Examples, Properties, Applications

	1	k_{2}	\cdots	k_{r}
G	1	g_{2}	\cdots	g_{r}
χ_{1}	1	1	\cdots	1
χ_{2}	d_{2}	$\chi_{2}\left(g_{2}\right)$	\cdots	$\chi_{2}\left(g_{r}\right)$
\vdots	\vdots	\vdots	\ddots	\vdots
χ_{r}	d_{r}	$\chi_{r}\left(g_{2}\right)$	\cdots	$\chi_{r}\left(g_{r}\right)$

Each d_{i} divides $|G|=1^{2}+d_{2}^{2}+\cdots+d_{r}^{2}$
Each k_{j} divides $|G|=1+k_{2}+\cdots+k_{r}$

Character tables of abelian groups

Character tables of abelian groups

	1	1
\mathbb{Z}_{2}	0	1
ξ_{1}	1	1
ξ_{2}	1	-1

Character tables of abelian groups

	1	1
\mathbb{Z}_{2}	0	1
ξ_{1}	1	1
ξ_{2}	1	-1

	1	1	1
\mathbb{Z}_{3}	0	1	2
χ_{1}	1	1	1
χ_{2}	1	ω	ω^{2}
χ_{2}^{2}	1	ω^{2}	ω

Character tables of abelian groups

	1	1
\mathbb{Z}_{2}	0	1
ξ_{1}	1	1
ξ_{2}	1	-1

\mathbb{Z}_{3}	1	1	1
0	1	2	
χ_{1}	1	1	1
χ_{2}	1	ω	ω^{2}
χ_{2}^{2}	1	ω^{2}	ω

	1	1	1	1
\mathbb{Z}_{4}	0	1	2	3
χ_{1}	1	1	1	1
χ_{2}	1	i	-1	$-i$
χ_{2}^{2}	1	-1	1	-1
χ_{2}^{3}	1	$-i$	-1	i

Character tables of abelian groups

	1	1
\mathbb{Z}_{2}	0	1
ξ_{1}	1	1
ξ_{2}	1	-1

	1	1	1
\mathbb{Z}_{3}	0	1	2
χ_{1}	1	1	1
χ_{2}	1	ω	ω^{2}
χ_{2}^{2}	1	ω^{2}	ω

	1	1	1	1
\mathbb{Z}_{4}	0	1	2	3
χ_{1}	1	1	1	1
χ_{2}	1	i	-1	$-i$
χ_{2}^{2}	1	-1	1	-1
χ_{2}^{3}	1	$-i$	-1	i

$\mathbb{Z}_{2} \times \mathbb{Z}_{2}$	1 $(0,0)$	1	1	1
$(0,1)$	$(1,0)$	$(1,1)$		
$\xi_{1}(x) \xi_{1}(y)$	1	1	1	1
$\xi_{2}(x) \xi_{1}(y)$	1	1	-1	-1
$\xi_{1}(x) \xi_{2}(y)$	1	-1	1	-1
$\xi_{2}(x) \xi_{2}(y)$	1	-1	-1	1

Completing a table from partial information

Completing a table from partial information

Let G be a nonabelian group of order 8 . Necessarily $G / Z(G) \cong \mathbb{Z}_{2} \times \mathbb{Z}_{2}$, so inflation gives us partial information about the character table.

Completing a table from partial information

Let G be a nonabelian group of order 8 . Necessarily $G / Z(G) \cong \mathbb{Z}_{2} \times \mathbb{Z}_{2}$, so inflation gives us partial information about the character table.

	1	1	2	2	2
G	1	g_{2}	g_{3}	g_{4}	g_{5}
χ_{1}	1	1	1	1	1
χ_{2}	1	1	1	-1	-1
χ_{3}	1	1	-1	1	-1
χ_{4}	1	1	-1	-1	1
χ_{5}	$?$	$?$	$?$	$?$	$?$

Completing a table from partial information

Let G be a nonabelian group of order 8 . Necessarily $G / Z(G) \cong \mathbb{Z}_{2} \times \mathbb{Z}_{2}$, so inflation gives us partial information about the character table.

	1	1	2	2	2
G	1	g_{2}	g_{3}	g_{4}	g_{5}
χ_{1}	1	1	1	1	1
χ_{2}	1	1	1	-1	-1
χ_{3}	1	1	-1	1	-1
χ_{4}	1	1	-1	-1	1
χ_{5}	$?$	$?$	$?$	$?$	$?$

The entries in the last row can be determined by:

Completing a table from partial information

Let G be a nonabelian group of order 8 . Necessarily $G / Z(G) \cong \mathbb{Z}_{2} \times \mathbb{Z}_{2}$, so inflation gives us partial information about the character table.

	1	1	2	2	2
G	1	g_{2}	g_{3}	g_{4}	g_{5}
χ_{1}	1	1	1	1	1
χ_{2}	1	1	1	-1	-1
χ_{3}	1	1	-1	1	-1
χ_{4}	1	1	-1	-1	1
χ_{5}	$?$	$?$	$?$	$?$	$?$

The entries in the last row can be determined by:
(i) finding the missing irrep,

Completing a table from partial information

Let G be a nonabelian group of order 8 . Necessarily $G / Z(G) \cong \mathbb{Z}_{2} \times \mathbb{Z}_{2}$, so inflation gives us partial information about the character table.

	1	1	2	2	2
G	1	g_{2}	g_{3}	g_{4}	g_{5}
χ_{1}	1	1	1	1	1
χ_{2}	1	1	1	-1	-1
χ_{3}	1	1	-1	1	-1
χ_{4}	1	1	-1	-1	1
χ_{5}	$?$	$?$	$?$	$?$	$?$

The entries in the last row can be determined by:
(i) finding the missing irrep, (ii) column orthogonality,

Completing a table from partial information

Let G be a nonabelian group of order 8 . Necessarily $G / Z(G) \cong \mathbb{Z}_{2} \times \mathbb{Z}_{2}$, so inflation gives us partial information about the character table.

	1	1	2	2	2
G	1	g_{2}	g_{3}	g_{4}	g_{5}
χ_{1}	1	1	1	1	1
χ_{2}	1	1	1	-1	-1
χ_{3}	1	1	-1	1	-1
χ_{4}	1	1	-1	-1	1
χ_{5}	$?$	$?$	$?$	$?$	$?$

The entries in the last row can be determined by:
(i) finding the missing irrep, (ii) column orthogonality, (iii) row orthogonality,

Completing a table from partial information

Let G be a nonabelian group of order 8 . Necessarily $G / Z(G) \cong \mathbb{Z}_{2} \times \mathbb{Z}_{2}$, so inflation gives us partial information about the character table.

	1	1	2	2	2
G	1	g_{2}	g_{3}	g_{4}	g_{5}
χ_{1}	1	1	1	1	1
χ_{2}	1	1	1	-1	-1
χ_{3}	1	1	-1	1	-1
χ_{4}	1	1	-1	-1	1
χ_{5}	$?$	$?$	$?$	$?$	$?$

The entries in the last row can be determined by:
(i) finding the missing irrep, (ii) column orthogonality, (iii) row orthogonality, (iv) $\sum_{i} d_{i} \chi_{i}(h)=\chi_{\mathrm{reg}}(h)$,

Completing a table from partial information

Let G be a nonabelian group of order 8 . Necessarily $G / Z(G) \cong \mathbb{Z}_{2} \times \mathbb{Z}_{2}$, so inflation gives us partial information about the character table.

	1	1	2	2	2
G	1	g_{2}	g_{3}	g_{4}	g_{5}
χ_{1}	1	1	1	1	1
χ_{2}	1	1	1	-1	-1
χ_{3}	1	1	-1	1	-1
χ_{4}	1	1	-1	-1	1
χ_{5}	$?$	$?$	$?$	$?$	$?$

The entries in the last row can be determined by:
(i) finding the missing irrep, (ii) column orthogonality, (iii) row orthogonality, (iv) $\sum_{i} d_{i} \chi_{i}(h)=\chi_{\mathrm{reg}}(h)$, ETC.

Completing a table from partial information, Q_{8}, D_{4}

Completing a table from partial information, Q_{8}, D_{4}

The table for either of $D_{4}\left(D_{8}\right)$ or Q_{8} is:

Completing a table from partial information, Q_{8}, D_{4}

The table for either of $D_{4}\left(D_{8}\right)$ or Q_{8} is:

	1	1	2	2	2
G	1	g_{2}	g_{3}	g_{4}	g_{5}
χ_{1}	1	1	1	1	1
χ_{2}	1	1	1	-1	-1
χ_{3}	1	1	-1	1	-1
χ_{4}	1	1	-1	-1	1
χ_{5}	2	-2	0	0	0

Completing a table from partial information, Q_{8}, D_{4}

The table for either of $D_{4}\left(D_{8}\right)$ or Q_{8} is:

	1	1	2	2	2
G	1	g_{2}	g_{3}	g_{4}	g_{5}
χ_{1}	1	1	1	1	1
χ_{2}	1	1	1	-1	-1
χ_{3}	1	1	-1	1	-1
χ_{4}	1	1	-1	-1	1
χ_{5}	2	-2	0	0	0

The groups D_{4} and Q_{8} can be distinguished by the fact that $\operatorname{det}\left(\chi_{5}^{Q_{8}}\right)=\chi_{1} \neq \operatorname{det}\left(\chi_{5}^{D_{4}}\right)$.

