Examples, Properties, Applications

	1	k_2	• • •	k _r
G	1	<i>B</i> 2	• • •	g _r
χ_1	1	1	• • •	1
χ_2	d_2	$\chi_2(g_2)$	• • •	$\chi_2(g_r)$
:	÷	:	·	÷
χ_r	d_r	$\chi_r(g_2)$	• • •	$\chi_r(g_r)$

Each d_i divides $|G| = 1^2 + d_2^2 + \dots + d_r^2$ Each k_j divides $|G| = 1 + k_2 + \dots + k_r$

	1	1	1
\mathbb{Z}_3	0	1	2
χ_1	1	1	1
χ2	1	ω	ω^2
χ^2_2	1	ω^2	ω

	1	1	1
\mathbb{Z}_3	0	1	2
χ_1	1	1	1
χ_2	1	ω	ω^2
χ^2_2	1	ω^2	ω

	1	1	1	1
\mathbb{Z}_4	0	1	2	3
χ_1	1	1	1	1
χ_2	1	i	-1	-i
χ^2_2	1	-1	1	-1
χ^3_2	1	-i	-1	i

	1	1	1
\mathbb{Z}_3	0	1	2
χ_1	1	1	1
χ_2	1	ω	ω^2
χ^2_2	1	ω^2	ω

	1	1	1	1
\mathbb{Z}_4	0	1	2	3
χ_1	1	1	1	1
χ_2	1	i	-1	-i
χ^2_2	1	-1	1	-1
χ^3_2	1	-i	-1	i

	1	1	1	1
$\mathbb{Z}_2 \times \mathbb{Z}_2$	(0,0)	(0,1)	(1, 0)	(1, 1)
$\xi_1(x)\xi_1(y)$	1	1	1	1
$\xi_2(x)\xi_1(y)$	1	1	-1	-1
$\xi_1(x)\xi_2(y)$	1	-1	1	-1
$\xi_2(x)\xi_2(y)$	1	-1	-1	1

Let *G* be a nonabelian group of order 8. Necessarily $G/Z(G) \cong \mathbb{Z}_2 \times \mathbb{Z}_2$, so inflation gives us partial information about the character table.

Let *G* be a nonabelian group of order 8. Necessarily $G/Z(G) \cong \mathbb{Z}_2 \times \mathbb{Z}_2$, so inflation gives us partial information about the character table.

	1	1	2	2	2
G	1	<i>g</i> ₂	<i>g</i> ₃	<i>8</i> 4	g 5
χ_1	1	1	1	1	1
χ_2	1	1	1	-1	-1
<i>χ</i> 3	1	1	-1	1	-1
χ_4	1	1	-1	-1	1
χ_5	?	?	?	?	?

Let *G* be a nonabelian group of order 8. Necessarily $G/Z(G) \cong \mathbb{Z}_2 \times \mathbb{Z}_2$, so inflation gives us partial information about the character table.

	1	1	2	2	2
G	1	<i>g</i> ₂	<i>g</i> ₃	<i>g</i> 4	g 5
χ_1	1	1	1	1	1
χ_2	1	1	1	-1	-1
<i>χ</i> 3	1	1	-1	1	-1
χ_4	1	1	-1	-1	1
χ_5	?	?	?	?	?

The entries in the last row can be determined by:

Let *G* be a nonabelian group of order 8. Necessarily $G/Z(G) \cong \mathbb{Z}_2 \times \mathbb{Z}_2$, so inflation gives us partial information about the character table.

	1	1	2	2	2
G	1	<i>g</i> ₂	<i>g</i> ₃	<i>8</i> 4	g 5
χ_1	1	1	1	1	1
χ_2	1	1	1	-1	-1
<i>χ</i> 3	1	1	-1	1	-1
χ_4	1	1	-1	-1	1
χ_5	?	?	?	?	?

The entries in the last row can be determined by: (i) finding the missing irrep,

Let *G* be a nonabelian group of order 8. Necessarily $G/Z(G) \cong \mathbb{Z}_2 \times \mathbb{Z}_2$, so inflation gives us partial information about the character table.

	1	1	2	2	2
G	1	<i>g</i> ₂	<i>g</i> ₃	<i>8</i> 4	g 5
χ_1	1	1	1	1	1
χ_2	1	1	1	-1	-1
X3	1	1	-1	1	-1
<i>X</i> 4	1	1	-1	-1	1
X5	?	?	?	?	?

The entries in the last row can be determined by: (i) finding the missing irrep, (ii) column orthogonality,

Let *G* be a nonabelian group of order 8. Necessarily $G/Z(G) \cong \mathbb{Z}_2 \times \mathbb{Z}_2$, so inflation gives us partial information about the character table.

	1	1	2	2	2
G	1	<i>g</i> ₂	<i>g</i> ₃	<i>8</i> 4	<i>8</i> 5
χ_1	1	1	1	1	1
χ_2	1	1	1	-1	-1
<i>χ</i> 3	1	1	-1	1	-1
χ_4	1	1	-1	-1	1
χ_5	?	?	?	?	?

The entries in the last row can be determined by:

(i) finding the missing irrep, (ii) column orthogonality, (iii) row orthogonality,

Let *G* be a nonabelian group of order 8. Necessarily $G/Z(G) \cong \mathbb{Z}_2 \times \mathbb{Z}_2$, so inflation gives us partial information about the character table.

The entries in the last row can be determined by:

(i) finding the missing irrep, (ii) column orthogonality, (iii) row orthogonality, (iv) $\sum_i d_i \chi_i(h) = \chi_{\text{reg}}(h)$,

Let *G* be a nonabelian group of order 8. Necessarily $G/Z(G) \cong \mathbb{Z}_2 \times \mathbb{Z}_2$, so inflation gives us partial information about the character table.

The entries in the last row can be determined by:

(i) finding the missing irrep, (ii) column orthogonality, (iii) row orthogonality, (iv) $\sum_i d_i \chi_i(h) = \chi_{\text{reg}}(h)$, ETC.

The table for either of $D_4(D_8)$ or Q_8 is:

The table for either of $D_4(D_8)$ or Q_8 is:

	1	1	2	2	2
G	1	<i>g</i> ₂	<i>g</i> ₃	<i>8</i> 4	85
χ_1	1	1	1	1	1
χ_2	1	1	1	-1	-1
χ_3	1	1	-1	1	-1
χ_4	1	1	-1	-1	1
χ_5	2	-2	0	0	0

The table for either of $D_4(D_8)$ or Q_8 is:

The groups D_4 and Q_8 can be distinguished by the fact that $\det(\chi_5^{Q_8}) = \chi_1 \neq \det(\chi_5^{D_4}).$

The table for either of $D_4(D_8)$ or Q_8 is:

The groups D_4 and Q_8 can be distinguished by the fact that $\det(\chi_5^{Q_8}) = \chi_1 \neq \det(\chi_5^{D_4}).$ $Q_8: i \mapsto \begin{bmatrix} i & 0 \\ 0 & -i \end{bmatrix}, j \mapsto \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}.$ $D_4: f \mapsto \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}, r \mapsto \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}.$ $A_4/K \cong \mathbb{Z}_3$, so 3 linear characters arise from inflation.

