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The spectrum of a class of structures

The spectrum of a class K of structures is the function SpecK(κ) = number of
isotypes of structures in K of size κ.

If A is the class of abelian groups, then SpecA(κ) = 2κ for infinite κ, which
is “the largest it could be”. For finite k, we can compute SpecA(k) using the
structure theorem for finite abelian groups. If k = pe1

1 · · · per
r , then

SpecA(k) = p(e1) · · · p(er) where p(x) is the partition function of number
theory.
Observe that the smallest value of the function SpecA(k) is SpecA(k) = 1,
and this happens iff p(e1) = · · · = p(er) = 1 iff e1 = · · · er = 1 iff k is square
free.

SpecA(k) = 1 exactly when the only isotype of abelian group of cardinality k
is the isotype of the cyclic group Zk. This happens iff k is square-free.
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Cyclic numbers

Now consider the class G of all groups. Call k “cyclic” if SpecG(k) = 1, i.e. if
the only isotype of group of cardinality k is the isotype of the cyclic group Zk.

Since G ⊇ A, any cyclic number is square-free, but square-freeness is not
enough (think about k = 2 · 3).

Say that primes p and q are “related” if p divides q− 1 or q divides p− 1.

Theorem
A number n is cyclic iff n = p1 · · · pr is square free, and no two primes in its
factorization are related.
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Proof of the theorem

(Only if:)
Since G ⊇ A, any cyclic number is square-free. To see the necessity of the “no
relations” condition, assume instead that k = p1p2 · · · pr and p1 divides p2 − 1. There
will exist a nontrivial action α : Zp1 → Aut(Zp2) by automorphisms of Zp1 on Zp2 ,
hence a nonabelian semidirect product Zp2 o Zp1 . Hence there is a nonabelian group
(Zp2 o Zp1)× Zp3···pr of cardinality k.

(If:)
Suppose that |G| = p1 · · · pr, where no two primes are related.
G must have cyclic Sylow subgroups, so G ∼= Zm o Zn where gcd(m, n) = 1. Order
the prime factors of |G| so that m = p1 · · · pi and n = pi+1 · · · pr. The structure of this
semidirect product is determined by a homomorphism

β : Zn → Aut(Zm) ∼= Z×
m .

The domain of β has cardinality n = pi+1 · · · pr while the codomain has cardinality
φ(m) = (p1 − 1) · · · (pi − 1). Since the primes are unrelated, gcd(φ(m), n) = 1, so
Lagrange’s Theorem forces β to be constant, so G ∼= Zm o Zn ∼= Zm × Zn ∼= Zmn. 2
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Proof of the theorem

(Only if:)
Since G ⊇ A, any cyclic number is square-free. To see the necessity of the “no
relations” condition, assume instead that k = p1p2 · · · pr and p1 divides p2 − 1. There
will exist a nontrivial action α : Zp1 → Aut(Zp2) by automorphisms of Zp1 on Zp2 ,
hence a nonabelian semidirect product Zp2 o Zp1 . Hence there is a nonabelian group
(Zp2 o Zp1)× Zp3···pr of cardinality k.

(If:)
Suppose that |G| = p1 · · · pr, where no two primes are related.
G must have cyclic Sylow subgroups, so G ∼= Zm o Zn where gcd(m, n) = 1. Order
the prime factors of |G| so that m = p1 · · · pi and n = pi+1 · · · pr. The structure of this
semidirect product is determined by a homomorphism

β : Zn → Aut(Zm) ∼= Z×
m .

The domain of β has cardinality n = pi+1 · · · pr while the codomain has cardinality
φ(m) = (p1 − 1) · · · (pi − 1). Since the primes are unrelated, gcd(φ(m), n) = 1, so
Lagrange’s Theorem forces β to be constant, so G ∼= Zm o Zn ∼= Zm × Zn ∼= Zmn. 2
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