Completing a table from partial information, Q_{8}, D_{4}

The table for either of $D_{4}\left(D_{8}\right)$ or Q_{8} is:

	1	1	2	2	2
G	1	g_{2}	g_{3}	g_{4}	g_{5}
χ_{1}	1	1	1	1	1
χ_{2}	1	1	1	-1	-1
χ_{3}	1	1	-1	1	-1
χ_{4}	1	1	-1	-1	1
χ_{5}	2	-2	0	0	0

The groups D_{4} and Q_{8} can be distinguished by the fact that $\operatorname{det}\left(\chi_{5}^{Q_{8}}\right)=\chi_{1} \neq \operatorname{det}\left(\chi_{5}^{D_{4}}\right)$.
$Q_{8}: i \mapsto\left[\begin{array}{rr}i & 0 \\ 0 & -i\end{array}\right], j \mapsto\left[\begin{array}{rr}0 & -1 \\ 1 & 0\end{array}\right] . \quad D_{4}: f \mapsto\left[\begin{array}{rr}1 & 0 \\ 0 & -1\end{array}\right], r \mapsto\left[\begin{array}{rr}0 & -1 \\ 1 & 0\end{array}\right]$.

A_{4}

A_{4}

$A_{4} / K \cong \mathbb{Z}_{3}$, so 3 linear characters arise from inflation.

A_{4}

$A_{4} / K \cong \mathbb{Z}_{3}$, so 3 linear characters arise from inflation. Also, A_{4} acts 2-transitively on $S=\{1,2,3,4\}$, so $\chi_{4}=\chi_{S}-\chi_{1}$ is an irrep of degree 3 .

A_{4}

$A_{4} / K \cong \mathbb{Z}_{3}$, so 3 linear characters arise from inflation. Also, A_{4} acts 2-transitively on $S=\{1,2,3,4\}$, so $\chi_{4}=\chi_{S}-\chi_{1}$ is an irrep of degree 3 . This must be all.

A_{4}

$A_{4} / K \cong \mathbb{Z}_{3}$, so 3 linear characters arise from inflation. Also, A_{4} acts 2-transitively on $S=\{1,2,3,4\}$, so $\chi_{4}=\chi_{S}-\chi_{1}$ is an irrep of degree 3 . This must be all.

	1	3	4	4
A_{4}	1	$\left(\begin{array}{ll}1 & 2\end{array}\right)\left(\begin{array}{ll}3 & 4\end{array}\right)$	$\binom{1}{2}$	$\left(\begin{array}{ll}1 & 2\end{array}\right)$
χ_{1}	1	1	1	1
χ_{2}	1	1	ω	ω^{2}
χ_{3}	1	1	ω^{2}	ω
χ_{4}	3	-1	0	0

$A_{4} / K \cong \mathbb{Z}_{3}$, so 3 linear characters arise from inflation. Also, A_{4} acts 2-transitively on $S=\{1,2,3,4\}$, so $\chi_{4}=\chi_{S}-\chi_{1}$ is an irrep of degree 3 . This must be all.

	1	3	4	4
A_{4}	1	$\left(\begin{array}{ll}1 & 2\end{array}\right)\left(\begin{array}{ll}3 & 4\end{array}\right)$	$\binom{1}{2}$	$\left(\begin{array}{ll}1 & 2\end{array}\right)$
χ_{1}	1	1	1	1
χ_{2}	1	1	ω	ω^{2}
χ_{3}	1	1	ω^{2}	ω
χ_{4}	3	-1	0	0

Another way to produce χ_{4} is to realize A_{4} as the rotation group of the tetrahedron.
$A_{4} / K \cong \mathbb{Z}_{3}$, so 3 linear characters arise from inflation. Also, A_{4} acts 2-transitively on $S=\{1,2,3,4\}$, so $\chi_{4}=\chi_{S}-\chi_{1}$ is an irrep of degree 3 . This must be all.

	1	3	4	4
A_{4}	1	$\left(\begin{array}{ll}1 & 2\end{array}\right)\left(\begin{array}{ll}3 & 4\end{array}\right)$	$\left(\begin{array}{ll}1 & 2\end{array}\right)$	$\left(\begin{array}{ll}13 & 2\end{array}\right)$
χ_{1}	1	1	1	1
χ_{2}	1	1	ω	ω^{2}
χ_{3}	1	1	ω^{2}	ω
χ_{4}	3	-1	0	0

Another way to produce χ_{4} is to realize A_{4} as the rotation group of the tetrahedron. Or use orthogonality.
$A_{4} / K \cong \mathbb{Z}_{3}$, so 3 linear characters arise from inflation. Also, A_{4} acts 2-transitively on $S=\{1,2,3,4\}$, so $\chi_{4}=\chi_{S}-\chi_{1}$ is an irrep of degree 3 . This must be all.

	1	3	4	4
A_{4}	1	$\left(\begin{array}{ll}1 & 2\end{array}\right)\left(\begin{array}{ll}3 & 4\end{array}\right)$	$\left(\begin{array}{ll}1 & 2\end{array}\right)$	$\left(\begin{array}{ll}13 & 2\end{array}\right)$
χ_{1}	1	1	1	1
χ_{2}	1	1	ω	ω^{2}
χ_{3}	1	1	ω^{2}	ω
χ_{4}	3	-1	0	0

Another way to produce χ_{4} is to realize A_{4} as the rotation group of the tetrahedron. Or use orthogonality. Or use the regular representation.

- $S_{4} / K \cong S_{3}$, so S_{4} acquires 3 irreps from S_{3} by inflation.
- $S_{4} / K \cong S_{3}$, so S_{4} acquires 3 irreps from S_{3} by inflation.
- $S_{4} / K \cong S_{3}$, so S_{4} acquires 3 irreps from S_{3} by inflation.
- S_{4} acts 2-transitively on $\{1,2,3,4\}$, so get a degree-3 irrep from that, χ_{4}.
- $S_{4} / K \cong S_{3}$, so S_{4} acquires 3 irreps from S_{3} by inflation.
- S_{4} acts 2-transitively on $\{1,2,3,4\}$, so get a degree-3 irrep from that, χ_{4}.
- $S_{4} / K \cong S_{3}$, so S_{4} acquires 3 irreps from S_{3} by inflation.
- S_{4} acts 2-transitively on $\{1,2,3,4\}$, so get a degree-3 irrep from that, χ_{4}. (The 'standard' representation of S_{n}.)
- $S_{4} / K \cong S_{3}$, so S_{4} acquires 3 irreps from S_{3} by inflation.
- S_{4} acts 2-transitively on $\{1,2,3,4\}$, so get a degree-3 irrep from that, χ_{4}. (The 'standard' representation of S_{n}.)
- By orthogonality,
- $S_{4} / K \cong S_{3}$, so S_{4} acquires 3 irreps from S_{3} by inflation.
- S_{4} acts 2-transitively on $\{1,2,3,4\}$, so get a degree-3 irrep from that, χ_{4}. (The 'standard' representation of S_{n}.)
- By orthogonality,
- $S_{4} / K \cong S_{3}$, so S_{4} acquires 3 irreps from S_{3} by inflation.
- S_{4} acts 2-transitively on $\{1,2,3,4\}$, so get a degree-3 irrep from that, χ_{4}. (The 'standard' representation of S_{n}.)
- By orthogonality, or by realizing S_{4} as the rotation group of the cube,
- $S_{4} / K \cong S_{3}$, so S_{4} acquires 3 irreps from S_{3} by inflation.
- S_{4} acts 2-transitively on $\{1,2,3,4\}$, so get a degree-3 irrep from that, χ_{4}. (The 'standard' representation of S_{n}.)
- By orthogonality, or by realizing S_{4} as the rotation group of the cube, or tensoring the degree-3 irrep with the sign representation
- $S_{4} / K \cong S_{3}$, so S_{4} acquires 3 irreps from S_{3} by inflation.
- S_{4} acts 2-transitively on $\{1,2,3,4\}$, so get a degree-3 irrep from that, χ_{4}. (The 'standard' representation of S_{n}.)
- By orthogonality, or by realizing S_{4} as the rotation group of the cube, or tensoring the degree-3 irrep with the sign representation we get another degree-3 irrep, $\chi_{5}=\chi_{2} \chi_{4}$.
- $S_{4} / K \cong S_{3}$, so S_{4} acquires 3 irreps from S_{3} by inflation.
- S_{4} acts 2-transitively on $\{1,2,3,4\}$, so get a degree-3 irrep from that, χ_{4}. (The 'standard' representation of S_{n}.)
- By orthogonality, or by realizing S_{4} as the rotation group of the cube, or tensoring the degree-3 irrep with the sign representation we get another degree-3 irrep, $\chi_{5}=\chi_{2} \chi_{4}$.

