The Group Determinant

What is the determinant of a group multiplication table?

What is the determinant of a group multiplication table?

The multiplication table of a group of size n is an $n \times n$ array, $\left[a_{g, h}\right]$ where $a_{g, h}=g h$.

What is the determinant of a group multiplication table?

The multiplication table of a group of size n is an $n \times n$ array, $\left[a_{g, h}\right]$ where $a_{g, h}=g h$. What is the determinant of this matrix?

What is the determinant of a group multiplication table?

The multiplication table of a group of size n is an $n \times n$ array, $\left[a_{g, h}\right]$ where $a_{g, h}=g h$. What is the determinant of this matrix? This doesn't make sense, since to evaluate a determinant you need to add and multiply values.

What is the determinant of a group multiplication table?

The multiplication table of a group of size n is an $n \times n$ array, $\left[a_{g, h}\right]$ where $a_{g, h}=g h$. What is the determinant of this matrix? This doesn't make sense, since to evaluate a determinant you need to add and multiply values. In 1880, Richard Dedekind asked a version of the question which does make sense.

What is the determinant of a group multiplication table?

The multiplication table of a group of size n is an $n \times n$ array, $\left[a_{g, h}\right]$ where $a_{g, h}=g h$. What is the determinant of this matrix? This doesn't make sense, since to evaluate a determinant you need to add and multiply values. In 1880, Richard Dedekind asked a version of the question which does make sense. Introduce a set of commuting variables $T=\left\{t_{g} \mid g \in G\right\}$, replace all instances of g with indeterminate t_{g} in the operation table of the group, and consider the table $\left[t_{g h}\right]$ to be a matrix over the field $\mathbb{C}(T)$.

What is the determinant of a group multiplication table?

The multiplication table of a group of size n is an $n \times n$ array, $\left[a_{g, h}\right]$ where $a_{g, h}=g h$. What is the determinant of this matrix? This doesn't make sense, since to evaluate a determinant you need to add and multiply values. In 1880, Richard Dedekind asked a version of the question which does make sense. Introduce a set of commuting variables $T=\left\{t_{g} \mid g \in G\right\}$, replace all instances of g with indeterminate t_{g} in the operation table of the group, and consider the table $\left[t_{g h}\right]$ to be a matrix over the field $\mathbb{C}(T)$. Now the determinant is a homogeneous polynomial of degree $|G|$ over \mathbb{C}.

What is the determinant of a group multiplication table?

The multiplication table of a group of size n is an $n \times n$ array, $\left[a_{g, h}\right]$ where $a_{g, h}=g h$. What is the determinant of this matrix? This doesn't make sense, since to evaluate a determinant you need to add and multiply values. In 1880, Richard Dedekind asked a version of the question which does make sense. Introduce a set of commuting variables $T=\left\{t_{g} \mid g \in G\right\}$, replace all instances of g with indeterminate t_{g} in the operation table of the group, and consider the table $\left[t_{g h}\right]$ to be a matrix over the field $\mathbb{C}(T)$. Now the determinant is a homogeneous polynomial of degree $|G|$ over \mathbb{C}.

Example

What is the determinant of a group multiplication table?

The multiplication table of a group of size n is an $n \times n$ array, $\left[a_{g, h}\right]$ where $a_{g, h}=g h$. What is the determinant of this matrix? This doesn't make sense, since to evaluate a determinant you need to add and multiply values. In 1880, Richard Dedekind asked a version of the question which does make sense. Introduce a set of commuting variables $T=\left\{t_{g} \mid g \in G\right\}$, replace all instances of g with indeterminate t_{g} in the operation table of the group, and consider the table $\left[t_{g h}\right]$ to be a matrix over the field $\mathbb{C}(T)$. Now the determinant is a homogeneous polynomial of degree $|G|$ over \mathbb{C}.

Example

What is the determinant of a group multiplication table?

The multiplication table of a group of size n is an $n \times n$ array, $\left[a_{g, h}\right]$ where $a_{g, h}=g h$. What is the determinant of this matrix? This doesn't make sense, since to evaluate a determinant you need to add and multiply values. In 1880, Richard Dedekind asked a version of the question which does make sense. Introduce a set of commuting variables $T=\left\{t_{g} \mid g \in G\right\}$, replace all instances of g with indeterminate t_{g} in the operation table of the group, and consider the table $\left[t_{g h}\right]$ to be a matrix over the field $\mathbb{C}(T)$. Now the determinant is a homogeneous polynomial of degree $|G|$ over \mathbb{C}.