	1	3	4	4
A_4	1	(1 2)(3 4)	(1 2 3)	(1 3 2)
χ_1	1	1	1	1
χ2	1	1	ω	ω^2
X3	1	1	ω^2	ω
χ_4	3	-1	0	0

	1	3	4	4
A_4	1	(1 2)(3 4)	(1 2 3)	(1 3 2)
χ_1	1	1	1	1
χ_2	1	1	ω	ω^2
X3	1	1	ω^2	ω
χ_4	3	-1	0	0

Another way to produce χ_4 is to realize A_4 as the rotation group of the tetrahedron.

	1	3	4	4
A_4	1	(1 2)(3 4)	(1 2 3)	(1 3 2)
χ_1	1	1	1	1
χ_2	1	1	ω	ω^2
X3	1	1	ω^2	ω
χ_4	3	-1	0	0

Another way to produce χ_4 is to realize A_4 as the rotation group of the tetrahedron. Or use orthogonality.

	1	3	4	4
A_4	1	(1 2)(3 4)	(1 2 3)	(1 3 2)
χ_1	1	1	1	1
χ_2	1	1	ω	ω^2
X3	1	1	ω^2	ω
χ_4	3	-1	0	0

Another way to produce χ_4 is to realize A_4 as the rotation group of the tetrahedron. Or use orthogonality. Or use the regular representation.

• $S_4/K \cong S_3$, so S_4 acquires 3 irreps from S_3 by inflation.

• $S_4/K \cong S_3$, so S_4 acquires 3 irreps from S_3 by inflation.

- $S_4/K \cong S_3$, so S_4 acquires 3 irreps from S_3 by inflation.
- S_4 acts 2-transitively on $\{1, 2, 3, 4\}$, so get a degree-3 irrep from that, χ_4 .

- $S_4/K \cong S_3$, so S_4 acquires 3 irreps from S_3 by inflation.
- S_4 acts 2-transitively on $\{1, 2, 3, 4\}$, so get a degree-3 irrep from that, χ_4 .

- $S_4/K \cong S_3$, so S_4 acquires 3 irreps from S_3 by inflation.
- S₄ acts 2-transitively on {1, 2, 3, 4}, so get a degree-3 irrep from that, χ₄. (The 'standard' representation of S_n.)

- $S_4/K \cong S_3$, so S_4 acquires 3 irreps from S_3 by inflation.
- S₄ acts 2-transitively on {1, 2, 3, 4}, so get a degree-3 irrep from that, χ₄. (The 'standard' representation of S_n.)
- By orthogonality,

- $S_4/K \cong S_3$, so S_4 acquires 3 irreps from S_3 by inflation.
- S₄ acts 2-transitively on {1, 2, 3, 4}, so get a degree-3 irrep from that, χ₄. (The 'standard' representation of S_n.)
- By orthogonality,

- $S_4/K \cong S_3$, so S_4 acquires 3 irreps from S_3 by inflation.
- S₄ acts 2-transitively on {1, 2, 3, 4}, so get a degree-3 irrep from that, χ₄. (The 'standard' representation of S_n.)
- By orthogonality, or by realizing S_4 as the rotation group of the cube,

- $S_4/K \cong S_3$, so S_4 acquires 3 irreps from S_3 by inflation.
- S₄ acts 2-transitively on {1, 2, 3, 4}, so get a degree-3 irrep from that, χ₄. (The 'standard' representation of S_n.)
- By orthogonality, or by realizing S_4 as the rotation group of the cube, or tensoring the degree-3 irrep with the sign representation

- $S_4/K \cong S_3$, so S_4 acquires 3 irreps from S_3 by inflation.
- S₄ acts 2-transitively on {1, 2, 3, 4}, so get a degree-3 irrep from that, χ₄. (The 'standard' representation of S_n.)
- By orthogonality, or by realizing S_4 as the rotation group of the cube, or tensoring the degree-3 irrep with the sign representation we get another degree-3 irrep, $\chi_5 = \chi_2 \chi_4$.

- $S_4/K \cong S_3$, so S_4 acquires 3 irreps from S_3 by inflation.
- S₄ acts 2-transitively on {1, 2, 3, 4}, so get a degree-3 irrep from that, χ₄. (The 'standard' representation of S_n.)
- By orthogonality, or by realizing S_4 as the rotation group of the cube, or tensoring the degree-3 irrep with the sign representation we get another degree-3 irrep, $\chi_5 = \chi_2 \chi_4$.

	1	3	6	6	8
S_4	1	(1 2)(3 4)	(1 2)	(1 2 3 4)	(1 2 3)
χ_1	1	1	1	1	1
χ_2	1	1	-1	-1	1
χ3	2	2	0	0	-1
χ_4	3	-1	1	-1	0
χ_5	3	-1	-1	1	0

 χ_1 is the only irrep of degree 1.

 χ_1 is the only irrep of degree 1.

	1	15	20	12	12
A5	1	(12)(34)	(123)	(12343)	(12554)
χ_1	1	1	1	1	1

 χ_1 is the only irrep of degree 1.

A ₅	1	15 (1 2)(3 4)	20 (1 2 3)	12 (1 2 3 4 5)	12 (1 2 3 5 4)
<u>χ</u> 1	1	1	1	1	1

 A_5 acts 2-transitively on $\{1, 2, 3, 4, 5\}$

 χ_1 is the only irrep of degree 1.

 A_5 acts 2-transitively on $\{1, 2, 3, 4, 5\}$ with permutation character

 χ_1 is the only irrep of degree 1.

1
 15
 20
 12
 12

$$A_5$$
 1
 (1 2)(3 4)
 (1 2 3)
 (1 2 3 4 5)
 (1 2 3 5 4)

 χ_1
 1
 1
 1
 1
 1
 1

 A_5 acts 2-transitively on $\{1, 2, 3, 4, 5\}$ with permutation character

A5	1 1	15 (1 2)(3 4)	20 (1 2 3)	12 (1 2 3 4 5)	$ \begin{array}{r} 12\\(1\ 2\ 3\ 5\ 4)\end{array} $
π	5	1	2	0	0

 χ_1 is the only irrep of degree 1.

1
 15
 20
 12
 12

$$A_5$$
 1
 (1 2)(3 4)
 (1 2 3)
 (1 2 3 4 5)
 (1 2 3 5 4)

 χ_1
 1
 1
 1
 1
 1
 1

 A_5 acts 2-transitively on $\{1, 2, 3, 4, 5\}$ with permutation character

A ₅	1 1	15 (1 2)(3 4)	20 (1 2 3)	$ \begin{array}{r} 12\\(1\ 2\ 3\ 4\ 5)\end{array} $	$ \begin{array}{r} 12\\ (1\ 2\ 3\ 5\ 4) \end{array} $
π	5	1	2	0	0

yielding an irrep of degree 4, with character

 χ_1 is the only irrep of degree 1.

