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9. Show that if A is an abelian group with the property that every nonzero quotient of
A is isomorphic to A, then A ' Zp or A ' Zp∞ .

Proof. First consider the case where A is finite. If N 6= 0 is a subgroup of A (so

|N | > 1), then |A/N | = |A|
|N | < |A|. Therefore the condition that every nonzero quotient

of A is isomorphic to A implies that the only subgroups of the finite group A are 0 and
A (so A is simple). Now Cauchy’s Theorem implies that if p is a prime dividing |A|,
then A has an element of order p. As this element generates a subgroup that is not
the trivial subgroup, it must generate all of A. Therefore A ∼= Zp.

Now consider the case where A is infinite. To show that A ∼= Zp∞ , we will show A has
the same properties as Zp∞ : that it has a unique subgroup of order p contained in all
other nonzero subgroups, that it has unique subgroups of order Zpk , and that it is the
union of these subgroups.

First we will show that A has a unique nonzero subgroup that is contained in all
of the nonzero subgroups of A. Let a ∈ A and let N be a subgroup of A that is
maximal such that a /∈ N . Note that N is normal in A since A is abelian, and A/N
is a nonzero quotient of A since a + N ∈ A/N is nonzero. Consider the subgroup
M = 〈a + N〉 ⊂ A/N . This must be a subgroup of every nonzero subgroup of A/N
since otherwise there would be a nonzero subgroup M ′ ⊂ A/N such that a+N 6⊂M ′.
Then by the fourth isomorphism theorem, M ′ corresponds to a subgroup of A strictly
containing N that does not contain a, which contradicts N being maximal with this
property. Therefore M is in every nonzero subgroup of A/N . Now observe that M has
no nontrivial proper subgroups, so M is cyclic since for x ∈ M with x 6= 0, 〈x〉 = M .
Also observe that M must be finite since infinite cyclic groups have nontrivial proper
subgroups. Therefore by the finite case, M ∼= Zp. Since A/N is isomorphic to A and
A/N has a unique subgroup of order p which is in every nonzero subgroup, A must
also have a unique subgroup of order p which is in every nonzero subgroup. Call this
subgroup M1.

We will now show that A has unique subgroups of order Zpk for all finite k. Consider
A/M1. Since this is isomorphic to A, it has a subgroup of order Zq. Then pulling this
subgroup back along the natural map from A to A/M1, we get a subgroup M2 of A
of order Zpq. Since A had a unique minimal subgroup contained in all subgroups, we
must have p = q, so M2

∼= Zp2 . M2 also contains all elements of order p2. Continuing
in this manner, if we consider A/Mk where Mk

∼= Zpk , it has a subgroup of order p, so
pulling it back gives us a subgroup of order Zpk+1 .

Finally, we will show that A is the union of these Mi’s by showing it is torsion and the
union of the Mi’s contains all torsion elements of A. To see that A is torsion, let x ∈ A
and consider 〈x〉. Since M1 ⊂ 〈x〉, mx ∈M1

∼= Zp for some m ∈ Z. Since p annihilates
every element of Zp, pmx = 0, so x had to be torsion. However, any torsion element
has to be in a subgroup of order Zpk for some k, so A is in the union of all subgroups
of order Zpk . Therefore A ∼= Zp∞ .
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