Example

elements of the table with commuting variables, we obtain $\left[\begin{array}{ll}t_{1} & t_{g} \\ t_{g} & t_{1}\end{array}\right]$, whose determinant is $\Theta(G)=t_{1}^{2}-t_{g}^{2}=\left(t_{1}+t_{g}\right)\left(t_{1}-t_{g}\right)$.

A slight modification

A slight modification

Instead of putting the variable $t_{g h}$ in the (g, h)-position of the table, it is better to put $t_{g h^{-1}}$.

A slight modification

Instead of putting the variable $t_{g h}$ in the (g, h)-position of the table, it is better to put $t_{g h^{-1}}$. This alters the situation only by interchanging the g and g^{-1} columns of the group table,

A slight modification

Instead of putting the variable $t_{g h}$ in the (g, h)-position of the table, it is better to put $t_{g h^{-1}}$. This alters the situation only by interchanging the g and g^{-1} columns of the group table, and this column permutation effects the determinant only by a factor of ± 1.

A slight modification

Instead of putting the variable $t_{g h}$ in the (g, h)-position of the table, it is better to put $t_{g h^{-1}}$. This alters the situation only by interchanging the g and g^{-1} columns of the group table, and this column permutation effects the determinant only by a factor of ± 1.

Example

Consider 3-element group $G=\left\{1, g, g^{2}\right\}$.

A slight modification

Instead of putting the variable $t_{g h}$ in the (g, h)-position of the table, it is better to put $t_{g h^{-1}}$. This alters the situation only by interchanging the g and g^{-1} columns of the group table, and this column permutation effects the determinant only by a factor of ± 1.

Example

Consider 3-element group $G=\left\{1, g, g^{2}\right\}$.

A slight modification

Instead of putting the variable $t_{g h}$ in the (g, h)-position of the table, it is better to put $t_{g h^{-1}}$. This alters the situation only by interchanging the g and g^{-1} columns of the group table, and this column permutation effects the determinant only by a factor of ± 1.

Example

Consider 3-element group $G=\left\{1, g, g^{2}\right\}$.

$$
\Theta(G)=\operatorname{det}\left[\begin{array}{ccc}
t_{1} & t_{g^{2}} & t_{g} \\
t_{g} & t_{1} & t_{g^{2}} \\
t_{g^{2}} & t_{g} & t_{1}
\end{array}\right]=t_{1}^{3}+t_{g}^{3}+t_{g^{2}}^{3}-3 t_{1} t_{g} t_{g^{2}}
$$

A slight modification

Instead of putting the variable $t_{g h}$ in the (g, h)-position of the table, it is better to put $t_{g h^{-1}}$. This alters the situation only by interchanging the g and g^{-1} columns of the group table, and this column permutation effects the determinant only by a factor of ± 1.

Example

Consider 3-element group $G=\left\{1, g, g^{2}\right\}$.

$$
\Theta(G)=\operatorname{det}\left[\begin{array}{ccc}
t_{1} & t_{g^{2}} & t_{g} \\
t_{g} & t_{1} & t_{g^{2}} \\
t_{g^{2}} & t_{g} & t_{1}
\end{array}\right]=t_{1}^{3}+t_{g}^{3}+t_{g^{2}}^{3}-3 t_{1} t_{g^{2}} t_{g^{2}}
$$

This factors over \mathbb{R} as $\left(t_{1}+t_{g}+t_{g^{2}}\right)\left(t_{1}^{2}+t_{g}^{2}+t_{g^{2}}^{2}-2\left(t_{1} t_{g}+t_{1} t_{g^{2}}+t_{g} t_{g^{2}}\right)\right)$,

A slight modification

Instead of putting the variable $t_{g h}$ in the (g, h)-position of the table, it is better to put $t_{g h^{-1}}$. This alters the situation only by interchanging the g and g^{-1} columns of the group table, and this column permutation effects the determinant only by a factor of ± 1.

Example

Consider 3-element group $G=\left\{1, g, g^{2}\right\}$.

$$
\Theta(G)=\operatorname{det}\left[\begin{array}{ccc}
t_{1} & t_{g^{2}} & t_{g} \\
t_{g} & t_{1} & t_{g^{2}} \\
t_{g^{2}} & t_{g} & t_{1}
\end{array}\right]=t_{1}^{3}+t_{g}^{3}+t_{g^{2}}^{3}-3 t_{1} t_{g} t_{g^{2}}
$$

This factors over \mathbb{R} as $\left(t_{1}+t_{g}+t_{g^{2}}\right)\left(t_{1}^{2}+t_{g}^{2}+t_{g^{2}}^{2}-2\left(t_{1} t_{g}+t_{1} t_{g^{2}}+t_{g} t_{g^{2}}\right)\right)$, over \mathbb{C} as $\left(t_{1}+t_{g}+t_{g^{2}}\right)\left(t_{1}+\omega t_{g}+\omega^{2} t_{g^{2}}\right)\left(t_{1}+\omega^{2} t_{g}+\omega t_{g^{2}}\right)$ where ω is a primitive cube root of unity.