1
 15
 20
 12
 12

$$A_5$$
 1
 (1 2)(3 4)
 (1 2 3)
 (1 2 3 4 5)
 (1 2 3 5 4)

 χ_1
 1
 1
 1
 1
 1
 1

 A_5 acts 2-transitively on $\{1, 2, 3, 4, 5\}$ with permutation character

A5	1 1	15 (1 2)(3 4)	$ \begin{array}{c} 20 \\ (1 \ 2 \ 3) \end{array} $	$ \begin{array}{r} 12\\(1\ 2\ 3\ 4\ 5)\end{array} $	$ \begin{array}{r} 12\\(1\ 2\ 3\ 5\ 4)\end{array} $
π	5	1	2	0	0

yielding an irrep of degree 4, with character

A ₅	1	15 (1 2)(3 4)	$ \begin{array}{c} 20 \\ (1 \ 2 \ 3) \end{array} $	$ \begin{array}{r} 12 \\ (1 2 3 4 5) \end{array} $	$ \begin{array}{r} 12\\(1\ 2\ 3\ 5\ 4)\end{array} $
$\pi - \chi_1$	4	0	1	-1	-1

A ₅	1 1	15 (1 2)(3 4)	20 (1 2 3)	12 (1 2 3 4 5)	$ \begin{array}{r} 12\\(1\ 2\ 3\ 5\ 4)\end{array} $
ξ	6	2	0	1	1

A5	1 1	15 (1 2)(3 4)	20 (1 2 3)	$ \begin{array}{r} 12 \\ (1 \ 2 \ 3 \ 4 \ 5) \end{array} $	$ \begin{array}{r} 12\\(1\ 2\ 3\ 5\ 4)\end{array} $
ξ	6	2	0	1	1

yielding an irrep of degree 5, with character

A ₅	1 1	15 (1 2)(3 4)	$ \begin{array}{c} 20 \\ (1 \ 2 \ 3) \end{array} $	$ \begin{array}{r} 12\\(1\ 2\ 3\ 4\ 5)\end{array} $	12 (1 2 3 5 4)
ξ	6	2	0	1	1

yielding an irrep of degree 5, with character

A5	1 1	15 (1 2)(3 4)	20 (1 2 3)	$ \begin{array}{r} 12\\(1\ 2\ 3\ 4\ 5)\end{array} $	$ \begin{array}{r} 12\\(1\ 2\ 3\ 5\ 4)\end{array} $
$\xi = \chi_1$	5	1	-1	0	0

 A_5 may be realized as the rotation group of the dodecahedron, yielding an irrep of degree 3.

 A_5 may be realized as the rotation group of the dodecahedron, yielding an irrep of degree 3. (Char value of a rotation in \mathbb{R}^3 through $2\pi/n$ is $1 + 2\cos(2\pi/n)$.)

 A_5 may be realized as the rotation group of the dodecahedron, yielding an irrep of degree 3. (Char value of a rotation in \mathbb{R}^3 through $2\pi/n$ is $1 + 2\cos(2\pi/n)$.)

	1	15	20	12	12
A_5	1	(1 2)(3 4)	(1 2 3)	(1 2 3 4 5)	(1 2 3 5 4)
θ	$1 + 2\cos(0)$	$1 + 2\cos(\pi)$	$1 + 2\cos(2\pi/3)$	$1 + 2\cos(2\pi/5)$	$1 + 2\cos(4\pi/5)$
θ	3	-1	0	ϕ	$-\phi^{-1}$

A_5

 A_5 may be realized as the rotation group of the dodecahedron, yielding an irrep of degree 3. (Char value of a rotation in \mathbb{R}^3 through $2\pi/n$ is $1 + 2\cos(2\pi/n)$.)

	1	15	20	12	12
A_5	1	(1 2)(3 4)	(1 2 3)	(1 2 3 4 5)	(1 2 3 5 4)
θ	$1 + 2\cos(0)$	$1+2\cos(\pi)$	$1 + 2\cos(2\pi/3)$	$1 + 2\cos(2\pi/5)$	$1 + 2\cos(4\pi/5)$
θ	3	-1	0	ϕ	$-\phi^{-1}$

 $\phi = \frac{1 + \sqrt{5}}{2}$

 A_5 may be realized as the rotation group of the dodecahedron, yielding an irrep of degree 3. (Char value of a rotation in \mathbb{R}^3 through $2\pi/n$ is $1 + 2\cos(2\pi/n)$.)

	1	15	20	12	12
A_5	1	(1 2)(3 4)	(1 2 3)	(1 2 3 4 5)	(1 2 3 5 4)
θ	$1 + 2\cos(0)$	$1+2\cos(\pi)$	$1 + 2\cos(2\pi/3)$	$1 + 2\cos(2\pi/5)$	$1 + 2\cos(4\pi/5)$
θ	3	-1	0	ϕ	$-\phi^{-1}$

 $\phi = \frac{1 + \sqrt{5}}{2}$

If α is the automorphism $\sigma \mapsto (4\ 5)^{-1}\sigma(4\ 5)$ of A_5 , then $\theta \circ \alpha$ is irreducible:

A ₅	1 1	15 (1 2)(3 4)	20 (1 2 3)	$ \begin{array}{r} 12\\(1\ 2\ 3\ 4\ 5)\end{array} $	$ \begin{array}{r} 12\\(1\ 2\ 3\ 5\ 4)\end{array} $
$\theta \circ \alpha$	3	-1	0	$-\phi^{-1}$	ϕ

	1	15	20	12	12
A_5	1	(1 2)(3 4)	(1 2 3)	(1 2 3 4 5)	(1 2 3 5 4)
χ_1	1	1	1	1	1
χ_2	3	-1	0	ϕ	$-\phi^{-1}$
<i>χ</i> 3	3	-1	0	$-\phi^{-1}$	ϕ
χ_4	4	0	1	-1	-1
χ_5	5	1	-1	0	0

	1	15	20	12	12
A_5	1	(1 2)(3 4)	(1 2 3)	(1 2 3 4 5)	(1 2 3 5 4)
χ_1	1	1	1	1	1
χ_2	3	-1	0	ϕ	$-\phi^{-1}$
χ3	3	-1	0	$-\phi^{-1}$	ϕ
χ_4	4	0	1	-1	-1
χ_5	5	1	-1	0	0

Theorem

If |G| = p, p prime, then G is abelian.

Theorem

If |G| = p, p prime, then G is abelian.

Proof.

Theorem

If |G| = p, p prime, then G is abelian.

Proof.

Theorem

If |G| = p, p prime, then G is abelian.

Proof.

The first column of the character table for *G* consists of at most *p* integers d_1, \ldots, d_r such that (i) $d_1 = 1$, (ii) $d_j | p$ for all *j*, and (iii) $d_1^2 + \cdots + d_r^2 = p$.

Theorem

If |G| = p, p prime, then G is abelian.

Proof.

The first column of the character table for *G* consists of at most *p* integers d_1, \ldots, d_r such that (i) $d_1 = 1$, (ii) $d_j | p$ for all *j*, and (iii) $d_1^2 + \cdots + d_r^2 = p$. It must be that $d_1 = \cdots = d_r = 1$, so *G* is abelian.

