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Problem 1.

(a) Show that a group is 2-Engel (satisfies [x, y, y] = 1) if and only if every 1-generated
normal subgroup is abelian.

(b) Show that the following laws are consequences of [x, y, y] = 1:

(i) [x, y, z] = [y, x, z]

(ii) [x, y, z]3 = 1

(iii) [x, y, z, t] = 1

Proposition 1. Satisfying the law [a, b, b] = 1 is equivalent to [a, b] = [b−1, a]. Hence,
[a, b]−1 = [a, b−1] in a 2-Engel group.

Proof. Notice that

[a, b, b] = b−1a−1bab−1a−1b−1abb = [b, a]b−1[a, b]b.

Thus [a, b, b] = 1 if and only if

b−1[a, b]b = [a, b]

[a, b] = b[a, b]b−1

[a, b] = ba−1b−1abb−1

[a, b] = [b−1, a].

Proposition 2. A group G is 2-Engel if and only if every 1-generated normal subgroup is
abelian.

Proof. A normal subgroup generated by x ∈ G is the subgroup of G generated by {y−1xy :
y ∈ G}. Thus, it suffices to show that x commutes with its conjugates. Observe that
xy−1xy = y−1xyx if and only if

xy−1xy = y−1xyx

xy−1xyx−1 = y−1xy

y−1xyx−1 = x−1y−1xy

[y, x−1] = [x, y].

Hence, the result follows from Proposition 1, with a = y, b = x−1.

Proposition 3. Let A be the normal closure of a ∈ G, then the map rb(x) = [x, b] is an
endomorphism of A for each g ∈ G. Since A is commutative, we use the notation rb + rc to
denote the map x 7→ rb(x)rc(x) and −rb to denote the map x 7→ [x, b]−1. Furthermore, this
endomorphism satisfies rb ◦ rb = 0 (0 denoting the map x 7→ 1).
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Proof. For x, y ∈ A, notice that since [x, b] is a product of conjugates of x and x−1 which
all commute with y. Thus, rb(xy) = [xy, b] = [x, b]y[x, b] = [x, b][y, b] = rb(x) + rb(y). Next,
applying Proposition 1, we have rb(−x) = [x−1, b] = [b, x−1]−1 = [b, x] = [x, b]−1 = −r(b).
The fact that rb ◦ rb = 0 is just the 2-Engel condition: rb ◦ rb(x) = [x, b, b] = 1.

Proposition 4. Let b, c ∈ G. Then

(i) rb−1 = −rb

(ii) rbc = rc + rb + rc ◦ rb

(iii) rb ◦ rc = −rc ◦ rb

Proof.

(i) This follows from Proposition 1, that [x, b−1] = [x, b]−1.

(ii) Observe that

[x, bc] = [x, c][x, b]c = [x, c][x, b][x, b]−1c−1[x, b]c = [x, c][x, b][x, b, c] = (rc+rb+rc◦rb)(x).

(iii) Applying (i) and (ii), we have that

r(c−1b−1) ◦ rbc =(rb−1 + rc−1 + rb−1 ◦ rc−1) ◦ (rc + rb + rc ◦ rb)
=rb−1 ◦ rc + rb−1 ◦ rb + rb−1 ◦ rc ◦ rb + rc−1 ◦ rc + rc−1 ◦ rb + rc−1 ◦ rc ◦ rb

+ rb−1 ◦ rc−1 ◦ rc + rb−1 ◦ rc−1 ◦ rb + rb−1 ◦ rc−1 ◦ rc ◦ rb
=− rb ◦ rc − rb ◦ rb − rb ◦ rc ◦ rb − rc ◦ rc − rc ◦ rb − rc ◦ rc ◦ rb
− rb ◦ (−rc ◦ rc)− rb ◦ (−rc ◦ rb)− rc ◦ (−rc ◦ rc ◦ rb)

=− rb ◦ rc − rb ◦ rc ◦ rb − rc ◦ rb + rb ◦ rc ◦ rb
=− rb ◦ rc − rc ◦ rb.

Note that the fourth equality follows from the third because ra ◦ ra = 0 for arbitrary
a ∈ A. That is, terms with an endomorphism composed with itself disappears. Now,
r(c−1b−1) ◦ rbc = r(bc)−1 ◦ rbc = −rbc ◦ rbc = 0. Hence 0 = −rb ◦ rc − rc ◦ rb.

Proposition 5. The following are identities in a 2-Engel group G:

(i) [x, y, z] = [y, z, x]

(ii) [x, y, z]3 = 1

(iii) [x, y, z, t] = 1
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Proof.

(i) Using Proposition 4 (iii), we have rz ◦ ry(x) = −ry ◦ rz(x). Expanding this, we have
[x, y, z] = [x, z, y]−1. Now, observe that

[x, z, y]−1 = ([x, z]−1y−1[x, z]y)−1 = y−1[x, z]−1y[x, z]

Then, since [x, z] commutes with conjugates of its inverse, we can re-write

y−1[x, z]−1y[x, z] = [x, z]y−1[x, z]−1y = [z, x]−1y−1[z, x]y = [z, x, y].

That is, [x, y, z] = [z, x, y]. Applying the same argument again to [z, x, y] gives
[x, y, z] = [y, z, x].

(ii) Using (i), notice that [x, y−1, z] = [z, x, y−1] = [z, x]−1y[z, x]y−1 is a product of y−1

and a conjugate of y. Thus, [x, y−1, z] commutes with y so [x, y−1, z]y = [x, y−1, z].
Furthermore, again using that elements commute with conjugates of their inverses,

[z, x]−1y[z, x]y−1 = y[z, x]y−1[z, x]−1 = [z, x]y−1[z, x]−1y = [x, z, y] = [x, y, z]−1.

Thus, we have [x, y−1, z] = [x, y, z]−1 so applying the Hall-Witt identity, we have

1 = [x, y−1, z]y[y, z−1, x]z[z, x−1, y]x

1 = [x, y−1, z][y, z−1, x][z, x−1, y]

1 = [x, y, z]−1[y, z, x]−1[z, x, y]−1

1 = [x, y, z]−3.

Then, multiplying through by [x, y, z]3 gives the desired result.

(iii) Note that [x, y, z, t] = rt ◦ rz ◦ ry(x), so it suffices to show that rd ◦ rc ◦ rb = 0 for any
b, c, d ∈ G. Applying Proposition 4 (iii), we have rb ◦ rcd = −rcd ◦ rb. So applying part
(ii) of the same proposition to rcd, we have

rb ◦ (rd + rc + rd ◦ rc) = −(rd + rc + rd ◦ rc) ◦ rb
rb ◦ rd + rb ◦ rc + rb ◦ rd ◦ rc = −rd ◦ rb − rc ◦ rb − rd ◦ rc ◦ rb
rb ◦ rd + rb ◦ rc + rb ◦ rd ◦ rc = −(−rb ◦ rd)− (−rb ◦ rc)− rd ◦ rc ◦ rb

rb ◦ rd ◦ rc = −rd ◦ rc ◦ rb
2rd ◦ rc ◦ rb = 0.

The last equality is the result of rb◦rd◦rc = −(rd◦rb)◦rc = −rd◦(−rc◦rb) = rd◦rc◦rb.
We also have 3rd ◦ rc ◦ rb = 0 since 3rd ◦ rc ◦ rb(x) = [x, b, c, d]3 = [[x, b], c, d]3 = 0 by
part (ii). Thus, 2rd ◦ rc ◦ rb = 3rd ◦ rc ◦ rb from which we get rd ◦ rc ◦ rb = 0.

3