The groups of order 4

The groups of order 4

Example

If $C_{4}=\left\{1, g, g^{2}, g^{3}\right\}$,

The groups of order 4

Example

If $C_{4}=\left\{1, g, g^{2}, g^{3}\right\}$,

The groups of order 4

Example

If $C_{4}=\left\{1, g, g^{2}, g^{3}\right\}$, then

$$
\begin{aligned}
\Theta\left(C_{4}\right) & =\left(t_{1}^{4}-t_{g}^{4}+t_{g^{2}}^{4}-t_{g^{3}}^{4}\right)-2\left(t_{1}^{2} t_{g^{2}}^{2}-t_{g}^{2} t_{g^{3}}^{2}\right) \\
& +4\left(t_{1} t_{g}^{2} t_{g^{2}}-t_{g} t_{g^{2}}^{2} t_{g^{3}}+t_{g^{2}} t_{g^{3}}^{2} t_{1}-t_{g^{3}}^{2} t_{1}^{2} t_{g}\right) .
\end{aligned}
$$

The groups of order 4

Example

If $C_{4}=\left\{1, g, g^{2}, g^{3}\right\}$, then

$$
\begin{aligned}
\Theta\left(C_{4}\right) & =\left(t_{1}^{4}-t_{g}^{4}+t_{g^{2}}^{4}-t_{g^{3}}^{4}\right)-2\left(t_{1}^{2} t_{g^{2}}^{2}-t_{g}^{2} t_{g^{3}}^{2}\right) \\
& +4\left(t_{1} t_{g}^{2} t_{g^{2}}-t_{g} t_{g^{2}}^{2} t_{g^{3}}+t_{g^{2}} t_{g^{3}}^{2} t_{1}-t_{g^{3}}^{2} t_{1}^{2} t_{g}\right) .
\end{aligned}
$$

If $K=\{1, a, b, c\}$,

The groups of order 4

Example

$$
\text { If } C_{4}=\left\{1, g, g^{2}, g^{3}\right\}, \text { then }
$$

$$
\begin{aligned}
\Theta\left(C_{4}\right) & =\left(t_{1}^{4}-t_{g}^{4}+t_{g^{2}}^{4}-t_{g^{3}}^{4}\right)-2\left(t_{1}^{2} t_{g^{2}}^{2}-t_{g}^{2} t_{g^{3}}^{2}\right) \\
& +4\left(t_{1} t_{g}^{2} t_{g^{2}}-t_{g} t_{g^{2}}^{2} t_{g^{3}}+t_{g^{2}} t_{g^{3}}^{2} t_{1}-t_{g^{3}} t_{1}^{2} t_{g}\right) .
\end{aligned}
$$

If $K=\{1, a, b, c\}$, then

$$
\begin{aligned}
\Theta(K) & =\left(t_{1}^{4}+t_{a}^{4}+t_{b}^{4}+t_{c}^{4}\right) \\
& -2\left(t_{1}^{2} t_{a}^{2}+t_{1}^{2} t_{b}^{2}+t_{1}^{2} t_{c}^{2}+t_{a}^{2} t_{b}^{2}+t_{a}^{2} t_{c}^{2}+t_{b}^{2} t_{c}^{2}\right)+8 t_{1} t_{a} t_{b} t_{c}
\end{aligned}
$$

The groups of order 4

Example

$$
\text { If } C_{4}=\left\{1, g, g^{2}, g^{3}\right\}, \text { then }
$$

$$
\begin{aligned}
\Theta\left(C_{4}\right) & =\left(t_{1}^{4}-t_{g}^{4}+t_{g^{2}}^{4}-t_{g^{3}}^{4}\right)-2\left(t_{1}^{2} t_{g^{2}}^{2}-t_{g}^{2} t_{g^{3}}^{2}\right) \\
& +4\left(t_{1} t_{g}^{2} t_{g^{2}}-t_{g} t_{g^{2}}^{2} t_{g^{3}}+t_{g^{2}} t_{g^{3}}^{2} t_{1}-t_{g^{3}} t_{1}^{2} t_{g}\right) .
\end{aligned}
$$

If $K=\{1, a, b, c\}$, then

$$
\begin{aligned}
\Theta(K) & =\left(t_{1}^{4}+t_{a}^{4}+t_{b}^{4}+t_{c}^{4}\right) \\
& -2\left(t_{1}^{2} t_{a}^{2}+t_{1}^{2} t_{b}^{2}+t_{1}^{2} t_{c}^{2}+t_{a}^{2} t_{b}^{2}+t_{a}^{2} t_{c}^{2}+t_{b}^{2} t_{c}^{2}\right)+8 t_{1} t_{a} t_{b} t_{c}
\end{aligned}
$$

(This is a silly way to prove that $\mathbb{Z}_{4} \not \not \mathbb{Z}_{2} \times \mathbb{Z}_{2}$.)