Theorem

If |G| = p, p prime, then G is abelian.

Proof.

The first column of the character table for *G* consists of at most *p* integers d_1, \ldots, d_r such that (i) $d_1 = 1$, (ii) $d_j | p$ for all *j*, and (iii) $d_1^2 + \cdots + d_r^2 = p$. It must be that $d_1 = \cdots = d_r = 1$, so *G* is abelian.

Theorem

Any group of order < 6 is abelian.

Theorem

If |G| = p, p prime, then G is abelian.

Proof.

The first column of the character table for *G* consists of at most *p* integers d_1, \ldots, d_r such that (i) $d_1 = 1$, (ii) $d_j | p$ for all *j*, and (iii) $d_1^2 + \cdots + d_r^2 = p$. It must be that $d_1 = \cdots = d_r = 1$, so *G* is abelian.

Theorem

Any group of order < 6 is abelian.

Proof.

Same idea.

Theorem

If |G| = p, p prime, then G is abelian.

Proof.

The first column of the character table for *G* consists of at most *p* integers d_1, \ldots, d_r such that (i) $d_1 = 1$, (ii) $d_j | p$ for all *j*, and (iii) $d_1^2 + \cdots + d_r^2 = p$. It must be that $d_1 = \cdots = d_r = 1$, so *G* is abelian.

Theorem

Any group of order < 6 is abelian.

Proof.

Same idea.

Theorem

If |G| = p, p prime, then G is abelian.

Proof.

The first column of the character table for *G* consists of at most *p* integers d_1, \ldots, d_r such that (i) $d_1 = 1$, (ii) $d_j | p$ for all *j*, and (iii) $d_1^2 + \cdots + d_r^2 = p$. It must be that $d_1 = \cdots = d_r = 1$, so *G* is abelian.

Theorem

Any group of order < 6 is abelian.

Proof.

Same idea. The smallest number *n* that is a sum of squares $d_1^2 + \cdots + d_r^2$ where $d_1 = 1$, some $d_j > 1$, and all d_j divide *n* is 6.
Theorem

If $|G| = p^2$, p prime, then G is abelian.

Theorem

If $|G| = p^2$, p prime, then G is abelian.

Theorem

If $|G| = p^2$, p prime, then G is abelian.

Theorem

If $|G| = p^2$, p prime, then G is abelian.

Proof.

Each degree d_j must be 1, p or p^2 .

Theorem

If $|G| = p^2$, p prime, then G is abelian.

Proof.

Each degree d_j must be 1, p or p^2 . The choices $d_j = p$ or p^2 are too big if $1^2 + d_2^2 + \cdots + d_r^2 = p^2$.

Theorem

If
$$|G| = p^2$$
, p prime, then G is abelian.

Proof.

Each degree d_j must be 1, p or p^2 . The choices $d_j = p$ or p^2 are too big if $1^2 + d_2^2 + \cdots + d_r^2 = p^2$.

Theorem

If |G| = pq, q < p primes, and G is nonabelian, then $p \equiv 1 \pmod{q}$.

Theorem

If
$$|G| = p^2$$
, p prime, then G is abelian.

Proof.

Each degree d_j must be 1, p or p^2 . The choices $d_j = p$ or p^2 are too big if $1^2 + d_2^2 + \cdots + d_r^2 = p^2$.

Theorem

If |G| = pq, q < p primes, and G is nonabelian, then $p \equiv 1 \pmod{q}$.

Theorem

If
$$|G| = p^2$$
, p prime, then G is abelian.

Proof.

Each degree d_j must be 1, p or p^2 . The choices $d_j = p$ or p^2 are too big if $1^2 + d_2^2 + \cdots + d_r^2 = p^2$.

Theorem

If |G| = pq, q < p primes, and G is nonabelian, then $p \equiv 1 \pmod{q}$.

Theorem

If
$$|G| = p^2$$
, p prime, then G is abelian.

Proof.

Each degree d_j must be 1, p or p^2 . The choices $d_j = p$ or p^2 are too big if $1^2 + d_2^2 + \cdots + d_r^2 = p^2$.

Theorem

If |G| = pq, q < p primes, and G is nonabelian, then $p \equiv 1 \pmod{q}$.

Proof.

Possible degrees are $d_j \in \{1, q\}$, and some $d_j = q$.

Theorem

If
$$|G| = p^2$$
, p prime, then G is abelian.

Proof.

Each degree d_j must be 1, p or p^2 . The choices $d_j = p$ or p^2 are too big if $1^2 + d_2^2 + \cdots + d_r^2 = p^2$.

Theorem

If |G| = pq, q < p primes, and G is nonabelian, then $p \equiv 1 \pmod{q}$.

Proof.

Possible degrees are $d_j \in \{1, q\}$, and some $d_j = q$. Assume that there are *m* degrees satisfying $d_j = q$.

Theorem

If
$$|G| = p^2$$
, p prime, then G is abelian.

Proof.

Each degree d_j must be 1, p or p^2 . The choices $d_j = p$ or p^2 are too big if $1^2 + d_2^2 + \cdots + d_r^2 = p^2$.

Theorem

If |G| = pq, q < p primes, and G is nonabelian, then $p \equiv 1 \pmod{q}$.

Proof.

Possible degrees are $d_j \in \{1, q\}$, and some $d_j = q$. Assume that there are *m* degrees satisfying $d_j = q$. The number of d_j equal to 1 is $n := [G : G'] \in \{1, q, p\}$.

Theorem

If
$$|G| = p^2$$
, p prime, then G is abelian.

Proof.

Each degree d_j must be 1, p or p^2 . The choices $d_j = p$ or p^2 are too big if $1^2 + d_2^2 + \cdots + d_r^2 = p^2$.

Theorem

If |G| = pq, q < p primes, and G is nonabelian, then $p \equiv 1 \pmod{q}$.

Proof.

Possible degrees are $d_j \in \{1, q\}$, and some $d_j = q$. Assume that there are *m* degrees satisfying $d_j = q$. The number of d_j equal to 1 is $n := [G : G'] \in \{1, q, p\}$. We have $pq = d_1^2 + \cdots + d_r^2 = mq^2 + n$.

Theorem

If
$$|G| = p^2$$
, p prime, then G is abelian.

Proof.

Each degree d_j must be 1, p or p^2 . The choices $d_j = p$ or p^2 are too big if $1^2 + d_2^2 + \cdots + d_r^2 = p^2$.

Theorem

If |G| = pq, q < p primes, and G is nonabelian, then $p \equiv 1 \pmod{q}$.

Proof.

Possible degrees are $d_j \in \{1, q\}$, and some $d_j = q$. Assume that there are *m* degrees satisfying $d_j = q$. The number of d_j equal to 1 is $n := [G : G'] \in \{1, q, p\}$. We have $pq = d_1^2 + \cdots + d_r^2 = mq^2 + n$. From this, q|n, so q = n.

Theorem

If
$$|G| = p^2$$
, p prime, then G is abelian.

Proof.

Each degree d_j must be 1, p or p^2 . The choices $d_j = p$ or p^2 are too big if $1^2 + d_2^2 + \cdots + d_r^2 = p^2$.

