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Now consider the class G of all groups. Call k “cyclic” if Specg (k) = 1, i.e. if
the only isotype of group of cardinality £ is the isotype of the cyclic group Zy.

Since G O A, any cyclic number is square-free, but square-freeness is not
enough (think about k = 2 - 3).

Say that primes p and ¢q are “related” if p divides ¢ — 1 or ¢ divides p — 1.

A number n is cyclic iff n = py - - - p, is square free, and no two primes in its
factorization are related.
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