Characters, I

Characters, I

These factorizations had meaning for Dedekind.

Characters, I

These factorizations had meaning for Dedekind. A character of a finite abelian group G is a homomorphism $\chi: G \rightarrow \mathbb{C}^{\times}$from G to the nonzero complex numbers under multiplication.

Characters, I

These factorizations had meaning for Dedekind. A character of a finite abelian group G is a homomorphism $\chi: G \rightarrow \mathbb{C}^{\times}$from G to the nonzero complex numbers under multiplication. Under pointwise multiplication the collection \widehat{G} of all characters of G is a group isomorphic to G.

Characters, I

These factorizations had meaning for Dedekind. A character of a finite abelian group G is a homomorphism $\chi: G \rightarrow \mathbb{C}^{\times}$from G to the nonzero complex numbers under multiplication. Under pointwise multiplication the collection \widehat{G} of all characters of G is a group isomorphic to G. The character group of $G=\left\langle\left\{1, g, g^{2}\right\} ; *,^{-1}, 1\right\rangle$ is the group $\widehat{G}=\left\langle\left\{\chi_{1}, \chi_{2}, \chi_{3}\right\} ; *^{-1}, 1\right\rangle$ where the function tables for the characters are

Characters, I

These factorizations had meaning for Dedekind. A character of a finite abelian group G is a homomorphism $\chi: G \rightarrow \mathbb{C}^{\times}$from G to the nonzero complex numbers under multiplication. Under pointwise multiplication the collection \widehat{G} of all characters of G is a group isomorphic to G. The character group of $G=\left\langle\left\{1, g, g^{2}\right\} ; *,^{-1}, 1\right\rangle$ is the group $\widehat{G}=\left\langle\left\{\chi_{1}, \chi_{2}, \chi_{3}\right\} ; *^{-1}, 1\right\rangle$ where the function tables for the characters are

	1	g	g^{2}
χ_{1}	1	1	1
χ_{2}	1	ω	ω^{2}
χ_{3}	1	ω^{2}	ω

Characters, II

Characters, II

Using the characters for the three element group G, we can write the factorization of $\Theta(G)$ over \mathbb{C} as
$\left(t_{1}+t_{g}+t_{g^{2}}\right)\left(t_{1}+\omega t_{g}+\omega^{2} t_{g^{2}}\right)\left(t_{1}+\omega^{2} t_{g}+\omega t_{g^{2}}\right)=\prod_{i=1}^{3}\left(\chi_{i}(1) t_{1}+\chi_{i}(g) t_{g}+\chi_{i}\left(g^{2}\right) t_{g^{2}}\right)$.

Characters, II

Using the characters for the three element group G, we can write the factorization of $\Theta(G)$ over \mathbb{C} as

$$
\left(t_{1}+t_{g}+t_{g^{2}}\right)\left(t_{1}+\omega t_{g}+\omega^{2} t_{g^{2}}\right)\left(t_{1}+\omega^{2} t_{g}+\omega t_{g^{2}}\right)=\prod_{i=1}^{3}\left(\chi_{i}(1) t_{1}+\chi_{i}(g) t_{g}+\chi_{i}\left(g^{2}\right) t_{g^{2}}\right) .
$$

This is an instance of a general phenomenon:

Theorem

Let G be a finite abelian group with dual group \widehat{G}. The factorization of the group determinant is $\Theta(G)=\prod_{\chi \in \widehat{G}} P_{\chi}$ where $P_{\chi}=\left(\sum_{g \in G} \chi(g) t_{g}\right)$.

