The spectrum of a class \mathcal{K} of structures is the function $\text{Spec}_{\mathcal{K}}(\kappa) = \text{number of}$ isotypes of structures in \mathcal{K} of size κ .

The spectrum of a class \mathcal{K} of structures is the function $\text{Spec}_{\mathcal{K}}(\kappa) = \text{number of isotypes of structures in } \mathcal{K}$ of size κ .

If \mathcal{A} is the class of abelian groups, then $\text{Spec}_{\mathcal{A}}(\kappa) = 2^{\kappa}$ for infinite κ , which is "the largest it could be".

The spectrum of a class \mathcal{K} of structures is the function $\text{Spec}_{\mathcal{K}}(\kappa) = \text{number of isotypes of structures in } \mathcal{K}$ of size κ .

If \mathcal{A} is the class of abelian groups, then $\operatorname{Spec}_{\mathcal{A}}(\kappa) = 2^{\kappa}$ for infinite κ , which is "the largest it could be". For finite k, we can compute $\operatorname{Spec}_{\mathcal{A}}(k)$ using the structure theorem for finite abelian groups.

The spectrum of a class \mathcal{K} of structures is the function $\text{Spec}_{\mathcal{K}}(\kappa) = \text{number of isotypes of structures in } \mathcal{K}$ of size κ .

If \mathcal{A} is the class of abelian groups, then $\operatorname{Spec}_{\mathcal{A}}(\kappa) = 2^{\kappa}$ for infinite κ , which is "the largest it could be". For finite k, we can compute $\operatorname{Spec}_{\mathcal{A}}(k)$ using the structure theorem for finite abelian groups. If $k = p_1^{e_1} \cdots p_r^{e_r}$, then $\operatorname{Spec}_{\mathcal{A}}(k) = p(e_1) \cdots p(e_r)$ where p(x) is the partition function of number theory.

The spectrum of a class \mathcal{K} of structures is the function $\text{Spec}_{\mathcal{K}}(\kappa) = \text{number of isotypes of structures in } \mathcal{K}$ of size κ .

If \mathcal{A} is the class of abelian groups, then $\operatorname{Spec}_{\mathcal{A}}(\kappa) = 2^{\kappa}$ for infinite κ , which is "the largest it could be". For finite k, we can compute $\operatorname{Spec}_{\mathcal{A}}(k)$ using the structure theorem for finite abelian groups. If $k = p_1^{e_1} \cdots p_r^{e_r}$, then $\operatorname{Spec}_{\mathcal{A}}(k) = p(e_1) \cdots p(e_r)$ where p(x) is the partition function of number theory.

Observe that the smallest value of the function $\text{Spec}_{\mathcal{A}}(k)$ is $\text{Spec}_{\mathcal{A}}(k) = 1$, and this happens iff $p(e_1) = \cdots = p(e_r) = 1$

The spectrum of a class \mathcal{K} of structures is the function $\text{Spec}_{\mathcal{K}}(\kappa) = \text{number of isotypes of structures in } \mathcal{K}$ of size κ .

If \mathcal{A} is the class of abelian groups, then $\operatorname{Spec}_{\mathcal{A}}(\kappa) = 2^{\kappa}$ for infinite κ , which is "the largest it could be". For finite k, we can compute $\operatorname{Spec}_{\mathcal{A}}(k)$ using the structure theorem for finite abelian groups. If $k = p_1^{e_1} \cdots p_r^{e_r}$, then $\operatorname{Spec}_{\mathcal{A}}(k) = p(e_1) \cdots p(e_r)$ where p(x) is the partition function of number theory.

Observe that the smallest value of the function $\text{Spec}_{\mathcal{A}}(k)$ is $\text{Spec}_{\mathcal{A}}(k) = 1$, and this happens iff $p(e_1) = \cdots = p(e_r) = 1$ iff $e_1 = \cdots e_r = 1$

The spectrum of a class \mathcal{K} of structures is the function $\text{Spec}_{\mathcal{K}}(\kappa) = \text{number of isotypes of structures in } \mathcal{K}$ of size κ .