	1	3	6	6	8
S_{4}	1	$\left(\begin{array}{ll}1 & 2\end{array}\right)\left(\begin{array}{ll}3 & 4\end{array}\right)$	$\left(\begin{array}{ll}1 & 2\end{array}\right)$	$\left(\begin{array}{ll}1 & 23\end{array}\right)$	$\left(\begin{array}{ll}1 & 2\end{array}\right)$
χ_{1}	1	1	1	1	1
χ_{2}	1	1	-1	-1	1
χ_{3}	2	2	0	0	-1
χ_{4}	3	-1	1	-1	0
χ_{5}	3	-1	-1	1	0

A_{5}

A_{5}

A_{5} is the smallest nonabelian simple group, which makes it an interesting example.

A_{5}

A_{5} is the smallest nonabelian simple group, which makes it an interesting example.
χ_{1} is the only irrep of degree 1 .

A_{5}

A_{5} is the smallest nonabelian simple group, which makes it an interesting example.
χ_{1} is the only irrep of degree 1 .
$\left.\begin{array}{|c||l|c|c|c|c|}\hline & 1 \\ A_{5} & 1 & \left(\begin{array}{c}15 \\ 1\end{array} 2\right)\left(\begin{array}{ll}3 & 4\end{array}\right) & \begin{array}{c}120 \\ 1\end{array} 23\end{array}\right)$

A_{5}

A_{5} is the smallest nonabelian simple group, which makes it an interesting example.
χ_{1} is the only irrep of degree 1 .

A_{5}	1 1	$\begin{gathered} 15 \\ (12)(34) \\ \hline \end{gathered}$	$\begin{gathered} 20 \\ (123) \\ \hline \end{gathered}$	$\begin{gathered} 12 \\ (12345) \\ \hline \end{gathered}$	$\begin{gathered} 12 \\ (12354) \\ \hline \end{gathered}$
χ_{1}	1	1	1	1	1

A_{5} acts 2-transitively on $\{1,2,3,4,5\}$

A_{5}

A_{5} is the smallest nonabelian simple group, which makes it an interesting example.
χ_{1} is the only irrep of degree 1 .

	1	15	20	12	12
A_{5}	1	(12)(34)	(123)	(12345)	(12354)
χ_{1}	1	1	1	1	1

A_{5} acts 2-transitively on $\{1,2,3,4,5\}$ with permutation character
A_{5} is the smallest nonabelian simple group, which makes it an interesting example.
χ_{1} is the only irrep of degree 1 .

	1				
A_{5}	1	$(12)\left(\begin{array}{c}15\end{array}\right)$	$\left.\begin{array}{c}20 \\ 1\end{array} 23\right)$	$\left(\begin{array}{c}12 \\ 1\end{array} 2345\right)$	$\left(\begin{array}{l}12354\end{array}\right)$
χ_{1}	1	1	1	1	1

A_{5} acts 2-transitively on $\{1,2,3,4,5\}$ with permutation character

A_{5}	1 1	$\begin{gathered} 15 \\ (12)(34) \\ \hline \end{gathered}$	$\begin{gathered} 20 \\ (123) \end{gathered}$	$\begin{gathered} 12 \\ (12345) \\ \hline \end{gathered}$	$\begin{gathered} 12 \\ (12354) \\ \hline \end{gathered}$
π	5	1	2	0	0

A_{5} is the smallest nonabelian simple group, which makes it an interesting example.
χ_{1} is the only irrep of degree 1 .

	1				
A_{5}	1	$(12)\left(\begin{array}{c}34\end{array}\right)$	$\left.\begin{array}{c}20 \\ 1\end{array} 23\right)$	$\left(\begin{array}{c}12 \\ 1\end{array} 2345\right)$	$\left(\begin{array}{c}12354\end{array}\right)$
χ_{1}	1	1	1	1	1

A_{5} acts 2-transitively on $\{1,2,3,4,5\}$ with permutation character

A_{5}	1 1	$\begin{gathered} 15 \\ (12)(34) \\ \hline \end{gathered}$	$\begin{gathered} 20 \\ (123) \end{gathered}$	$\begin{gathered} 12 \\ (12345) \\ \hline \end{gathered}$	$\begin{gathered} 12 \\ (12354) \\ \hline \end{gathered}$
π	5	1	2	0	0

yielding an irrep of degree 4 , with character
A_{5} is the smallest nonabelian simple group, which makes it an interesting example.
χ_{1} is the only irrep of degree 1 .

	1				
A_{5}	1	$(12)\left(\begin{array}{c}34\end{array}\right)$	$\left.\begin{array}{c}20 \\ 1\end{array} 23\right)$	$\left(\begin{array}{c}12 \\ 1\end{array} 2345\right)$	$\left(\begin{array}{c}12354\end{array}\right)$
χ_{1}	1	1	1	1	1

A_{5} acts 2-transitively on $\{1,2,3,4,5\}$ with permutation character

A_{5}	1 1	$\begin{gathered} 15 \\ (12)(34) \\ \hline \end{gathered}$	$\begin{gathered} 20 \\ (123) \\ \hline \end{gathered}$	$\begin{gathered} 12 \\ (12345) \\ \hline \end{gathered}$	$\begin{gathered} 12 \\ (12354) \\ \hline \end{gathered}$
π	5	1	2	0	0

yielding an irrep of degree 4 , with character

	1	15			
A_{5}	1	$(12)(34)$	$\left.\begin{array}{c}20 \\ 123\end{array}\right)$	$\left.\begin{array}{c}12 \\ 1\end{array} 2345\right)$	$\left.\begin{array}{c}12 \\ 1\end{array} 2354\right)$
$\pi-\chi_{1}$	4	0	1	-1	-1

A_{5}

A_{5}

A_{5} acts 2-transitively by conjugation on its six Sylow 5-subgroups with character

A_{5}

A_{5} acts 2-transitively by conjugation on its six Sylow 5-subgroups with character

A_{5}	1 1	$\begin{gathered} 15 \\ (12)(34) \\ \hline \end{gathered}$	$\begin{gathered} 20 \\ (123) \\ \hline \end{gathered}$	$\begin{gathered} 12 \\ (12345) \\ \hline \end{gathered}$	$\begin{gathered} 12 \\ (12354) \\ \hline \end{gathered}$
ξ	6	2	0	1	1

A_{5}

A_{5} acts 2-transitively by conjugation on its six Sylow 5-subgroups with character

A_{5}	1 1	$\begin{gathered} 15 \\ (12)(34) \\ \hline \end{gathered}$	$\begin{gathered} 20 \\ (123) \\ \hline \end{gathered}$	$\begin{gathered} 12 \\ (12345) \\ \hline \end{gathered}$	$\begin{gathered} 12 \\ (12354) \\ \hline \end{gathered}$
ξ	6	2	0	1	1

yielding an irrep of degree 5, with character

A_{5}

A_{5} acts 2-transitively by conjugation on its six Sylow 5-subgroups with character

A_{5}	1	$\begin{gathered} 15 \\ (12)(34) \\ \hline \end{gathered}$	$\begin{gathered} 20 \\ (123) \end{gathered}$	$\begin{gathered} 12 \\ (12345) \\ \hline \end{gathered}$	$\begin{gathered} 12 \\ (12354) \\ \hline \end{gathered}$
ξ	6	2	0	1	1

yielding an irrep of degree 5 , with character

A_{5}	1 1	$\begin{gathered} 15 \\ (12)(34) \\ \hline \end{gathered}$	$\begin{gathered} 20 \\ (123) \\ \hline \end{gathered}$	$\begin{gathered} 12 \\ (12345) \\ \hline \end{gathered}$	$\begin{gathered} 12 \\ (12354) \\ \hline \end{gathered}$
$\xi-\chi_{1}$	5	1	-1	0	0

A_{5}

A_{5}

A_{5} may be realized as the rotation group of the dodecahedron, yielding an irrep of degree 3 .

A_{5}

A_{5} may be realized as the rotation group of the dodecahedron, yielding an irrep of degree 3 . (Char value of a rotation in \mathbb{R}^{3} through $2 \pi / n$ is $1+2 \cos (2 \pi / n)$.)