Characters, II

Using the characters for the three element group G, we can write the factorization of $\Theta(G)$ over \mathbb{C} as

$$
\left(t_{1}+t_{g}+t_{g^{2}}\right)\left(t_{1}+\omega t_{g}+\omega^{2} t_{g^{2}}\right)\left(t_{1}+\omega^{2} t_{g}+\omega t_{g^{2}}\right)=\prod_{i=1}^{3}\left(\chi_{i}(1) t_{1}+\chi_{i}(g) t_{g}+\chi_{i}\left(g^{2}\right) t_{g^{2}}\right) .
$$

This is an instance of a general phenomenon:

Theorem

Let G be a finite abelian group with dual group \widehat{G}. The factorization of the group determinant is $\Theta(G)=\prod_{\chi \in \widehat{G}} P_{\chi}$ where $P_{\chi}=\left(\sum_{g \in G} \chi(g) t_{g}\right)$.

Characters, II

Using the characters for the three element group G, we can write the factorization of $\Theta(G)$ over \mathbb{C} as

$$
\left(t_{1}+t_{g}+t_{g^{2}}\right)\left(t_{1}+\omega t_{g}+\omega^{2} t_{g^{2}}\right)\left(t_{1}+\omega^{2} t_{g}+\omega t_{g^{2}}\right)=\prod_{i=1}^{3}\left(\chi_{i}(1) t_{1}+\chi_{i}(g) t_{g}+\chi_{i}\left(g^{2}\right) t_{g^{2}}\right) .
$$

This is an instance of a general phenomenon:

Theorem

Let G be a finite abelian group with dual group \widehat{G}. The factorization of the group determinant is $\Theta(G)=\prod_{\chi \in \widehat{G}} P_{\chi}$ where $P_{\chi}=\left(\sum_{g \in G} \chi(g) t_{g}\right)$. (So, $\Theta(G)$ is a homogeneous polynomial of degree $|G|$, and it factors into $|G|$ homogeneous linear terms.)

Dedekind's Thm is about identifying eigenvalues

Dedekind's Thm is about identifying eigenvalues

The determinant of a matrix is the product of its e-values.

Dedekind's Thm is about identifying eigenvalues

The determinant of a matrix is the product of its e-values. If $G=\left\{g_{1}, g_{2}, \ldots, g_{n}\right\}$ and $\chi: G \rightarrow \mathbb{C}^{\times}$is a homomorphism, then $P_{\chi}=\left(\chi\left(g_{1}\right) t_{g_{1}}+\cdots+\chi\left(g_{n}\right) t_{g_{n}}\right) \in \mathbb{C}\left(\left\{t_{g_{1}}, \ldots, t_{g_{n}}\right\}\right)$ will be an e-value of the "multiplication table" for G.

Dedekind's Thm is about identifying eigenvalues

The determinant of a matrix is the product of its e-values. If $G=\left\{g_{1}, g_{2}, \ldots, g_{n}\right\}$ and $\chi: G \rightarrow \mathbb{C}^{\times}$is a homomorphism, then $P_{\chi}=\left(\chi\left(g_{1}\right) t_{g_{1}}+\cdots+\chi\left(g_{n}\right) t_{g_{n}}\right) \in \mathbb{C}\left(\left\{t_{g_{1}}, \ldots, t_{g_{n}}\right\}\right)$ will be an e-value of the "multiplication table" for G.

Check!

Dedekind's Thm is about identifying eigenvalues

The determinant of a matrix is the product of its e-values. If $G=\left\{g_{1}, g_{2}, \ldots, g_{n}\right\}$ and $\chi: G \rightarrow \mathbb{C}^{\times}$is a homomorphism, then $P_{\chi}=\left(\chi\left(g_{1}\right) t_{g_{1}}+\cdots+\chi\left(g_{n}\right) t_{g_{n}}\right) \in \mathbb{C}\left(\left\{t_{g_{1}}, \ldots, t_{g_{n}}\right\}\right)$ will be an e-value of the "multiplication table" for G.

Check!

$$
\left[\begin{array}{cccc}
t_{g_{1} g_{1}^{-1}} & t_{g_{1} g_{2}^{-1}} & \cdots & t_{g_{1} g_{n}^{-1}} \\
t_{g_{2} g_{1}^{-1}} & t_{g_{2} g_{2}^{-1}} & & t_{g_{2} g_{n}^{-1}} \\
\vdots & & \ddots & \vdots \\
t_{g_{n} g_{1}^{-1}} & t_{g_{n} g_{2}^{-1}} & \cdots & t_{g_{n} g_{n}^{-1}}
\end{array}\right] \cdot\left[\begin{array}{c}
\chi\left(g_{1}^{-1}\right) \\
\chi\left(g_{2}^{-1}\right) \\
\vdots \\
\chi\left(g_{n}^{-1}\right)
\end{array}\right]=P_{\chi} \cdot\left[\begin{array}{c}
\chi\left(g_{1}^{-1}\right) \\
\chi\left(g_{2}^{-1}\right) \\
\vdots \\
\chi\left(g_{n}^{-1}\right)
\end{array}\right]
$$