Theorem

If |G| = pq, q < p primes, and G is nonabelian, then $p \equiv 1 \pmod{q}$.

Proof.

Possible degrees are $d_j \in \{1, q\}$, and some $d_j = q$. Assume that there are *m* degrees satisfying $d_j = q$. The number of d_j equal to 1 is $n := [G : G'] \in \{1, q, p\}$. We have $pq = d_1^2 + \cdots + d_r^2 = mq^2 + n$. From this, q|n, so q = n. Dividing $pq = mq^2 + q$ by q we get p = mq + 1.

A finite nonabelian simple group G has no conjugacy class h^G of prime power size other than the class $\{1\}$.

A finite nonabelian simple group G has no conjugacy class h^G of prime power size other than the class $\{1\}$.

A finite nonabelian simple group G has no conjugacy class h^G of prime power size other than the class $\{1\}$.

A finite nonabelian simple group G has no conjugacy class h^G of prime power size other than the class $\{1\}$.

Proof.

If $\chi \in Irr(G)$ is not the principal character, then $K_{\chi} = Z_{\chi} = \{1\}$, since these are proper normal subgroups.

A finite nonabelian simple group G has no conjugacy class h^G of prime power size other than the class $\{1\}$.

Proof.

If $\chi \in Irr(G)$ is not the principal character, then $K_{\chi} = Z_{\chi} = \{1\}$, since these are proper normal subgroups. If *p* is the prime of the theorem, then $p \not\mid \chi(1)$ implies $\chi(h) = 0$ for any such χ .

A finite nonabelian simple group G has no conjugacy class h^G of prime power size other than the class $\{1\}$.

Proof.

If $\chi \in Irr(G)$ is not the principal character, then $K_{\chi} = Z_{\chi} = \{1\}$, since these are proper normal subgroups. If *p* is the prime of the theorem, then $p \not| \chi(1)$ implies $\chi(h) = 0$ for any such χ . Column orthogonality, applied to the columns of 1 and *h*, yields $1 + \chi_2(1)\chi_2(h) + \cdots + \chi_r(1)\chi_r(h) = 0$,

A finite nonabelian simple group G has no conjugacy class h^G of prime power size other than the class $\{1\}$.

Proof.

If $\chi \in Irr(G)$ is not the principal character, then $K_{\chi} = Z_{\chi} = \{1\}$, since these are proper normal subgroups. If *p* is the prime of the theorem, then $p \not\mid \chi(1)$ implies $\chi(h) = 0$ for any such χ . Column orthogonality, applied to the columns of 1 and *h*, yields $1 + \chi_2(1)\chi_2(h) + \cdots + \chi_r(1)\chi_r(h) = 0$, hence

$$(\chi_2(1)\chi_2(h))/p + \dots + (\chi_r(1)\chi_r(h))/p = -1/p.$$

A finite nonabelian simple group G has no conjugacy class h^G of prime power size other than the class $\{1\}$.

Proof.

If $\chi \in Irr(G)$ is not the principal character, then $K_{\chi} = Z_{\chi} = \{1\}$, since these are proper normal subgroups. If *p* is the prime of the theorem, then $p \not\mid \chi(1)$ implies $\chi(h) = 0$ for any such χ . Column orthogonality, applied to the columns of 1 and *h*, yields $1 + \chi_2(1)\chi_2(h) + \cdots + \chi_r(1)\chi_r(h) = 0$, hence

$$(\chi_2(1)\chi_2(h))/p + \cdots + (\chi_r(1)\chi_r(h))/p = -1/p.$$

Each summand on the left is an algebraic integer, but -1/p is not.

If G is a finite nonabelian simple group and H is a subgroup of prime power index, then H is centerless.

If G is a finite nonabelian simple group and H is a subgroup of prime power index, then H is centerless.

If G is a finite nonabelian simple group and H is a subgroup of prime power index, then H is centerless.

If G is a finite nonabelian simple group and H is a subgroup of prime power index, then H is centerless.

(This is a restatement of the previous theorem in the language of subgroups instead of conjugacy classes.)

If G is a finite nonabelian simple group and H is a subgroup of prime power index, then H is centerless.

(This is a restatement of the previous theorem in the language of subgroups instead of conjugacy classes.)

Let's see:

If G is a finite nonabelian simple group and H is a subgroup of prime power index, then H is centerless.

(This is a restatement of the previous theorem in the language of subgroups instead of conjugacy classes.)

Let's see:

If G is a finite nonabelian simple group and H is a subgroup of prime power index, then H is centerless.

(This is a restatement of the previous theorem in the language of subgroups instead of conjugacy classes.)

Let's see:

If H is a subgroup of G of p-power index with a nontrivial central element h,

If G is a finite nonabelian simple group and H is a subgroup of prime power index, then H is centerless.

(This is a restatement of the previous theorem in the language of subgroups instead of conjugacy classes.)

Let's see:

If H is a subgroup of G of p-power index with a nontrivial central element h, then h^G is a conjugacy class of G of p-power size.

If G is a finite nonabelian simple group and H is a subgroup of prime power index, then H is centerless.

(This is a restatement of the previous theorem in the language of subgroups instead of conjugacy classes.)

Let's see:

If H is a subgroup of G of p-power index with a nontrivial central element h, then h^G is a conjugacy class of G of p-power size. Conversely if h^G is a conjugacy class of G of p-power size,

If G is a finite nonabelian simple group and H is a subgroup of prime power index, then H is centerless.

(This is a restatement of the previous theorem in the language of subgroups instead of conjugacy classes.)

Let's see:

If H is a subgroup of G of p-power index with a nontrivial central element h, then h^G is a conjugacy class of G of p-power size. Conversely if h^G is a conjugacy class of G of p-power size, then $C_G(h)$ is a subgroup of G of p-power index with a nontrivial central element h.

If G is a finite nonabelian simple group and H is a subgroup of prime power index, then H is centerless.

(This is a restatement of the previous theorem in the language of subgroups instead of conjugacy classes.)

Let's see:

If *H* is a subgroup of *G* of *p*-power index with a nontrivial central element *h*, then h^G is a conjugacy class of *G* of *p*-power size. Conversely if h^G is a conjugacy class of *G* of *p*-power size, then $C_G(h)$ is a subgroup of *G* of *p*-power index with a nontrivial central element *h*. \Box

Burnside's $p^a q^b$ Theorem

Theorem

There is no nonabelian simple group G such that $|G| = p^a q^b$, p, q primes.

Burnside's $p^a q^b$ Theorem

Theorem

There is no nonabelian simple group G such that $|G| = p^a q^b$, p, q primes.

Burnside's $p^a q^b$ Theorem

Theorem

There is no nonabelian simple group G such that $|G| = p^a q^b$, p, q primes.
There is no nonabelian simple group G such that $|G| = p^a q^b$, p, q primes.

Proof.

Apply the preceding theorem to $H \in Syl_p(G)$ to derive a contradiction.

There is no nonabelian simple group G such that $|G| = p^a q^b$, p, q primes.

Proof.

Apply the preceding theorem to $H \in Syl_p(G)$ to derive a contradiction.