A_{5}

A_{5} may be realized as the rotation group of the dodecahedron, yielding an irrep of degree 3 . (Char value of a rotation in \mathbb{R}^{3} through $2 \pi / n$ is

$$
1+2 \cos (2 \pi / n) .)
$$

A_{5}	1	15	20		
$(122)(34)$	(123)	(12345)	(12354)		
θ	$1+2 \cos (0)$	$1+2 \cos (\pi)$	$1+2 \cos (2 \pi / 3)$	$1+2 \cos (2 \pi / 5)$	$1+2 \cos (4 \pi / 5)$
θ	3	-1	0	ϕ	$-\phi^{-1}$

A_{5}

A_{5} may be realized as the rotation group of the dodecahedron, yielding an irrep of degree 3 . (Char value of a rotation in \mathbb{R}^{3} through $2 \pi / n$ is
$1+2 \cos (2 \pi / n)$.)

	1	15	20		
A_{5}	1	$(12)(34)$	(123)	(12345)	(12354)
θ	$1+2 \cos (0)$	$1+2 \cos (\pi)$	$1+2 \cos (2 \pi / 3)$	$1+2 \cos (2 \pi / 5)$	$1+2 \cos (4 \pi / 5)$
θ	3	-1	0	ϕ	$-\phi^{-1}$

$\phi=\frac{1+\sqrt{5}}{2}$
A_{5} may be realized as the rotation group of the dodecahedron, yielding an irrep of degree 3 . (Char value of a rotation in \mathbb{R}^{3} through $2 \pi / n$ is
$1+2 \cos (2 \pi / n)$.)

	1	15			
A_{5}	1	$(12)(34)$	(123)	12	(12345)

$\phi=\frac{1+\sqrt{5}}{2}$
If α is the automorphism $\sigma \mapsto(45)^{-1} \sigma(45)$ of A_{5}, then $\theta \circ \alpha$ is irreducible:
$\left.\begin{array}{|c||c|c|c|c|c|}\hline A_{5} & \begin{array}{l}1 \\ 1\end{array} & \begin{array}{c}15 \\ (12)\end{array}\left(\begin{array}{ll}34\end{array}\right) & \begin{array}{c}20 \\ 1\end{array} 23\end{array}\right)$

A_{5}

A_{5}

	1	15	20	12	12
A_{5}	1	$(12)\left(\begin{array}{ll}3 & 4\end{array}\right)$	(123)	(12345)	(12354)
χ_{1}	1	1	1	1	1
χ_{2}	3	-1	0	ϕ	$-\phi^{-1}$
χ_{3}	3	-1	0	$-\phi^{-1}$	ϕ
χ_{4}	4	0	1	-1	-1
χ_{5}	5	1	-1	0	0

A_{5}

	1	15	20	12	12
A_{5}	1	$(12)\left(\begin{array}{ll}3 & 4\end{array}\right)$	(123)	(12345)	(12354)
χ_{1}	1	1	1	1	1
χ_{2}	3	-1	0	ϕ	$-\phi^{-1}$
χ_{3}	3	-1	0	$-\phi^{-1}$	ϕ
χ_{4}	4	0	1	-1	-1
χ_{5}	5	1	-1	0	0

Silly applications

Theorem

If $|G|=p, p$ prime, then G is abelian.

Silly applications

Theorem
 If $|G|=p, p$ prime, then G is abelian.

Proof.

Silly applications

Theorem
 If $|G|=p, p$ prime, then G is abelian.

Proof.

Silly applications

Theorem

If $|G|=p, p$ prime, then G is abelian.

Proof.

The first column of the character table for G consists of at most p integers d_{1}, \ldots, d_{r} such that (i) $d_{1}=1$, (ii) $d_{j} \mid p$ for all j, and (iii) $d_{1}^{2}+\cdots+d_{r}^{2}=p$.

Silly applications

Theorem

If $|G|=p, p$ prime, then G is abelian.

Proof.

The first column of the character table for G consists of at most p integers d_{1}, \ldots, d_{r} such that (i) $d_{1}=1$, (ii) $d_{j} \mid p$ for all j, and (iii) $d_{1}^{2}+\cdots+d_{r}^{2}=p$. It must be that $d_{1}=\cdots=d_{r}=1$, so G is abelian.

Silly applications

Theorem

If $|G|=p, p$ prime, then G is abelian.

Proof.

The first column of the character table for G consists of at most p integers d_{1}, \ldots, d_{r} such that (i) $d_{1}=1$, (ii) $d_{j} \mid p$ for all j, and (iii) $d_{1}^{2}+\cdots+d_{r}^{2}=p$. It must be that $d_{1}=\cdots=d_{r}=1$, so G is abelian.

Theorem

Any group of order <6 is abelian.

Silly applications

Theorem

If $|G|=p, p$ prime, then G is abelian.

Proof.

The first column of the character table for G consists of at most p integers d_{1}, \ldots, d_{r} such that (i) $d_{1}=1$, (ii) $d_{j} \mid p$ for all j, and (iii) $d_{1}^{2}+\cdots+d_{r}^{2}=p$. It must be that $d_{1}=\cdots=d_{r}=1$, so G is abelian.

Theorem

Any group of order <6 is abelian.

Proof.

Same idea.

Silly applications

Theorem

If $|G|=p, p$ prime, then G is abelian.

Proof.

The first column of the character table for G consists of at most p integers d_{1}, \ldots, d_{r} such that (i) $d_{1}=1$, (ii) $d_{j} \mid p$ for all j, and (iii) $d_{1}^{2}+\cdots+d_{r}^{2}=p$. It must be that $d_{1}=\cdots=d_{r}=1$, so G is abelian.

Theorem

Any group of order <6 is abelian.

Proof.

Same idea.

Silly applications

Theorem

If $|G|=p, p$ prime, then G is abelian.

Proof.

The first column of the character table for G consists of at most p integers d_{1}, \ldots, d_{r} such that (i) $d_{1}=1$, (ii) $d_{j} \mid p$ for all j, and (iii) $d_{1}^{2}+\cdots+d_{r}^{2}=p$. It must be that $d_{1}=\cdots=d_{r}=1$, so G is abelian.

Theorem

Any group of order <6 is abelian.

Proof.

Same idea. The smallest number n that is a sum of squares $d_{1}^{2}+\cdots+d_{r}^{2}$ where $d_{1}=1$, some $d_{j}>1$, and all d_{j} divide n is 6 .

More silly applications

Theorem

If $|G|=p^{2}$, p prime, then G is abelian.

More silly applications

> Theorem
> If $|G|=p^{2}, p$ prime, then G is abelian.

Proof.

More silly applications

> Theorem
> If $|G|=p^{2}, p$ prime, then G is abelian.

Proof.

More silly applications

Theorem
 If $|G|=p^{2}$, p prime, then G is abelian.

Proof.
Each degree d_{j} must be $1, p$ or p^{2}.

More silly applications

Theorem

If $|G|=p^{2}$, p prime, then G is abelian.

Proof.

Each degree d_{j} must be $1, p$ or p^{2}. The choices $d_{j}=p$ or p^{2} are too big if $1^{2}+d_{2}^{2}+\cdots+d_{r}^{2}=p^{2}$.

More silly applications

Theorem

If $|G|=p^{2}$, p prime, then G is abelian.

Proof.

Each degree d_{j} must be $1, p$ or p^{2}. The choices $d_{j}=p$ or p^{2} are too big if $1^{2}+d_{2}^{2}+\cdots+d_{r}^{2}=p^{2}$.

Theorem

If $|G|=p q, q<p$ primes, and G is nonabelian, then $p \equiv 1(\bmod q)$.

More silly applications

Theorem

If $|G|=p^{2}$, p prime, then G is abelian.

Proof.

Each degree d_{j} must be $1, p$ or p^{2}. The choices $d_{j}=p$ or p^{2} are too big if $1^{2}+d_{2}^{2}+\cdots+d_{r}^{2}=p^{2}$.

Theorem

If $|G|=p q, q<p$ primes, and G is nonabelian, then $p \equiv 1(\bmod q)$.
Proof.

More silly applications

Theorem

If $|G|=p^{2}$, p prime, then G is abelian.

Proof.

Each degree d_{j} must be $1, p$ or p^{2}. The choices $d_{j}=p$ or p^{2} are too big if $1^{2}+d_{2}^{2}+\cdots+d_{r}^{2}=p^{2}$.

Theorem

If $|G|=p q, q<p$ primes, and G is nonabelian, then $p \equiv 1(\bmod q)$.
Proof.

More silly applications

Theorem

If $|G|=p^{2}$, p prime, then G is abelian.

Proof.

Each degree d_{j} must be $1, p$ or p^{2}. The choices $d_{j}=p$ or p^{2} are too big if $1^{2}+d_{2}^{2}+\cdots+d_{r}^{2}=p^{2}$.

Theorem

If $|G|=p q, q<p$ primes, and G is nonabelian, then $p \equiv 1(\bmod q)$.

Proof.

Possible degrees are $d_{j} \in\{1, q\}$, and some $d_{j}=q$.

More silly applications

Theorem

If $|G|=p^{2}$, p prime, then G is abelian.