Nonabelian groups

Nonabelian groups

Example

If $D_{3}=\left\{1, r, r^{2}, f, r f, r^{2} f\right\}$ is the dihedral group, then $\Theta(G)$ is the product of the homogeneous factors $\left(t_{1}+t_{r}+t_{r^{2}}+t_{f}+t_{r f}+t_{r^{2} f}\right)$,
$\left(t_{1}+t_{r}+t_{r^{2}}-t_{f}-t_{r f}-t_{r^{2} f}\right)$, and
$\left(t_{1}^{2}+t_{r}^{2}+t_{r^{2}}^{2}-t_{1} t_{r}-t_{1} t_{r^{2}}-t_{r} t_{r^{2}}-t_{f}^{2}-t_{r f}^{2}-t_{r^{2} f}^{2}+t_{f} t_{r f}+t_{f} t_{r^{2} f}+t_{r f} t_{r^{2} f}\right)^{2}$

Nonabelian groups

Example

If $D_{3}=\left\{1, r, r^{2}, f, r f, r^{2} f\right\}$ is the dihedral group, then $\Theta(G)$ is the product of the homogeneous factors $\left(t_{1}+t_{r}+t_{r^{2}}+t_{f}+t_{r f}+t_{r^{2} f}\right)$,
$\left(t_{1}+t_{r}+t_{r^{2}}-t_{f}-t_{r f}-t_{r^{2} f}\right)$, and
$\left(t_{1}^{2}+t_{r}^{2}+t_{r^{2}}^{2}-t_{1} t_{r}-t_{1} t_{r^{2}}-t_{r} t_{r^{2}}-t_{f}^{2}-t_{r f}^{2}-t_{r^{2} f}^{2}+t_{f} t_{r f}+t_{f} t_{r^{2} f}+t_{r f} t_{r^{2} f}\right)^{2}$

Nonabelian groups

Example

If $D_{3}=\left\{1, r, r^{2}, f, r f, r^{2} f\right\}$ is the dihedral group, then $\Theta(G)$ is the product of the homogeneous factors $\left(t_{1}+t_{r}+t_{r^{2}}+t_{f}+t_{r f}+t_{r^{2} f}\right)$,
$\left(t_{1}+t_{r}+t_{r^{2}}-t_{f}-t_{r f}-t_{r^{2} f}\right)$, and

$$
\left(t_{1}^{2}+t_{r}^{2}+t_{r^{2}}^{2}-t_{1} t_{r}-t_{1} t_{r^{2}}-t_{r} t_{r^{2}}-t_{f}^{2}-t_{r f}^{2}-t_{r^{2} f}^{2}+t_{f} t_{r f}+t_{f} t_{r^{2} f}+t_{r f} t_{r^{2} f}\right)^{2}
$$

The linear factors in this product are derived from homomorphisms $\chi: D_{3} \rightarrow \mathbb{C}^{\times}$just as before, but what does the last squared factor of degree 2 mean?

Nonabelian groups

Example

If $D_{3}=\left\{1, r, r^{2}, f, r f, r^{2} f\right\}$ is the dihedral group, then $\Theta(G)$ is the product of the homogeneous factors $\left(t_{1}+t_{r}+t_{r^{2}}+t_{f}+t_{r f}+t_{r^{2} f}\right)$,
$\left(t_{1}+t_{r}+t_{r^{2}}-t_{f}-t_{r f}-t_{r^{2} f}\right)$, and

$$
\left(t_{1}^{2}+t_{r}^{2}+t_{r^{2}}^{2}-t_{1} t_{r}-t_{1} t_{r^{2}}-t_{r} t_{r^{2}}-t_{f}^{2}-t_{r f}^{2}-t_{r^{2} f}^{2}+t_{f} t_{r f}+t_{f} t_{r^{2} f}+t_{r f} t_{r^{2} f}\right)^{2}
$$

The linear factors in this product are derived from homomorphisms $\chi: D_{3} \rightarrow \mathbb{C}^{\times}$just as before, but what does the last squared factor of degree 2 mean? Dedekind worked on this question on and off from 1880 to 1896 , and finally asked Frobenius (an expert in the theory of determinants) to consider it.