Corollary

If $|G| = p^a q^b$, p, q primes, then G is solvable.

There is no nonabelian simple group G such that $|G| = p^a q^b$, p, q primes.

Proof.

Apply the preceding theorem to $H \in Syl_p(G)$ to derive a contradiction.

Corollary

If
$$|G| = p^a q^b$$
, p, q primes, then G is solvable.

Proof.

There is no nonabelian simple group G such that $|G| = p^a q^b$, p, q primes.

Proof.

Apply the preceding theorem to $H \in Syl_p(G)$ to derive a contradiction.

Corollary

If
$$|G| = p^a q^b$$
, p, q primes, then G is solvable.

Proof.

There is no nonabelian simple group G such that $|G| = p^a q^b$, p, q primes.

Proof.

Apply the preceding theorem to $H \in Syl_p(G)$ to derive a contradiction.

Corollary

If
$$|G| = p^a q^b$$
, p, q primes, then G is solvable.

Proof.

If $|G| = p^a q^b$ and G is not solvable, then it must have a nonabelian simple section G' whose order divides $p^a q^b$.

There is no nonabelian simple group G such that $|G| = p^a q^b$, p, q primes.

Proof.

Apply the preceding theorem to $H \in Syl_p(G)$ to derive a contradiction.

Corollary

If
$$|G| = p^a q^b$$
, p, q primes, then G is solvable.

Proof.

If $|G| = p^a q^b$ and G is not solvable, then it must have a nonabelian simple section G' whose order divides $p^a q^b$. There is no such group.

A theorem about simple groups

If G is a nonabelian simple group and some irreducible character degree is a prime p, then the Sylow p-subgroups of G have order p.

If G is a nonabelian simple group and some irreducible character degree is a prime p, then the Sylow p-subgroups of G have order p.

If G is a nonabelian simple group and some irreducible character degree is a prime p, then the Sylow p-subgroups of G have order p.

If G is a nonabelian simple group and some irreducible character degree is a prime p, then the Sylow p-subgroups of G have order p.

	1	15	20	12	12
A_5	1	(1 2)(3 4)	(1 2 3)	$(1\ 2\ 3\ 4\ 5)$	(1 2 3 5 4)
χ_1	1	1	1	1	1
χ_2	3	-1	0	ϕ	$-\phi^{-1}$
X3	3	-1	0	$-\phi^{-1}$	ϕ
χ_4	4	0	1	-1	-1
χ_5	5	1	-1	0	0

If G is a nonabelian simple group and some irreducible character degree is a prime p, then the Sylow p-subgroups of G have order p.

	1	15	20	12	12
A_5	1	(1 2)(3 4)	(1 2 3)	$(1\ 2\ 3\ 4\ 5)$	(1 2 3 5 4)
χ_1	1	1	1	1	1
χ_2	3	-1	0	ϕ	$-\phi^{-1}$
χ3	3	-1	0	$-\phi^{-1}$	ϕ
χ_4	4	0	1	-1	-1
χ_5	5	1	-1	0	0

If G is a nonabelian simple group and some irreducible character degree is a prime p, then the Sylow p-subgroups of G have order p.

	1	15	20	12	12
A_5	1	(1 2)(3 4)	(1 2 3)	$(1\ 2\ 3\ 4\ 5)$	$(1\ 2\ 3\ 5\ 4)$
χ_1	1	1	1	1	1
χ_2	3	-1	0	ϕ	$-\phi^{-1}$
χ3	3	-1	0	$-\phi^{-1}$	ϕ
χ_4	4	0	1	-1	-1
χ_5	5	1	-1	0	0

If G is a nonabelian simple group and some irreducible character degree is a prime p, then the Sylow p-subgroups of G have order p.

	1	15	20	12	12
A_5	1	(1 2)(3 4)	(1 2 3)	$(1\ 2\ 3\ 4\ 5)$	$(1\ 2\ 3\ 5\ 4)$
χ_1	1	1	1	1	1
χ_2	3	-1	0	ϕ	$-\phi^{-1}$
χ3	3	-1	0	$-\phi^{-1}$	ϕ
χ_4	4	0	1	-1	-1
χ_5	5	1	-1	0	0

If G is a nonabelian simple group and some irreducible character degree is a prime p, then the Sylow p-subgroups of G have order p.

Recall, as an example:

	1	15	20	12	12
A_5	1	(1 2)(3 4)	(1 2 3)	$(1\ 2\ 3\ 4\ 5)$	$(1\ 2\ 3\ 5\ 4)$
χ_1	1	1	1	1	1
χ_2	3	-1	0	ϕ	$-\phi^{-1}$
χ3	3	-1	0	$-\phi^{-1}$	ϕ
χ_4	4	0	1	-1	-1
χ_5	5	1	-1	0	0

There are zeros at the centers of the colored crosses.

Let G be a nonabelian simple group with irreducible character ψ of degree p.

Let *G* be a nonabelian simple group with irreducible character ψ of degree *p*. If $\rho: G \to GL(p, \mathbb{C})$ affords ψ , then ρ is faithful.

Let *G* be a nonabelian simple group with irreducible character ψ of degree *p*. If $\rho: G \to GL(p, \mathbb{C})$ affords ψ , then ρ is faithful. In fact, $K_{\psi} = Z_{\psi} = \{1\}$.

Let *G* be a nonabelian simple group with irreducible character ψ of degree *p*. If $\rho: G \to GL(p, \mathbb{C})$ affords ψ , then ρ is faithful. In fact, $K_{\psi} = Z_{\psi} = \{1\}$.

Let *P* be a Sylow *p*-subgroup of *G*.

Let *G* be a nonabelian simple group with irreducible character ψ of degree *p*. If $\rho: G \to GL(p, \mathbb{C})$ affords ψ , then ρ is faithful. In fact, $K_{\psi} = Z_{\psi} = \{1\}$.

Let *P* be a Sylow *p*-subgroup of *G*. Choose any $z \in Z(P) \setminus \{1\}$.

Let *G* be a nonabelian simple group with irreducible character ψ of degree *p*. If $\rho: G \to GL(p, \mathbb{C})$ affords ψ , then ρ is faithful. In fact, $K_{\psi} = Z_{\psi} = \{1\}$.

Let *P* be a Sylow *p*-subgroup of *G*. Choose any $z \in Z(P) \setminus \{1\}$. $[G : C_G(z)]$ divides [G : P], hence z^G has size prime to *p*.

Let *G* be a nonabelian simple group with irreducible character ψ of degree *p*. If $\rho: G \to GL(p, \mathbb{C})$ affords ψ , then ρ is faithful. In fact, $K_{\psi} = Z_{\psi} = \{1\}$.

Let *P* be a Sylow *p*-subgroup of *G*. Choose any $z \in Z(P) \setminus \{1\}$. [*G* : *C_G*(*z*)] divides [*G* : *P*], hence z^G has size prime to *p*. Thus $\psi(z) = 0$ for any $z \in Z(P) \setminus \{1\}$.