Proof.

Each degree d_{j} must be $1, p$ or p^{2}. The choices $d_{j}=p$ or p^{2} are too big if $1^{2}+d_{2}^{2}+\cdots+d_{r}^{2}=p^{2}$.

Theorem

If $|G|=p q, q<p$ primes, and G is nonabelian, then $p \equiv 1(\bmod q)$.

Proof.

Possible degrees are $d_{j} \in\{1, q\}$, and some $d_{j}=q$. Assume that there are m degrees satisfying $d_{j}=q$.

More silly applications

Theorem

If $|G|=p^{2}$, p prime, then G is abelian.

Proof.

Each degree d_{j} must be $1, p$ or p^{2}. The choices $d_{j}=p$ or p^{2} are too big if $1^{2}+d_{2}^{2}+\cdots+d_{r}^{2}=p^{2}$.

Theorem

If $|G|=p q, q<p$ primes, and G is nonabelian, then $p \equiv 1(\bmod q)$.

Proof.

Possible degrees are $d_{j} \in\{1, q\}$, and some $d_{j}=q$. Assume that there are m degrees satisfying $d_{j}=q$. The number of d_{j} equal to 1 is $n:=\left[G: G^{\prime}\right] \in\{1, q, p\}$.

More silly applications

Theorem

If $|G|=p^{2}$, p prime, then G is abelian.

Proof.

Each degree d_{j} must be $1, p$ or p^{2}. The choices $d_{j}=p$ or p^{2} are too big if $1^{2}+d_{2}^{2}+\cdots+d_{r}^{2}=p^{2}$.

Theorem

If $|G|=p q, q<p$ primes, and G is nonabelian, then $p \equiv 1(\bmod q)$.

Proof.

Possible degrees are $d_{j} \in\{1, q\}$, and some $d_{j}=q$. Assume that there are m degrees satisfying $d_{j}=q$. The number of d_{j} equal to 1 is $n:=\left[G: G^{\prime}\right] \in\{1, q, p\}$. We have $p q=d_{1}^{2}+\cdots+d_{r}^{2}=m q^{2}+n$.

More silly applications

Theorem

If $|G|=p^{2}$, p prime, then G is abelian.

Proof.

Each degree d_{j} must be $1, p$ or p^{2}. The choices $d_{j}=p$ or p^{2} are too big if $1^{2}+d_{2}^{2}+\cdots+d_{r}^{2}=p^{2}$.

Theorem

If $|G|=p q, q<p$ primes, and G is nonabelian, then $p \equiv 1(\bmod q)$.

Proof.

Possible degrees are $d_{j} \in\{1, q\}$, and some $d_{j}=q$. Assume that there are m degrees satisfying $d_{j}=q$. The number of d_{j} equal to 1 is $n:=\left[G: G^{\prime}\right] \in\{1, q, p\}$. We have $p q=d_{1}^{2}+\cdots+d_{r}^{2}=m q^{2}+n$. From this, $q \mid n$, so $q=n$.

More silly applications

Theorem

If $|G|=p^{2}$, p prime, then G is abelian.

Proof.

Each degree d_{j} must be $1, p$ or p^{2}. The choices $d_{j}=p$ or p^{2} are too big if $1^{2}+d_{2}^{2}+\cdots+d_{r}^{2}=p^{2}$.

Theorem

If $|G|=p q, q<p$ primes, and G is nonabelian, then $p \equiv 1(\bmod q)$.

Proof.

Possible degrees are $d_{j} \in\{1, q\}$, and some $d_{j}=q$. Assume that there are m degrees satisfying $d_{j}=q$. The number of d_{j} equal to 1 is $n:=\left[G: G^{\prime}\right] \in\{1, q, p\}$. We have $p q=d_{1}^{2}+\cdots+d_{r}^{2}=m q^{2}+n$. From this, $q \mid n$, so $q=n$. Dividing $p q=m q^{2}+q$ by q we get $p=m q+1$.

Unsilly applications

Theorem

A finite nonabelian simple group G has no conjugacy class h^{G} of prime power size other than the class $\{1\}$.

Unsilly applications

Theorem

A finite nonabelian simple group G has no conjugacy class h^{G} of prime power size other than the class $\{1\}$.

Proof.

Unsilly applications

Theorem

A finite nonabelian simple group G has no conjugacy class h^{G} of prime power size other than the class $\{1\}$.

Proof.

Unsilly applications

Theorem

A finite nonabelian simple group G has no conjugacy class h^{G} of prime power size other than the class $\{1\}$.

Proof.

If $\chi \in \operatorname{Irr}(G)$ is not the principal character, then $K_{\chi}=Z_{\chi}=\{1\}$, since these are proper normal subgroups.

Unsilly applications

Theorem

A finite nonabelian simple group G has no conjugacy class h^{G} of prime power size other than the class $\{1\}$.

Proof.

If $\chi \in \operatorname{Irr}(G)$ is not the principal character, then $K_{\chi}=Z_{\chi}=\{1\}$, since these are proper normal subgroups. If p is the prime of the theorem, then $p \nmid \chi(1)$ implies $\chi(h)=0$ for any such χ.

Unsilly applications

Theorem

A finite nonabelian simple group G has no conjugacy class h^{G} of prime power size other than the class $\{1\}$.

Proof.

If $\chi \in \operatorname{Irr}(G)$ is not the principal character, then $K_{\chi}=Z_{\chi}=\{1\}$, since these are proper normal subgroups. If p is the prime of the theorem, then $p \nmid \chi(1)$ implies $\chi(h)=0$ for any such χ. Column orthogonality, applied to the columns of 1 and h, yields $1+\chi_{2}(1) \chi_{2}(h)+\cdots+\chi_{r}(1) \chi_{r}(h)=0$,

Unsilly applications

Theorem

A finite nonabelian simple group G has no conjugacy class h^{G} of prime power size other than the class $\{1\}$.

Proof.

If $\chi \in \operatorname{Irr}(G)$ is not the principal character, then $K_{\chi}=Z_{\chi}=\{1\}$, since these are proper normal subgroups. If p is the prime of the theorem, then $p \nmid \chi(1)$ implies $\chi(h)=0$ for any such χ. Column orthogonality, applied to the columns of 1 and h, yields $1+\chi_{2}(1) \chi_{2}(h)+\cdots+\chi_{r}(1) \chi_{r}(h)=0$, hence

$$
\left(\chi_{2}(1) \chi_{2}(h)\right) / p+\cdots+\left(\chi_{r}(1) \chi_{r}(h)\right) / p=-1 / p .
$$

Unsilly applications

Theorem

A finite nonabelian simple group G has no conjugacy class h^{G} of prime power size other than the class $\{1\}$.

Proof.

If $\chi \in \operatorname{Irr}(G)$ is not the principal character, then $K_{\chi}=Z_{\chi}=\{1\}$, since these are proper normal subgroups. If p is the prime of the theorem, then $p \nmid \chi(1)$ implies $\chi(h)=0$ for any such χ. Column orthogonality, applied to the columns of 1 and h, yields $1+\chi_{2}(1) \chi_{2}(h)+\cdots+\chi_{r}(1) \chi_{r}(h)=0$, hence

$$
\left(\chi_{2}(1) \chi_{2}(h)\right) / p+\cdots+\left(\chi_{r}(1) \chi_{r}(h)\right) / p=-1 / p .
$$

Each summand on the left is an algebraic integer, but $-1 / p$ is not.

Unsilly applications

Theorem

If G is a finite nonabelian simple group and H is a subgroup of prime power index, then H is centerless.

Unsilly applications

Theorem

If G is a finite nonabelian simple group and H is a subgroup of prime power index, then H is centerless.

Unsilly applications

Theorem

If G is a finite nonabelian simple group and H is a subgroup of prime power index, then H is centerless.

Unsilly applications

Theorem

If G is a finite nonabelian simple group and H is a subgroup of prime power index, then H is centerless.
(This is a restatement of the previous theorem in the language of subgroups instead of conjugacy classes.)

Unsilly applications

Theorem

If G is a finite nonabelian simple group and H is a subgroup of prime power index, then H is centerless.
(This is a restatement of the previous theorem in the language of subgroups instead of conjugacy classes.)

Let's see:

Unsilly applications

Theorem

If G is a finite nonabelian simple group and H is a subgroup of prime power index, then H is centerless.
(This is a restatement of the previous theorem in the language of subgroups instead of conjugacy classes.)

Let's see:

Unsilly applications

Theorem

If G is a finite nonabelian simple group and H is a subgroup of prime power index, then H is centerless.
(This is a restatement of the previous theorem in the language of subgroups instead of conjugacy classes.)

Let's see:

If H is a subgroup of G of p-power index with a nontrivial central element h,

Unsilly applications

Theorem

If G is a finite nonabelian simple group and H is a subgroup of prime power index, then H is centerless.
(This is a restatement of the previous theorem in the language of subgroups instead of conjugacy classes.)