Nonabelian groups

Example

If $D_{3}=\left\{1, r, r^{2}, f, r f, r^{2} f\right\}$ is the dihedral group, then $\Theta(G)$ is the product of the homogeneous factors $\left(t_{1}+t_{r}+t_{r^{2}}+t_{f}+t_{r f}+t_{r^{2} f}\right)$,
$\left(t_{1}+t_{r}+t_{r^{2}}-t_{f}-t_{r f}-t_{r^{2} f}\right)$, and $\left(t_{1}^{2}+t_{r}^{2}+t_{r^{2}}^{2}-t_{1} t_{r}-t_{1} t_{r^{2}}-t_{r} t_{r^{2}}-t_{f}^{2}-t_{r f}^{2}-t_{r^{2} f}^{2}+t_{f} t_{r f}+t_{f} t_{r^{2} f}+t_{r f} t_{r^{2} f}\right)^{2}$

The linear factors in this product are derived from homomorphisms $\chi: D_{3} \rightarrow \mathbb{C}^{\times}$just as before, but what does the last squared factor of degree 2 mean? Dedekind worked on this question on and off from 1880 to 1896 , and finally asked Frobenius (an expert in the theory of determinants) to consider it. Frobenius solved the problem by generalizing Dedekind's definition of a character, and explaining how to compute these generalized characters.

Characters, III

Characters, III

Definition

A character of a finite group G is a function $\chi: G \rightarrow \mathbb{C}$ that can be factored as $G \xrightarrow{\rho} \mathrm{GL}(d, \mathbb{C})=M_{d}(\mathbb{C})^{*} \xrightarrow{\mathrm{tr}} \mathbb{C}$ where ρ is a group homomorphism and $t r$ is the trace map.

Characters, III

Definition

A character of a finite group G is a function $\chi: G \rightarrow \mathbb{C}$ that can be factored as $G \xrightarrow{\rho} \mathrm{GL}(d, \mathbb{C})=M_{d}(\mathbb{C})^{*} \xrightarrow{\mathrm{tr}} \mathbb{C}$ where ρ is a group homomorphism and $t r$ is the trace map.

Characters, III

Definition

A character of a finite group G is a function $\chi: G \rightarrow \mathbb{C}$ that can be factored as $G \xrightarrow{\rho} \mathrm{GL}(d, \mathbb{C})=M_{d}(\mathbb{C})^{*} \xrightarrow{\mathrm{tr}} \mathbb{C}$ where ρ is a group homomorphism and tr is the trace map. Here d is called the degree of χ.

Characters, III

Definition

A character of a finite group G is a function $\chi: G \rightarrow \mathbb{C}$ that can be factored as $G \xrightarrow{\rho} \mathrm{GL}(d, \mathbb{C})=M_{d}(\mathbb{C})^{*} \xrightarrow{\mathrm{tr}} \mathbb{C}$ where ρ is a group homomorphism and tr is the trace map. Here d is called the degree of χ. A character χ is irreducible if the \mathbb{C}-subspace of $M_{d}(\mathbb{C})$ generated by $\rho(G)$ is all of $M_{d}(\mathbb{C})$.

Characters, III

Definition

A character of a finite group G is a function $\chi: G \rightarrow \mathbb{C}$ that can be factored as $G \xrightarrow{\rho} \mathrm{GL}(d, \mathbb{C})=M_{d}(\mathbb{C})^{*} \xrightarrow{\mathrm{tr}} \mathbb{C}$ where ρ is a group homomorphism and tr is the trace map. Here d is called the degree of χ. A character χ is irreducible if the \mathbb{C}-subspace of $M_{d}(\mathbb{C})$ generated by $\rho(G)$ is all of $M_{d}(\mathbb{C})$. The k-character associated to a character χ is the function $\chi^{(k)}: G^{k} \rightarrow \mathbb{C}$ defined inductively by:
(i) $\chi^{(1)}(g):=\chi(g)$, and

Characters, III

Definition

A character of a finite group G is a function $\chi: G \rightarrow \mathbb{C}$ that can be factored as $G \xrightarrow{\rho} \mathrm{GL}(d, \mathbb{C})=M_{d}(\mathbb{C})^{*} \xrightarrow{\mathrm{tr}} \mathbb{C}$ where ρ is a group homomorphism and $t r$ is the trace map. Here d is called the degree of χ. A character χ is irreducible if the \mathbb{C}-subspace of $M_{d}(\mathbb{C})$ generated by $\rho(G)$ is all of $M_{d}(\mathbb{C})$. The k-character associated to a character χ is the function $\chi^{(k)}: G^{k} \rightarrow \mathbb{C}$ defined inductively by:
(i) $\chi^{(1)}(g):=\chi(g)$, and
(ii) $\chi^{(r)}\left(g_{1}, g_{2}, \ldots, g_{r}\right)=\chi\left(g_{1}\right) \chi^{(r-1)}\left(g_{2}, g_{3}, \ldots, g_{r}\right)$
$-\chi^{(r-1)}\left(g_{1} \cdot g_{2}, g_{3}, \ldots, g_{r}\right)-\chi^{(r-1)}\left(g_{2}, g_{1} \cdot g_{3}, \ldots, g_{r}\right)$
$-\cdots-\chi^{(r-1)}\left(g_{2}, g_{3}, \ldots, g_{1} \cdot g_{r}\right)$.