Let *G* be a nonabelian simple group with irreducible character ψ of degree *p*. If $\rho: G \to GL(p, \mathbb{C})$ affords ψ , then ρ is faithful. In fact, $K_{\psi} = Z_{\psi} = \{1\}$.

Let *P* be a Sylow *p*-subgroup of *G*. Choose any $z \in Z(P) \setminus \{1\}$. [*G* : *C_G*(*z*)] divides [*G* : *P*], hence z^G has size prime to *p*. Thus $\psi(z) = 0$ for any $z \in Z(P) \setminus \{1\}$.

What we are seeing here is important:

Let *G* be a nonabelian simple group with irreducible character ψ of degree *p*. If $\rho: G \to GL(p, \mathbb{C})$ affords ψ , then ρ is faithful. In fact, $K_{\psi} = Z_{\psi} = \{1\}$.

Let *P* be a Sylow *p*-subgroup of *G*. Choose any $z \in Z(P) \setminus \{1\}$. [*G* : *C_G*(*z*)] divides [*G* : *P*], hence z^G has size prime to *p*. Thus $\psi(z) = 0$ for any $z \in Z(P) \setminus \{1\}$.

What we are seeing here is important: a character is vanishing on the nonidentity elements of a subgroup, Z(P).

Lemma

Let $\rho: H \to GL(n, \mathbb{C})$ be a (not necessarily irreducible) representation of a finite group, and let ψ be the character afforded by ρ . If ψ vanishes on $H \setminus \{1\}$, then |H| divides $\psi(1)$.

Lemma

Let $\rho: H \to GL(n, \mathbb{C})$ be a (not necessarily irreducible) representation of a finite group, and let ψ be the character afforded by ρ . If ψ vanishes on $H \setminus \{1\}$, then |H| divides $\psi(1)$.

Lemma

Let $\rho: H \to GL(n, \mathbb{C})$ be a (not necessarily irreducible) representation of a finite group, and let ψ be the character afforded by ρ . If ψ vanishes on $H \setminus \{1\}$, then |H| divides $\psi(1)$. Thus, ψ is a multiple of the regular character,

Lemma

Let $\rho: H \to GL(n, \mathbb{C})$ be a (not necessarily irreducible) representation of a finite group, and let ψ be the character afforded by ρ . If ψ vanishes on $H \setminus \{1\}$, then |H| divides $\psi(1)$.

Thus, ψ is a multiple of the regular character, and so ρ is a multiple of the regular representation.

Lemma

Let $\rho: H \to GL(n, \mathbb{C})$ be a (not necessarily irreducible) representation of a finite group, and let ψ be the character afforded by ρ . If ψ vanishes on $H \setminus \{1\}$, then |H| divides $\psi(1)$.

Thus, ψ is a multiple of the regular character, and so ρ is a multiple of the regular representation.

Proof.

Lemma

Let $\rho: H \to GL(n, \mathbb{C})$ be a (not necessarily irreducible) representation of a finite group, and let ψ be the character afforded by ρ . If ψ vanishes on $H \setminus \{1\}$, then |H| divides $\psi(1)$.

Thus, ψ is a multiple of the regular character, and so ρ is a multiple of the regular representation.

Proof.

Lemma

Let $\rho: H \to GL(n, \mathbb{C})$ be a (not necessarily irreducible) representation of a finite group, and let ψ be the character afforded by ρ . If ψ vanishes on $H \setminus \{1\}$, then |H| divides $\psi(1)$.

Thus, ψ is a multiple of the regular character, and so ρ is a multiple of the regular representation.

Proof.

Compare χ_1 and ψ :

	1	<i>k</i> ₂	• • •	<i>k</i> _r
H	1	a_2	•••	a_r
χ_1	1	1	•••	1
ψ	$\psi(1)$	0		0

Lemma

Let $\rho: H \to GL(n, \mathbb{C})$ be a (not necessarily irreducible) representation of a finite group, and let ψ be the character afforded by ρ . If ψ vanishes on $H \setminus \{1\}$, then |H| divides $\psi(1)$.

Thus, ψ is a multiple of the regular character, and so ρ is a multiple of the regular representation.

Proof.

Compare χ_1 and ψ :

	1	<i>k</i> ₂	•••	<i>k</i> _r
H	1	a_2	•••	a_r
χ_1	1	1	•••	1
ψ	$\psi(1)$	0	•••	0

 $\langle \chi_1, \psi \rangle = \frac{\psi(1)}{|H|}$ must be an integer.

Lemma

Let $\rho: H \to GL(n, \mathbb{C})$ be a (not necessarily irreducible) representation of a finite group, and let ψ be the character afforded by ρ . If ψ vanishes on $H \setminus \{1\}$, then |H| divides $\psi(1)$.

Thus, ψ is a multiple of the regular character, and so ρ is a multiple of the regular representation.

Proof.

Compare χ_1 and ψ :

	1	<i>k</i> ₂	• • •	k_r
H	1	a_2	• • •	a_r
χ_1	1	1	• • •	1
ψ	$\psi(1)$	0	• • •	0

 $\langle \chi_1, \psi \rangle = \frac{\psi(1)}{|H|}$ must be an integer. Now use that representations are determined by their characters.

Proof of theorem
To be proved: If *G* is simple and there is an irreducible representation $\rho: G \to GL(p, \mathbb{C})$ (affording ψ) then a Sylow *p*-subgroup $P \leq G$ has order *p*.

To be proved: If *G* is simple and there is an irreducible representation $\rho: G \to \operatorname{GL}(p, \mathbb{C})$ (affording ψ) then a Sylow *p*-subgroup $P \leq G$ has order *p*.

Proof.

We have shown that $\psi_{Z(P)}$ vanishes on the nonidentity elements of Z(P).

To be proved: If *G* is simple and there is an irreducible representation $\rho: G \to \operatorname{GL}(p, \mathbb{C})$ (affording ψ) then a Sylow *p*-subgroup $P \leq G$ has order *p*.

Proof.

We have shown that $\psi_{Z(P)}$ vanishes on the nonidentity elements of Z(P).

To be proved: If *G* is simple and there is an irreducible representation $\rho: G \to \operatorname{GL}(p, \mathbb{C})$ (affording ψ) then a Sylow *p*-subgroup $P \leq G$ has order *p*.

Proof.

We have shown that $\psi_{Z(P)}$ vanishes on the nonidentity elements of Z(P). Hence |Z(P)| divides $\psi_{Z(P)}(1) = \psi(1) = p$.

To be proved: If *G* is simple and there is an irreducible representation $\rho: G \to GL(p, \mathbb{C})$ (affording ψ) then a Sylow *p*-subgroup $P \leq G$ has order *p*.

Proof.

We have shown that $\psi_{Z(P)}$ vanishes on the nonidentity elements of Z(P). Hence |Z(P)| divides $\psi_{Z(P)}(1) = \psi(1) = p$. Hence |Z(P)| = p.

To be proved: If *G* is simple and there is an irreducible representation $\rho: G \to GL(p, \mathbb{C})$ (affording ψ) then a Sylow *p*-subgroup $P \leq G$ has order *p*.

Proof.