Let's see:

If H is a subgroup of G of p-power index with a nontrivial central element h, then h^{G} is a conjugacy class of G of p-power size.

Unsilly applications

Theorem

If G is a finite nonabelian simple group and H is a subgroup of prime power index, then H is centerless.
(This is a restatement of the previous theorem in the language of subgroups instead of conjugacy classes.)

Let's see:

If H is a subgroup of G of p-power index with a nontrivial central element h, then h^{G} is a conjugacy class of G of p-power size. Conversely if h^{G} is a conjugacy class of G of p-power size,

Unsilly applications

Theorem

If G is a finite nonabelian simple group and H is a subgroup of prime power index, then H is centerless.
(This is a restatement of the previous theorem in the language of subgroups instead of conjugacy classes.)

Let's see:

If H is a subgroup of G of p-power index with a nontrivial central element h, then h^{G} is a conjugacy class of G of p-power size. Conversely if h^{G} is a conjugacy class of G of p-power size, then $C_{G}(h)$ is a subgroup of G of p-power index with a nontrivial central element h.

Unsilly applications

Theorem

If G is a finite nonabelian simple group and H is a subgroup of prime power index, then H is centerless.
(This is a restatement of the previous theorem in the language of subgroups instead of conjugacy classes.)

Let's see:

If H is a subgroup of G of p-power index with a nontrivial central element h, then h^{G} is a conjugacy class of G of p-power size. Conversely if h^{G} is a conjugacy class of G of p-power size, then $C_{G}(h)$ is a subgroup of G of p-power index with a nontrivial central element h.

Burnside's $p^{a} q^{b}$ Theorem

Theorem

There is no nonabelian simple group G such that $|G|=p^{a} q^{b}, p, q$ primes.

Burnside's $p^{a} q^{b}$ Theorem

Theorem

There is no nonabelian simple group G such that $|G|=p^{a} q^{b}, p, q$ primes.

Proof.

Burnside's $p^{a} q^{b}$ Theorem

Theorem

There is no nonabelian simple group G such that $|G|=p^{a} q^{b}, p, q$ primes.

Proof.

Burnside's $p^{a} q^{b}$ Theorem

Theorem

There is no nonabelian simple group G such that $|G|=p^{a} q^{b}, p, q$ primes.

Proof.

Apply the preceding theorem to $H \in \operatorname{Syl}_{p}(G)$ to derive a contradiction.

Burnside's $p^{a} q^{b}$ Theorem

Theorem

There is no nonabelian simple group G such that $|G|=p^{a} q^{b}, p, q$ primes.

Proof.

Apply the preceding theorem to $H \in \operatorname{Syl}_{p}(G)$ to derive a contradiction.

Corollary

If $|G|=p^{a} q^{b}, p, q$ primes, then G is solvable.

Burnside's $p^{a} q^{b}$ Theorem

Theorem

There is no nonabelian simple group G such that $|G|=p^{a} q^{b}, p, q$ primes.

Proof.

Apply the preceding theorem to $H \in \operatorname{Syl}_{p}(G)$ to derive a contradiction.

Corollary

If $|G|=p^{a} q^{b}, p, q$ primes, then G is solvable.

Proof.

Burnside's $p^{a} q^{b}$ Theorem

Theorem

There is no nonabelian simple group G such that $|G|=p^{a} q^{b}, p, q$ primes.

Proof.

Apply the preceding theorem to $H \in \operatorname{Syl}_{p}(G)$ to derive a contradiction.

Corollary

If $|G|=p^{a} q^{b}, p, q$ primes, then G is solvable.

Proof.

Burnside's $p^{a} q^{b}$ Theorem

Theorem

There is no nonabelian simple group G such that $|G|=p^{a} q^{b}, p, q$ primes.

Proof.

Apply the preceding theorem to $H \in \operatorname{Syl}_{p}(G)$ to derive a contradiction.

Corollary

If $|G|=p^{a} q^{b}, p, q$ primes, then G is solvable.

Proof.

If $|G|=p^{a} q^{b}$ and G is not solvable, then it must have a nonabelian simple section G^{\prime} whose order divides $p^{a} q^{b}$.

Burnside's $p^{a} q^{b}$ Theorem

Theorem

There is no nonabelian simple group G such that $|G|=p^{a} q^{b}, p, q$ primes.

Proof.

Apply the preceding theorem to $H \in \operatorname{Syl}_{p}(G)$ to derive a contradiction.

Corollary

If $|G|=p^{a} q^{b}, p, q$ primes, then G is solvable.

Proof.

If $|G|=p^{a} q^{b}$ and G is not solvable, then it must have a nonabelian simple section G^{\prime} whose order divides $p^{a} q^{b}$. There is no such group.

A theorem about simple groups

A theorem about simple groups

Theorem

If G is a nonabelian simple group and some irreducible character degree is a prime p, then the Sylow p-subgroups of G have order p.

A theorem about simple groups

Theorem

If G is a nonabelian simple group and some irreducible character degree is a prime p, then the Sylow p-subgroups of G have order p.

A theorem about simple groups

Theorem

If G is a nonabelian simple group and some irreducible character degree is a prime p, then the Sylow p-subgroups of G have order p.

Recall, as an example:

A theorem about simple groups

Theorem

If G is a nonabelian simple group and some irreducible character degree is a prime p, then the Sylow p-subgroups of G have order p.

Recall, as an example:

	1	15	20	12	12
A_{5}	1	$(12)\left(\begin{array}{ll}3 & 4\end{array}\right)$	(123)	(12345)	(12354)
χ_{1}	1	1	1	1	1
χ_{2}	3	-1	0	ϕ	$-\phi^{-1}$
χ_{3}	3	-1	0	$-\phi^{-1}$	ϕ
χ_{4}	4	0	1	-1	-1
χ_{5}	5	1	-1	0	0

A theorem about simple groups

Theorem

If G is a nonabelian simple group and some irreducible character degree is a prime p, then the Sylow p-subgroups of G have order p.

Recall, as an example:

	1	15	20	12	12
A_{5}	1	$(12)\left(\begin{array}{ll}3 & 4\end{array}\right)$	(123)	(12345)	(12354)
χ_{1}	1	1	1	1	1
χ_{2}	3	-1	0	ϕ	$-\phi^{-1}$
χ_{3}	3	-1	0	$-\phi^{-1}$	ϕ
χ_{4}	4	0	1	-1	-1
χ_{5}	5	1	-1	0	0

A theorem about simple groups

Theorem

If G is a nonabelian simple group and some irreducible character degree is a prime p, then the Sylow p-subgroups of G have order p.

Recall, as an example:

	1	15	20	12	12
A_{5}	1	$(12)\left(\begin{array}{ll}3 & 4\end{array}\right)$	(123)	(12345)	(12354)
χ_{1}	1	1	1	1	1
χ_{2}	3	-1	0	ϕ	$-\phi^{-1}$
χ_{3}	3	-1	0	$-\phi^{-1}$	ϕ
χ_{4}	4	0	1	-1	-1
χ_{5}	5	1	-1	0	0

A theorem about simple groups

Theorem

If G is a nonabelian simple group and some irreducible character degree is a prime p, then the Sylow p-subgroups of G have order p.

Recall, as an example:

	1	15	20	12	12
A_{5}	1	$(12)\left(\begin{array}{ll}3 & 4\end{array}\right)$	(123)	(12345)	(12354)
χ_{1}	1	1	1	1	1
χ_{2}	3	-1	0	ϕ	$-\phi^{-1}$
χ_{3}	3	-1	0	$-\phi^{-1}$	ϕ
χ_{4}	4	0	1	-1	-1
χ_{5}	5	1	-1	0	0

A theorem about simple groups

Theorem

If G is a nonabelian simple group and some irreducible character degree is a prime p, then the Sylow p-subgroups of G have order p.

Recall, as an example:

	1	15	20	12	12
A_{5}	1	$(12)\left(\begin{array}{ll}3 & 4\end{array}\right)$	(123)	(12345)	(12354)
χ_{1}	1	1	1	1	1
χ_{2}	3	-1	0	ϕ	$-\phi^{-1}$
χ_{3}	3	-1	0	$-\phi^{-1}$	ϕ
χ_{4}	4	0	1	-1	-1
χ_{5}	5	1	-1	0	0

There are zeros at the centers of the colored crosses.

Preliminaries

Preliminaries

Let G be a nonabelian simple group with irreducible character ψ of degree p.

Preliminaries

Let G be a nonabelian simple group with irreducible character ψ of degree p. If $\rho: G \rightarrow \operatorname{GL}(p, \mathbb{C})$ affords ψ, then ρ is faithful.

Preliminaries

Let G be a nonabelian simple group with irreducible character ψ of degree p. If $\rho: G \rightarrow \operatorname{GL}(p, \mathbb{C})$ affords ψ, then ρ is faithful. In fact, $K_{\psi}=Z_{\psi}=\{1\}$.