The extension of Dedekind's Theorem

The extension of Dedekind's Theorem

Theorem

Let G be a finite group, and let $\mathcal{X}=\left\{\chi_{1}, \ldots, \chi_{m}\right\}$ be a complete set of irreducible characters of G. Then $|\mathcal{X}|$ equals the class number of G, and the complete factorization of the group determinant is $\Theta(G)=\prod_{\chi \in \mathcal{X}} P_{\chi}$ where $P_{\chi}=\frac{1}{d!}\left(\sum_{\bar{g} \in G^{d}} \chi^{(d)}(\bar{g}) t_{\bar{g}}\right)^{d}$ if the degree of χ is d. Here if $\bar{g}=\left(g_{i_{1}}, g_{i_{2}}, \ldots, g_{i_{d}}\right)$, then $t_{\bar{g}}=t_{g_{i_{1}}} t_{g_{i_{2}}} \cdots t_{g_{i_{d}}}$.

The extension of Dedekind's Theorem

Theorem

Let G be a finite group, and let $\mathcal{X}=\left\{\chi_{1}, \ldots, \chi_{m}\right\}$ be a complete set of irreducible characters of G. Then $|\mathcal{X}|$ equals the class number of G, and the complete factorization of the group determinant is $\Theta(G)=\prod_{\chi \in \mathcal{X}} P_{\chi}$ where $P_{\chi}=\frac{1}{d!}\left(\sum_{\bar{g} \in G^{d}} \chi^{(d)}(\bar{g}) t_{\bar{g}}\right)^{d}$ if the degree of χ is d. Here if $\bar{g}=\left(g_{i_{1}}, g_{i_{2}}, \ldots, g_{i_{d}}\right)$, then $t_{\bar{g}}=t_{g_{i_{1}}} t_{g_{i_{2}}} \cdots t_{g_{i_{d}}}$.

The extension of Dedekind's Theorem

Theorem

Let G be a finite group, and let $\mathcal{X}=\left\{\chi_{1}, \ldots, \chi_{m}\right\}$ be a complete set of irreducible characters of G. Then $|\mathcal{X}|$ equals the class number of G, and the complete factorization of the group determinant is $\Theta(G)=\prod_{\chi \in \mathcal{X}} P_{\chi}$ where $P_{\chi}=\frac{1}{d!}\left(\sum_{\bar{g} \in G^{d}} \chi^{(d)}(\bar{g}) t_{\bar{g}}\right)^{d}$ if the degree of χ is d. Here if $\bar{g}=\left(g_{i_{1}}, g_{i_{2}}, \ldots, g_{i_{d}}\right)$, then $t_{\bar{g}}=t_{g_{i_{1}}} t_{g_{i_{2}}} \cdots t_{g_{i_{d}}}$.

It is clear that G determines both $\Theta(G)$ and the set of k-characters.

The extension of Dedekind's Theorem

Theorem

Let G be a finite group, and let $\mathcal{X}=\left\{\chi_{1}, \ldots, \chi_{m}\right\}$ be a complete set of irreducible characters of G. Then $|\mathcal{X}|$ equals the class number of G, and the complete factorization of the group determinant is $\Theta(G)=\prod_{\chi \in \mathcal{X}} P_{\chi}$ where $P_{\chi}=\frac{1}{d!}\left(\sum_{\bar{g} \in G^{d}} \chi^{(d)}(\bar{g}) t_{\bar{g}}\right)^{d}$ if the degree of χ is d. Here if $\bar{g}=\left(g_{i_{1}}, g_{i_{2}}, \ldots, g_{i_{d}}\right)$, then $t_{\bar{g}}=t_{g_{i_{1}}} t_{g_{i_{2}}} \cdots t_{g_{i_{d}}}$.

It is clear that G determines both $\Theta(G)$ and the set of k-characters. The theorem shows that the k-characters of G determine $\Theta(G)$. It has since been shown (by Formanek and Sibley (1991)) that $\Theta(G)$ determines G up to isomorphism. This was improved (by Hoehnke and Johnson (1992)) to show that the 1-, 2-, and 3-characters of G determine G up to isomorphism.