If \mathcal{A} is the class of abelian groups, then $\operatorname{Spec}_{\mathcal{A}}(\kappa) = 2^{\kappa}$ for infinite κ , which is "the largest it could be". For finite k, we can compute $\operatorname{Spec}_{\mathcal{A}}(k)$ using the structure theorem for finite abelian groups. If $k = p_1^{e_1} \cdots p_r^{e_r}$, then $\operatorname{Spec}_{\mathcal{A}}(k) = p(e_1) \cdots p(e_r)$ where p(x) is the partition function of number theory.

Observe that the smallest value of the function $\text{Spec}_{\mathcal{A}}(k)$ is $\text{Spec}_{\mathcal{A}}(k) = 1$, and this happens iff $p(e_1) = \cdots = p(e_r) = 1$ iff $e_1 = \cdots = e_r = 1$ iff k is square free.

The spectrum of a class \mathcal{K} of structures is the function $\text{Spec}_{\mathcal{K}}(\kappa) = \text{number of isotypes of structures in } \mathcal{K}$ of size κ .

If \mathcal{A} is the class of abelian groups, then $\operatorname{Spec}_{\mathcal{A}}(\kappa) = 2^{\kappa}$ for infinite κ , which is "the largest it could be". For finite k, we can compute $\operatorname{Spec}_{\mathcal{A}}(k)$ using the structure theorem for finite abelian groups. If $k = p_1^{e_1} \cdots p_r^{e_r}$, then $\operatorname{Spec}_{\mathcal{A}}(k) = p(e_1) \cdots p(e_r)$ where p(x) is the partition function of number theory.

Observe that the smallest value of the function $\text{Spec}_{\mathcal{A}}(k)$ is $\text{Spec}_{\mathcal{A}}(k) = 1$, and this happens iff $p(e_1) = \cdots = p(e_r) = 1$ iff $e_1 = \cdots = e_r = 1$ iff k is square free.

 $\text{Spec}_{\mathcal{A}}(k) = 1$ exactly when the only isotype of abelian group of cardinality *k* is the isotype of the cyclic group \mathbb{Z}_k .

The spectrum of a class \mathcal{K} of structures is the function $\text{Spec}_{\mathcal{K}}(\kappa) = \text{number of isotypes of structures in } \mathcal{K}$ of size κ .

If \mathcal{A} is the class of abelian groups, then $\operatorname{Spec}_{\mathcal{A}}(\kappa) = 2^{\kappa}$ for infinite κ , which is "the largest it could be". For finite k, we can compute $\operatorname{Spec}_{\mathcal{A}}(k)$ using the structure theorem for finite abelian groups. If $k = p_1^{e_1} \cdots p_r^{e_r}$, then $\operatorname{Spec}_{\mathcal{A}}(k) = p(e_1) \cdots p(e_r)$ where p(x) is the partition function of number theory.

Observe that the smallest value of the function $\text{Spec}_{\mathcal{A}}(k)$ is $\text{Spec}_{\mathcal{A}}(k) = 1$, and this happens iff $p(e_1) = \cdots = p(e_r) = 1$ iff $e_1 = \cdots = e_r = 1$ iff k is square free.

 $\text{Spec}_{\mathcal{A}}(k) = 1$ exactly when the only isotype of abelian group of cardinality k is the isotype of the cyclic group \mathbb{Z}_k . This happens iff k is square-free.

Now consider the class \mathcal{G} of all groups. Call *k* "cyclic" if $\text{Spec}_{\mathcal{G}}(k) = 1$, i.e. if the only isotype of group of cardinality *k* is the isotype of the cyclic group \mathbb{Z}_k .

Now consider the class \mathcal{G} of all groups. Call *k* "cyclic" if $\text{Spec}_{\mathcal{G}}(k) = 1$, i.e. if the only isotype of group of cardinality *k* is the isotype of the cyclic group \mathbb{Z}_k .