Preliminaries

Let G be a nonabelian simple group with irreducible character ψ of degree p. If $\rho: G \rightarrow \operatorname{GL}(p, \mathbb{C})$ affords ψ, then ρ is faithful. In fact, $K_{\psi}=Z_{\psi}=\{1\}$.

Let P be a Sylow p-subgroup of G.

Preliminaries

Let G be a nonabelian simple group with irreducible character ψ of degree p. If $\rho: G \rightarrow \operatorname{GL}(p, \mathbb{C})$ affords ψ, then ρ is faithful. In fact, $K_{\psi}=Z_{\psi}=\{1\}$.

Let P be a Sylow p-subgroup of G. Choose any $z \in Z(P) \backslash\{1\}$.

Preliminaries

Let G be a nonabelian simple group with irreducible character ψ of degree p. If $\rho: G \rightarrow \operatorname{GL}(p, \mathbb{C})$ affords ψ, then ρ is faithful. In fact, $K_{\psi}=Z_{\psi}=\{1\}$.

Let P be a Sylow p-subgroup of G. Choose any $z \in Z(P) \backslash\{1\} .\left[G: C_{G}(z)\right]$ divides $[G: P]$, hence z^{G} has size prime to p.

Preliminaries

Let G be a nonabelian simple group with irreducible character ψ of degree p. If $\rho: G \rightarrow \operatorname{GL}(p, \mathbb{C})$ affords ψ, then ρ is faithful. In fact, $K_{\psi}=Z_{\psi}=\{1\}$.

Let P be a Sylow p-subgroup of G. Choose any $z \in Z(P) \backslash\{1\} .\left[G: C_{G}(z)\right]$ divides $[G: P]$, hence z^{G} has size prime to p. Thus $\psi(z)=0$ for any $z \in Z(P) \backslash\{1\}$.

Preliminaries

Let G be a nonabelian simple group with irreducible character ψ of degree p. If $\rho: G \rightarrow \operatorname{GL}(p, \mathbb{C})$ affords ψ, then ρ is faithful. In fact, $K_{\psi}=Z_{\psi}=\{1\}$.

Let P be a Sylow p-subgroup of G. Choose any $z \in Z(P) \backslash\{1\} .\left[G: C_{G}(z)\right]$ divides $[G: P]$, hence z^{G} has size prime to p. Thus $\psi(z)=0$ for any $z \in Z(P) \backslash\{1\}$.

What we are seeing here is important:

Preliminaries

Let G be a nonabelian simple group with irreducible character ψ of degree p. If $\rho: G \rightarrow \operatorname{GL}(p, \mathbb{C})$ affords ψ, then ρ is faithful. In fact, $K_{\psi}=Z_{\psi}=\{1\}$.

Let P be a Sylow p-subgroup of G. Choose any $z \in Z(P) \backslash\{1\} .\left[G: C_{G}(z)\right]$ divides $[G: P]$, hence z^{G} has size prime to p. Thus $\psi(z)=0$ for any $z \in Z(P) \backslash\{1\}$.

What we are seeing here is important: a character is vanishing on the nonidentity elements of a subgroup, $Z(P)$.

Recognizing multiples of the regular representation

Recognizing multiples of the regular representation

Lemma
 Let $\rho: H \rightarrow G L(n, \mathbb{C})$ be a (not necessarily irreducible) representation of a finite group, and let ψ be the character afforded by ρ. If ψ vanishes on $H \backslash\{1\}$, then $|H|$ divides $\psi(1)$.

Recognizing multiples of the regular representation

Lemma
 Let $\rho: H \rightarrow G L(n, \mathbb{C})$ be a (not necessarily irreducible) representation of a finite group, and let ψ be the character afforded by ρ. If ψ vanishes on $H \backslash\{1\}$, then $|H|$ divides $\psi(1)$.

Recognizing multiples of the regular representation

```
Lemma
Let \(\rho: H \rightarrow G L(n, \mathbb{C})\) be a (not necessarily irreducible) representation of a finite group, and let \(\psi\) be the character afforded by \(\rho\). If \(\psi\) vanishes on \(H \backslash\{1\}\), then \(|H|\) divides \(\psi(1)\).
Thus, \(\psi\) is a multiple of the regular character,
```


Recognizing multiples of the regular representation

Lemma

Let $\rho: H \rightarrow G L(n, \mathbb{C})$ be a (not necessarily irreducible) representation of a finite group, and let ψ be the character afforded by ρ. If ψ vanishes on $H \backslash\{1\}$, then $|H|$ divides $\psi(1)$.
Thus, ψ is a multiple of the regular character, and so ρ is a multiple of the regular representation.

Recognizing multiples of the regular representation

Lemma

Let $\rho: H \rightarrow G L(n, \mathbb{C})$ be a (not necessarily irreducible) representation of a finite group, and let ψ be the character afforded by ρ. If ψ vanishes on $H \backslash\{1\}$, then $|H|$ divides $\psi(1)$.
Thus, ψ is a multiple of the regular character, and so ρ is a multiple of the regular representation.

Proof.

Recognizing multiples of the regular representation

Lemma

Let $\rho: H \rightarrow G L(n, \mathbb{C})$ be a (not necessarily irreducible) representation of a finite group, and let ψ be the character afforded by ρ. If ψ vanishes on $H \backslash\{1\}$, then $|H|$ divides $\psi(1)$.
Thus, ψ is a multiple of the regular character, and so ρ is a multiple of the regular representation.

Proof.

Recognizing multiples of the regular representation

Lemma

Let $\rho: H \rightarrow G L(n, \mathbb{C})$ be a (not necessarily irreducible) representation of a finite group, and let ψ be the character afforded by ρ. If ψ vanishes on $H \backslash\{1\}$, then $|H|$ divides $\psi(1)$.
Thus, ψ is a multiple of the regular character, and so ρ is a multiple of the regular representation.

Proof.

Compare χ_{1} and ψ :

	1	k_{2}	\cdots	k_{r}
H	1	a_{2}	\cdots	a_{r}
χ_{1}	1	1	\cdots	1
ψ	$\psi(1)$	0	\cdots	0

Recognizing multiples of the regular representation

Lemma

Let $\rho: H \rightarrow G L(n, \mathbb{C})$ be a (not necessarily irreducible) representation of a finite group, and let ψ be the character afforded by ρ. If ψ vanishes on $H \backslash\{1\}$, then $|H|$ divides $\psi(1)$.
Thus, ψ is a multiple of the regular character, and so ρ is a multiple of the regular representation.

Proof.

Compare χ_{1} and ψ :

H	1	k_{2}	\cdots	k_{r}
H	1	a_{2}	\cdots	a_{r}
χ_{1}	1	1	\cdots	1
ψ	$\psi(1)$	0	\cdots	0

$\left\langle\chi_{1}, \psi\right\rangle=\frac{\psi(1)}{|H|}$ must be an integer.

Recognizing multiples of the regular representation

Lemma

Let $\rho: H \rightarrow G L(n, \mathbb{C})$ be a (not necessarily irreducible) representation of a finite group, and let ψ be the character afforded by ρ. If ψ vanishes on $H \backslash\{1\}$, then $|H|$ divides $\psi(1)$.
Thus, ψ is a multiple of the regular character, and so ρ is a multiple of the regular representation.

Proof.

Compare χ_{1} and ψ :

H	1	k_{2}	\cdots	k_{r}
H	1	a_{2}	\cdots	a_{r}
χ_{1}	1	1	\cdots	1
ψ	$\psi(1)$	0	\cdots	0

$\left\langle\chi_{1}, \psi\right\rangle=\frac{\psi(1)}{|H|}$ must be an integer. Now use that representations are determined by their characters.

Proof of theorem

Proof of theorem

To be proved: If G is simple and there is an irreducible representation $\rho: G \rightarrow \mathrm{GL}(p, \mathbb{C})$ (affording $\psi)$ then a Sylow p-subgroup $P \leq G$ has order p.

Proof of theorem

To be proved: If G is simple and there is an irreducible representation $\rho: G \rightarrow \mathrm{GL}(p, \mathbb{C})($ affording $\psi)$ then a Sylow p-subgroup $P \leq G$ has order p.

Proof.

We have shown that $\psi_{Z(P)}$ vanishes on the nonidentity elements of $Z(P)$.

Proof of theorem

To be proved: If G is simple and there is an irreducible representation $\rho: G \rightarrow \mathrm{GL}(p, \mathbb{C})($ affording $\psi)$ then a Sylow p-subgroup $P \leq G$ has order p.

Proof.

We have shown that $\psi_{Z(P)}$ vanishes on the nonidentity elements of $Z(P)$.

Proof of theorem

To be proved: If G is simple and there is an irreducible representation $\rho: G \rightarrow \mathrm{GL}(p, \mathbb{C})($ affording $\psi)$ then a Sylow p-subgroup $P \leq G$ has order p.