We have shown that $\psi_{Z(P)}$ vanishes on the nonidentity elements of Z(P). Hence |Z(P)| divides $\psi_{Z(P)}(1) = \psi(1) = p$. Hence |Z(P)| = p. Moreover, $\rho_{Z(P)}$ is a (1-)multiple of the regular representation of Z(P),

To be proved: If *G* is simple and there is an irreducible representation $\rho: G \to GL(p, \mathbb{C})$ (affording ψ) then a Sylow *p*-subgroup $P \leq G$ has order *p*.

Proof.

We have shown that $\psi_{Z(P)}$ vanishes on the nonidentity elements of Z(P). Hence |Z(P)| divides $\psi_{Z(P)}(1) = \psi(1) = p$. Hence |Z(P)| = p. Moreover, $\rho_{Z(P)}$ is a (1-)multiple of the regular representation of Z(P), so if $z \in Z(P)$ is a generator, then $\rho(z)$ has distinct e-values.

To be proved: If *G* is simple and there is an irreducible representation $\rho: G \to \operatorname{GL}(p, \mathbb{C})$ (affording ψ) then a Sylow *p*-subgroup $P \leq G$ has order *p*.

Proof.

We have shown that $\psi_{Z(P)}$ vanishes on the nonidentity elements of Z(P). Hence |Z(P)| divides $\psi_{Z(P)}(1) = \psi(1) = p$. Hence |Z(P)| = p. Moreover, $\rho_{Z(P)}$ is a (1-)multiple of the regular representation of Z(P), so if $z \in Z(P)$ is a generator, then $\rho(z)$ has distinct e-values. It follows that $C_{GL(p,\mathbb{C})}(z)$ consists of diagonal matrices, hence is abelian.

To be proved: If *G* is simple and there is an irreducible representation $\rho: G \to \operatorname{GL}(p, \mathbb{C})$ (affording ψ) then a Sylow *p*-subgroup $P \leq G$ has order *p*.

Proof.

We have shown that $\psi_{Z(P)}$ vanishes on the nonidentity elements of Z(P). Hence |Z(P)| divides $\psi_{Z(P)}(1) = \psi(1) = p$. Hence |Z(P)| = p. Moreover, $\rho_{Z(P)}$ is a (1-)multiple of the regular representation of Z(P), so if $z \in Z(P)$ is a generator, then $\rho(z)$ has distinct e-values. It follows that $C_{GL(p,\mathbb{C})}(z)$ consists of diagonal matrices, hence is abelian. Hence $C_G(z)$ is abelian.

To be proved: If *G* is simple and there is an irreducible representation $\rho: G \to \operatorname{GL}(p, \mathbb{C})$ (affording ψ) then a Sylow *p*-subgroup $P \leq G$ has order *p*.

Proof.

We have shown that $\psi_{Z(P)}$ vanishes on the nonidentity elements of Z(P). Hence |Z(P)| divides $\psi_{Z(P)}(1) = \psi(1) = p$. Hence |Z(P)| = p. Moreover, $\rho_{Z(P)}$ is a (1-)multiple of the regular representation of Z(P), so if $z \in Z(P)$ is a generator, then $\rho(z)$ has distinct e-values. It follows that $C_{GL(p,\mathbb{C})}(z)$ consists of diagonal matrices, hence is abelian. Hence $C_G(z)$ is abelian. Since $P \subseteq C_G(z)$, P is abelian.

To be proved: If *G* is simple and there is an irreducible representation $\rho: G \to \operatorname{GL}(p, \mathbb{C})$ (affording ψ) then a Sylow *p*-subgroup $P \leq G$ has order *p*.

Proof.

We have shown that $\psi_{Z(P)}$ vanishes on the nonidentity elements of Z(P). Hence |Z(P)| divides $\psi_{Z(P)}(1) = \psi(1) = p$. Hence |Z(P)| = p. Moreover, $\rho_{Z(P)}$ is a (1-)multiple of the regular representation of Z(P), so if $z \in Z(P)$ is a generator, then $\rho(z)$ has distinct e-values. It follows that $C_{GL(p,\mathbb{C})}(z)$ consists of diagonal matrices, hence is abelian. Hence $C_G(z)$ is abelian. Since $P \subseteq C_G(z)$, P is abelian. Hence P = Z(P),

To be proved: If *G* is simple and there is an irreducible representation $\rho: G \to \operatorname{GL}(p, \mathbb{C})$ (affording ψ) then a Sylow *p*-subgroup $P \leq G$ has order *p*.

Proof.

We have shown that $\psi_{Z(P)}$ vanishes on the nonidentity elements of Z(P). Hence |Z(P)| divides $\psi_{Z(P)}(1) = \psi(1) = p$. Hence |Z(P)| = p. Moreover, $\rho_{Z(P)}$ is a (1-)multiple of the regular representation of Z(P), so if $z \in Z(P)$ is a generator, then $\rho(z)$ has distinct e-values. It follows that $C_{GL(p,\mathbb{C})}(z)$ consists of diagonal matrices, hence is abelian. Hence $C_G(z)$ is abelian. Since $P \subseteq C_G(z)$, P is abelian. Hence P = Z(P), which has order p.

To be proved: If *G* is simple and there is an irreducible representation $\rho: G \to \operatorname{GL}(p, \mathbb{C})$ (affording ψ) then a Sylow *p*-subgroup $P \leq G$ has order *p*.

Proof.

We have shown that $\psi_{Z(P)}$ vanishes on the nonidentity elements of Z(P). Hence |Z(P)| divides $\psi_{Z(P)}(1) = \psi(1) = p$. Hence |Z(P)| = p. Moreover, $\rho_{Z(P)}$ is a (1-)multiple of the regular representation of Z(P), so if $z \in Z(P)$ is a generator, then $\rho(z)$ has distinct e-values. It follows that $C_{GL(p,\mathbb{C})}(z)$ consists of diagonal matrices, hence is abelian. Hence $C_G(z)$ is abelian. Since $P \subseteq C_G(z)$, P is abelian. Hence P = Z(P), which has order p.

The converse is false.

To be proved: If *G* is simple and there is an irreducible representation $\rho: G \to \operatorname{GL}(p, \mathbb{C})$ (affording ψ) then a Sylow *p*-subgroup $P \leq G$ has order *p*.

Proof.

We have shown that $\psi_{Z(P)}$ vanishes on the nonidentity elements of Z(P). Hence |Z(P)| divides $\psi_{Z(P)}(1) = \psi(1) = p$. Hence |Z(P)| = p. Moreover, $\rho_{Z(P)}$ is a (1-)multiple of the regular representation of Z(P), so if $z \in Z(P)$ is a generator, then $\rho(z)$ has distinct e-values. It follows that $C_{GL(p,\mathbb{C})}(z)$ consists of diagonal matrices, hence is abelian. Hence $C_G(z)$ is abelian. Since $P \subseteq C_G(z)$, P is abelian. Hence P = Z(P), which has order p.

The converse is false. $PSL_2(q)$ has Sylow 3-subgroups of size 3 for infinitely many prime powers q, but only $PSL_2(5)$ and $PSL_2(7)$ have irreps of degree 3.