Since $\mathcal{G} \supseteq \mathcal{A}$, any cyclic number is square-free, but square-freeness is not enough (think about $k = 2 \cdot 3$).

Now consider the class \mathcal{G} of all groups. Call *k* "cyclic" if $\text{Spec}_{\mathcal{G}}(k) = 1$, i.e. if the only isotype of group of cardinality *k* is the isotype of the cyclic group \mathbb{Z}_k .

Since $\mathcal{G} \supseteq \mathcal{A}$, any cyclic number is square-free, but square-freeness is not enough (think about $k = 2 \cdot 3$).

Say that primes p and q are "related" if p divides q - 1 or q divides p - 1.

Now consider the class \mathcal{G} of all groups. Call *k* "cyclic" if $\text{Spec}_{\mathcal{G}}(k) = 1$, i.e. if the only isotype of group of cardinality *k* is the isotype of the cyclic group \mathbb{Z}_k .

Since $\mathcal{G} \supseteq \mathcal{A}$, any cyclic number is square-free, but square-freeness is not enough (think about $k = 2 \cdot 3$).

Say that primes p and q are "related" if p divides q - 1 or q divides p - 1.

Theorem

A number *n* is cyclic iff $n = p_1 \cdots p_r$ is square free, and no two primes in its factorization are related.

(Only if:)

(Only if:) Since $\mathcal{G} \supseteq \mathcal{A}$, any cyclic number is square-free.

(Only if:)

Since $\mathcal{G} \supseteq \mathcal{A}$, any cyclic number is square-free. To see the necessity of the "no relations" condition, assume instead that $k = p_1 p_2 \cdots p_r$ and p_1 divides $p_2 - 1$. There will exist a nontrivial action $\alpha \colon \mathbb{Z}_{p_1} \to \operatorname{Aut}(\mathbb{Z}_{p_2})$ by automorphisms of \mathbb{Z}_{p_1} on \mathbb{Z}_{p_2} , hence a nonabelian semidirect product $\mathbb{Z}_{p_2} \rtimes \mathbb{Z}_{p_1}$.

(Only if:)

Since $\mathcal{G} \supseteq \mathcal{A}$, any cyclic number is square-free. To see the necessity of the "no relations" condition, assume instead that $k = p_1 p_2 \cdots p_r$ and p_1 divides $p_2 - 1$. There will exist a nontrivial action $\alpha \colon \mathbb{Z}_{p_1} \to \operatorname{Aut}(\mathbb{Z}_{p_2})$ by automorphisms of \mathbb{Z}_{p_1} on \mathbb{Z}_{p_2} , hence a nonabelian semidirect product $\mathbb{Z}_{p_2} \rtimes \mathbb{Z}_{p_1}$. Hence there is a nonabelian group $(\mathbb{Z}_{p_2} \rtimes \mathbb{Z}_{p_1}) \times \mathbb{Z}_{p_3 \cdots p_r}$ of cardinality k.

(Only if:)

Since $\mathcal{G} \supseteq \mathcal{A}$, any cyclic number is square-free. To see the necessity of the "no relations" condition, assume instead that $k = p_1 p_2 \cdots p_r$ and p_1 divides $p_2 - 1$. There will exist a nontrivial action $\alpha \colon \mathbb{Z}_{p_1} \to \operatorname{Aut}(\mathbb{Z}_{p_2})$ by automorphisms of \mathbb{Z}_{p_1} on \mathbb{Z}_{p_2} , hence a nonabelian semidirect product $\mathbb{Z}_{p_2} \rtimes \mathbb{Z}_{p_1}$. Hence there is a nonabelian group $(\mathbb{Z}_{p_2} \rtimes \mathbb{Z}_{p_1}) \times \mathbb{Z}_{p_3 \cdots p_r}$ of cardinality k.