Proof.

We have shown that $\psi_{Z(P)}$ vanishes on the nonidentity elements of $Z(P)$. Hence $|Z(P)|$ divides $\psi_{Z(P)}(1)=\psi(1)=p$.

Proof of theorem

To be proved: If G is simple and there is an irreducible representation $\rho: G \rightarrow \mathrm{GL}(p, \mathbb{C})($ affording $\psi)$ then a Sylow p-subgroup $P \leq G$ has order p.

Proof.

We have shown that $\psi_{Z(P)}$ vanishes on the nonidentity elements of $Z(P)$. Hence $|Z(P)|$ divides $\psi_{Z(P)}(1)=\psi(1)=p$. Hence $|Z(P)|=p$.

Proof of theorem

To be proved: If G is simple and there is an irreducible representation $\rho: G \rightarrow \mathrm{GL}(p, \mathbb{C})($ affording $\psi)$ then a Sylow p-subgroup $P \leq G$ has order p.

Proof.

We have shown that $\psi_{Z(P)}$ vanishes on the nonidentity elements of $Z(P)$. Hence $|Z(P)|$ divides $\psi_{Z(P)}(1)=\psi(1)=p$. Hence $|Z(P)|=p$. Moreover, $\rho_{Z(P)}$ is a (1-)multiple of the regular representation of $Z(P)$,

Proof of theorem

To be proved: If G is simple and there is an irreducible representation $\rho: G \rightarrow \operatorname{GL}(p, \mathbb{C})($ affording $\psi)$ then a Sylow p-subgroup $P \leq G$ has order p.

Proof.

We have shown that $\psi_{Z(P)}$ vanishes on the nonidentity elements of $Z(P)$. Hence $|Z(P)|$ divides $\psi_{Z(P)}(1)=\psi(1)=p$. Hence $|Z(P)|=p$. Moreover, $\rho_{Z(P)}$ is a (1-)multiple of the regular representation of $Z(P)$, so if $z \in Z(P)$ is a generator, then $\rho(z)$ has distinct e-values.

Proof of theorem

To be proved: If G is simple and there is an irreducible representation $\rho: G \rightarrow \operatorname{GL}(p, \mathbb{C})($ affording $\psi)$ then a Sylow p-subgroup $P \leq G$ has order p.

Proof.

We have shown that $\psi_{Z(P)}$ vanishes on the nonidentity elements of $Z(P)$. Hence $|Z(P)|$ divides $\psi_{Z(P)}(1)=\psi(1)=p$. Hence $|Z(P)|=p$. Moreover, $\rho_{Z(P)}$ is a (1-)multiple of the regular representation of $Z(P)$, so if $z \in Z(P)$ is a generator, then $\rho(z)$ has distinct e-values. It follows that $C_{\mathrm{GL}(p, \mathbb{C})}(z)$ consists of diagonal matrices, hence is abelian.

Proof of theorem

To be proved: If G is simple and there is an irreducible representation $\rho: G \rightarrow \operatorname{GL}(p, \mathbb{C})($ affording $\psi)$ then a Sylow p-subgroup $P \leq G$ has order p.

Proof.

We have shown that $\psi_{Z(P)}$ vanishes on the nonidentity elements of $Z(P)$. Hence $|Z(P)|$ divides $\psi_{Z(P)}(1)=\psi(1)=p$. Hence $|Z(P)|=p$. Moreover, $\rho_{Z(P)}$ is a (1-)multiple of the regular representation of $Z(P)$, so if $z \in Z(P)$ is a generator, then $\rho(z)$ has distinct e-values. It follows that $C_{\mathrm{GL}(p, \mathrm{C})}(z)$ consists of diagonal matrices, hence is abelian. Hence $C_{G}(z)$ is abelian.

Proof of theorem

To be proved: If G is simple and there is an irreducible representation $\rho: G \rightarrow \operatorname{GL}(p, \mathbb{C})($ affording $\psi)$ then a Sylow p-subgroup $P \leq G$ has order p.

Proof.

We have shown that $\psi_{Z(P)}$ vanishes on the nonidentity elements of $Z(P)$. Hence $|Z(P)|$ divides $\psi_{Z(P)}(1)=\psi(1)=p$. Hence $|Z(P)|=p$. Moreover, $\rho_{Z(P)}$ is a (1-)multiple of the regular representation of $Z(P)$, so if $z \in Z(P)$ is a generator, then $\rho(z)$ has distinct e-values. It follows that $C_{\mathrm{GL}(p, \mathbb{C})}(z)$ consists of diagonal matrices, hence is abelian. Hence $C_{G}(z)$ is abelian. Since $P \subseteq C_{G}(z), P$ is abelian.

Proof of theorem

To be proved: If G is simple and there is an irreducible representation $\rho: G \rightarrow \operatorname{GL}(p, \mathbb{C})($ affording $\psi)$ then a Sylow p-subgroup $P \leq G$ has order p.

Proof.

We have shown that $\psi_{Z(P)}$ vanishes on the nonidentity elements of $Z(P)$. Hence $|Z(P)|$ divides $\psi_{Z(P)}(1)=\psi(1)=p$. Hence $|Z(P)|=p$. Moreover, $\rho_{Z(P)}$ is a (1-)multiple of the regular representation of $Z(P)$, so if $z \in Z(P)$ is a generator, then $\rho(z)$ has distinct e-values. It follows that $C_{\mathrm{GL}(p, \mathbb{C})}(z)$ consists of diagonal matrices, hence is abelian. Hence $C_{G}(z)$ is abelian. Since $P \subseteq C_{G}(z), P$ is abelian. Hence $P=Z(P)$,

Proof of theorem

To be proved: If G is simple and there is an irreducible representation $\rho: G \rightarrow \operatorname{GL}(p, \mathbb{C})($ affording $\psi)$ then a Sylow p-subgroup $P \leq G$ has order p.

Proof.

We have shown that $\psi_{Z(P)}$ vanishes on the nonidentity elements of $Z(P)$. Hence $|Z(P)|$ divides $\psi_{Z(P)}(1)=\psi(1)=p$. Hence $|Z(P)|=p$. Moreover, $\rho_{Z(P)}$ is a (1-)multiple of the regular representation of $Z(P)$, so if $z \in Z(P)$ is a generator, then $\rho(z)$ has distinct e-values. It follows that $C_{\mathrm{GL}(p, \mathbb{C})}(z)$ consists of diagonal matrices, hence is abelian. Hence $C_{G}(z)$ is abelian. Since $P \subseteq C_{G}(z), P$ is abelian. Hence $P=Z(P)$, which has order p.

Proof of theorem

To be proved: If G is simple and there is an irreducible representation $\rho: G \rightarrow \operatorname{GL}(p, \mathbb{C})($ affording $\psi)$ then a Sylow p-subgroup $P \leq G$ has order p.

Proof.

We have shown that $\psi_{Z(P)}$ vanishes on the nonidentity elements of $Z(P)$. Hence $|Z(P)|$ divides $\psi_{Z(P)}(1)=\psi(1)=p$. Hence $|Z(P)|=p$. Moreover, $\rho_{Z(P)}$ is a (1-)multiple of the regular representation of $Z(P)$, so if $z \in Z(P)$ is a generator, then $\rho(z)$ has distinct e-values. It follows that $C_{\mathrm{GL}(p, \mathbb{C})}(z)$ consists of diagonal matrices, hence is abelian. Hence $C_{G}(z)$ is abelian. Since $P \subseteq C_{G}(z), P$ is abelian. Hence $P=Z(P)$, which has order p.

The converse is false.

Proof of theorem

To be proved: If G is simple and there is an irreducible representation $\rho: G \rightarrow \operatorname{GL}(p, \mathbb{C})($ affording $\psi)$ then a Sylow p-subgroup $P \leq G$ has order p.

Proof.

We have shown that $\psi_{Z(P)}$ vanishes on the nonidentity elements of $Z(P)$. Hence $|Z(P)|$ divides $\psi_{Z(P)}(1)=\psi(1)=p$. Hence $|Z(P)|=p$. Moreover, $\rho_{Z(P)}$ is a (1-)multiple of the regular representation of $Z(P)$, so if $z \in Z(P)$ is a generator, then $\rho(z)$ has distinct e-values. It follows that $C_{\mathrm{GL}(p, \mathbb{C})}(z)$ consists of diagonal matrices, hence is abelian. Hence $C_{G}(z)$ is abelian. Since $P \subseteq C_{G}(z), P$ is abelian. Hence $P=Z(P)$, which has order p.

The converse is false. $\mathrm{PSL}_{2}(q)$ has Sylow 3-subgroups of size 3 for infinitely many prime powers q, but only $\operatorname{PSL}_{2}(5)$ and $\operatorname{PSL}_{2}(7)$ have irreps of degree 3 .

