x unless a ≡ 1 mod exp(G) since G is a p-group. We get
that a = b by observing

xb = w(1, x) = w(x, 1) = xa.

Finally, we see that c must satisfy 2c + 1 ≡ 0 mod |G′| by the computation we used
in part (a) to show commutativity.

(c) The same assertion is not true if G is 3-step nilpotent since the assertion fails for p = 3.
To see this, we provide a counter example. Consider the group with the presentation

G := 〈α, β, γ | α9 = β3 = γ3 = 1, αβ = βα, γαγ−1 = αβ−1, γβγ−1 = α3β〉,

which is a 3-step nilpotent group of order 34 = 81. By way of contradiction, assume
that G has an abelian word

w(x, y) = xayb[x, y]c[x, y, x]d[y, x, y]e.

We will show that 〈G;w(x, y)〉 is not isomorphic to any abelian group of order 81. By
the arguments made in part (b), we see that a = b = 1. This tells us that under
w(x, y), the element α has order 9 in 〈G;w(x, y)〉 since it has order 9 in 〈G; ·〉. This
tells us that 〈G;w(x, y)〉 is not isomorphic to Z3 × Z3 × Z3 × Z3.

1Here, exp(G) is the exponent of G
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Next, since w(x, y) is composed of multiplication and inverses, every subgroup of 〈G; ·〉
is also a subgroup of 〈G;w(x, y)〉. Using GAP, we found that 〈G; ·〉 has 50 distinct
subgroups. Since each distinct subgroup of 〈G; ·〉 is also a subgroup 〈G;w(x, y)〉, we
can eliminate Z81, Z3×Z27, and Z9×Z9 as they all have less than 50 distinct subgroups.
Now, the only abelian group we have left to eliminate is Z3 × Z3 × Z9. This can be
eliminated by observing that 〈G;w(x, y)〉 has 31 subgroups of order 3, while Z3×Z3×Z9

has 13, which is too few. Thus no such w(x, y) exists.
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