(If:)

(Only if:)

Since $\mathcal{G} \supseteq \mathcal{A}$, any cyclic number is square-free. To see the necessity of the "no relations" condition, assume instead that $k = p_1 p_2 \cdots p_r$ and p_1 divides $p_2 - 1$. There will exist a nontrivial action $\alpha : \mathbb{Z}_{p_1} \to \operatorname{Aut}(\mathbb{Z}_{p_2})$ by automorphisms of \mathbb{Z}_{p_1} on \mathbb{Z}_{p_2} , hence a nonabelian semidirect product $\mathbb{Z}_{p_2} \rtimes \mathbb{Z}_{p_1}$. Hence there is a nonabelian group $(\mathbb{Z}_{p_2} \rtimes \mathbb{Z}_{p_1}) \times \mathbb{Z}_{p_3 \cdots p_r}$ of cardinality k.

(If:) Suppose that $|G| = p_1 \cdots p_r$, where no two primes are related.

(Only if:)

Since $\mathcal{G} \supseteq \mathcal{A}$, any cyclic number is square-free. To see the necessity of the "no relations" condition, assume instead that $k = p_1 p_2 \cdots p_r$ and p_1 divides $p_2 - 1$. There will exist a nontrivial action $\alpha \colon \mathbb{Z}_{p_1} \to \operatorname{Aut}(\mathbb{Z}_{p_2})$ by automorphisms of \mathbb{Z}_{p_1} on \mathbb{Z}_{p_2} , hence a nonabelian semidirect product $\mathbb{Z}_{p_2} \rtimes \mathbb{Z}_{p_1}$. Hence there is a nonabelian group $(\mathbb{Z}_{p_2} \rtimes \mathbb{Z}_{p_1}) \times \mathbb{Z}_{p_3 \cdots p_r}$ of cardinality k.

(If:)

Suppose that $|G| = p_1 \cdots p_r$, where no two primes are related. *G* must have cyclic Sylow subgroups, so $G \cong \mathbb{Z}_m \rtimes \mathbb{Z}_n$ where gcd(m, n) = 1.

(Only if:)

Since $\mathcal{G} \supseteq \mathcal{A}$, any cyclic number is square-free. To see the necessity of the "no relations" condition, assume instead that $k = p_1 p_2 \cdots p_r$ and p_1 divides $p_2 - 1$. There will exist a nontrivial action $\alpha \colon \mathbb{Z}_{p_1} \to \operatorname{Aut}(\mathbb{Z}_{p_2})$ by automorphisms of \mathbb{Z}_{p_1} on \mathbb{Z}_{p_2} , hence a nonabelian semidirect product $\mathbb{Z}_{p_2} \rtimes \mathbb{Z}_{p_1}$. Hence there is a nonabelian group $(\mathbb{Z}_{p_2} \rtimes \mathbb{Z}_{p_1}) \times \mathbb{Z}_{p_3 \cdots p_r}$ of cardinality k.

(If:)

Suppose that $|G| = p_1 \cdots p_r$, where no two primes are related. *G* must have cyclic Sylow subgroups, so $G \cong \mathbb{Z}_m \rtimes \mathbb{Z}_n$ where gcd(m, n) = 1. Order the prime factors of |G| so that $m = p_1 \cdots p_i$ and $n = p_{i+1} \cdots p_r$.

(Only if:)

Since $\mathcal{G} \supseteq \mathcal{A}$, any cyclic number is square-free. To see the necessity of the "no relations" condition, assume instead that $k = p_1 p_2 \cdots p_r$ and p_1 divides $p_2 - 1$. There will exist a nontrivial action $\alpha \colon \mathbb{Z}_{p_1} \to \operatorname{Aut}(\mathbb{Z}_{p_2})$ by automorphisms of \mathbb{Z}_{p_1} on \mathbb{Z}_{p_2} , hence a nonabelian semidirect product $\mathbb{Z}_{p_2} \rtimes \mathbb{Z}_{p_1}$. Hence there is a nonabelian group $(\mathbb{Z}_{p_2} \rtimes \mathbb{Z}_{p_1}) \times \mathbb{Z}_{p_3 \cdots p_r}$ of cardinality k.

(If:)

Suppose that $|G| = p_1 \cdots p_r$, where no two primes are related. *G* must have cyclic Sylow subgroups, so $G \cong \mathbb{Z}_m \rtimes \mathbb{Z}_n$ where gcd(m, n) = 1. Order the prime factors of |G| so that $m = p_1 \cdots p_i$ and $n = p_{i+1} \cdots p_r$. The structure of this semidirect product is determined by a homomorphism

$$\beta\colon \mathbb{Z}_n\to \operatorname{Aut}(\mathbb{Z}_m)\cong \mathbb{Z}_m^{\times}.$$

The domain of β has cardinality $n = p_{i+1} \cdots p_r$ while the codomain has cardinality $\phi(m) = (p_1 - 1) \cdots (p_i - 1)$.

(Only if:)

Since $\mathcal{G} \supseteq \mathcal{A}$, any cyclic number is square-free. To see the necessity of the "no relations" condition, assume instead that $k = p_1 p_2 \cdots p_r$ and p_1 divides $p_2 - 1$. There will exist a nontrivial action $\alpha \colon \mathbb{Z}_{p_1} \to \operatorname{Aut}(\mathbb{Z}_{p_2})$ by automorphisms of \mathbb{Z}_{p_1} on \mathbb{Z}_{p_2} , hence a nonabelian semidirect product $\mathbb{Z}_{p_2} \rtimes \mathbb{Z}_{p_1}$. Hence there is a nonabelian group $(\mathbb{Z}_{p_2} \rtimes \mathbb{Z}_{p_1}) \times \mathbb{Z}_{p_3 \cdots p_r}$ of cardinality k.

(If:)

Suppose that $|G| = p_1 \cdots p_r$, where no two primes are related. *G* must have cyclic Sylow subgroups, so $G \cong \mathbb{Z}_m \rtimes \mathbb{Z}_n$ where gcd(m, n) = 1. Order the prime factors of |G| so that $m = p_1 \cdots p_i$ and $n = p_{i+1} \cdots p_r$. The structure of this semidirect product is determined by a homomorphism

$$\beta\colon \mathbb{Z}_n\to \operatorname{Aut}(\mathbb{Z}_m)\cong \mathbb{Z}_m^{\times}.$$

The domain of β has cardinality $n = p_{i+1} \cdots p_r$ while the codomain has cardinality $\phi(m) = (p_1 - 1) \cdots (p_i - 1)$. Since the primes are unrelated,

(Only if:)

Since $\mathcal{G} \supseteq \mathcal{A}$, any cyclic number is square-free. To see the necessity of the "no relations" condition, assume instead that $k = p_1 p_2 \cdots p_r$ and p_1 divides $p_2 - 1$. There will exist a nontrivial action $\alpha \colon \mathbb{Z}_{p_1} \to \operatorname{Aut}(\mathbb{Z}_{p_2})$ by automorphisms of \mathbb{Z}_{p_1} on \mathbb{Z}_{p_2} , hence a nonabelian semidirect product $\mathbb{Z}_{p_2} \rtimes \mathbb{Z}_{p_1}$. Hence there is a nonabelian group $(\mathbb{Z}_{p_2} \rtimes \mathbb{Z}_{p_1}) \times \mathbb{Z}_{p_3 \cdots p_r}$ of cardinality k.

(If:)

Suppose that $|G| = p_1 \cdots p_r$, where no two primes are related. *G* must have cyclic Sylow subgroups, so $G \cong \mathbb{Z}_m \rtimes \mathbb{Z}_n$ where gcd(m, n) = 1. Order the prime factors of |G| so that $m = p_1 \cdots p_i$ and $n = p_{i+1} \cdots p_r$. The structure of this semidirect product is determined by a homomorphism

$$\beta\colon \mathbb{Z}_n\to \operatorname{Aut}(\mathbb{Z}_m)\cong \mathbb{Z}_m^{\times}.$$

The domain of β has cardinality $n = p_{i+1} \cdots p_r$ while the codomain has cardinality $\phi(m) = (p_1 - 1) \cdots (p_i - 1)$. Since the primes are unrelated, $gcd(\phi(m), n) = 1$, so Lagrange's Theorem forces β to be constant,

(Only if:)

Since $\mathcal{G} \supseteq \mathcal{A}$, any cyclic number is square-free. To see the necessity of the "no relations" condition, assume instead that $k = p_1 p_2 \cdots p_r$ and p_1 divides $p_2 - 1$. There will exist a nontrivial action $\alpha \colon \mathbb{Z}_{p_1} \to \operatorname{Aut}(\mathbb{Z}_{p_2})$ by automorphisms of \mathbb{Z}_{p_1} on \mathbb{Z}_{p_2} , hence a nonabelian semidirect product $\mathbb{Z}_{p_2} \rtimes \mathbb{Z}_{p_1}$. Hence there is a nonabelian group $(\mathbb{Z}_{p_2} \rtimes \mathbb{Z}_{p_1}) \times \mathbb{Z}_{p_3 \cdots p_r}$ of cardinality k.

(If:)

Suppose that $|G| = p_1 \cdots p_r$, where no two primes are related. *G* must have cyclic Sylow subgroups, so $G \cong \mathbb{Z}_m \rtimes \mathbb{Z}_n$ where gcd(m, n) = 1. Order the prime factors of |G| so that $m = p_1 \cdots p_i$ and $n = p_{i+1} \cdots p_r$. The structure of this semidirect product is determined by a homomorphism

$$\beta\colon \mathbb{Z}_n\to \operatorname{Aut}(\mathbb{Z}_m)\cong \mathbb{Z}_m^{\times}.$$

The domain of β has cardinality $n = p_{i+1} \cdots p_r$ while the codomain has cardinality $\phi(m) = (p_1 - 1) \cdots (p_i - 1)$. Since the primes are unrelated, $gcd(\phi(m), n) = 1$, so Lagrange's Theorem forces β to be constant, so $G \cong \mathbb{Z}_m \rtimes \mathbb{Z}_n \cong \mathbb{Z}_m \times \mathbb{Z}_n \cong \mathbb{Z}_{mn}$.

(Only if:)

Since $\mathcal{G} \supseteq \mathcal{A}$, any cyclic number is square-free. To see the necessity of the "no relations" condition, assume instead that $k = p_1 p_2 \cdots p_r$ and p_1 divides $p_2 - 1$. There will exist a nontrivial action $\alpha \colon \mathbb{Z}_{p_1} \to \operatorname{Aut}(\mathbb{Z}_{p_2})$ by automorphisms of \mathbb{Z}_{p_1} on \mathbb{Z}_{p_2} , hence a nonabelian semidirect product $\mathbb{Z}_{p_2} \rtimes \mathbb{Z}_{p_1}$. Hence there is a nonabelian group $(\mathbb{Z}_{p_2} \rtimes \mathbb{Z}_{p_1}) \times \mathbb{Z}_{p_3 \cdots p_r}$ of cardinality k.

(If:)

Suppose that $|G| = p_1 \cdots p_r$, where no two primes are related. *G* must have cyclic Sylow subgroups, so $G \cong \mathbb{Z}_m \rtimes \mathbb{Z}_n$ where gcd(m, n) = 1. Order the prime factors of |G| so that $m = p_1 \cdots p_i$ and $n = p_{i+1} \cdots p_r$. The structure of this semidirect product is determined by a homomorphism

$$\beta\colon \mathbb{Z}_n\to \operatorname{Aut}(\mathbb{Z}_m)\cong \mathbb{Z}_m^{\times}.$$

The domain of β has cardinality $n = p_{i+1} \cdots p_r$ while the codomain has cardinality $\phi(m) = (p_1 - 1) \cdots (p_i - 1)$. Since the primes are unrelated, $gcd(\phi(m), n) = 1$, so Lagrange's Theorem forces β to be constant, so $G \cong \mathbb{Z}_m \rtimes \mathbb{Z}_n \cong \mathbb{Z}_m \times \mathbb{Z}_n \cong \mathbb{Z}_{mn}$. \Box