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whenever v # 0.

@ B s alternating if B(v,v) = 0 forevery v € V.

We may write # L v to mean B(u,v) = 0, and say that u is orthogonal (or
perpendicular) to v.

If V is a space with a bilinear form, then the relation L is symmetric (u L v iff
v L u) iff the form is symmetric or alternating (Thm 6.6.2 of BA1).
“Alternating” means every vector is orthogonal to itself.

“Nondegenerate” means no nonzero vector is orthogonal to the entire space.
We may write u™ for {v € V | u L v}. This is a codimension 1 subspace of V.
Alternating implies antisymmetric. Converse holds if char(F) # 2.
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Let (V;B(x,y)) be a f.d. vector space with a bilinear form. If

B = (ey,...,ey) is an ordered basis for V, then vectors u € V may be
represented by column vectors in ",

Ifu=aje; + -+ auey, then

u]p =
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so the value of B(u, v) is determined by [u]3, [v|5, and the values B(e;, ¢;). In
fact, if [B]g = [B(ei, ¢j)] = M then

B(u,v) = [uls[Bls[vls = [u]'M[v].
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Change of basis

If B=(ey,...,ey)and C = (f1,...,f,) are ordered bases for V, and
T = ¢[idy]p is the change of basis matrix from basis B to basis C, then

Wle=T-[ulzp, [Blg=T[Blc-T.

Call matrices M and N congruent if there is an invertible matrix 7 such that
M = T'NT. We wish to classify possible matrices for a symplectic form
B(x,y), up to congruence.

Symplectic Vector Spaces 4/6



Symplectic Vector Spaces



Thm. Any symplectic vector space (V; B(x,y)) has a symplectic basis
B = (elafb LR envfn)a

Symplectic Vector Spaces



Thm. Any symplectic vector space (V; B(x,y)) has a symplectic basis
B = (e1,fi,-.--,en,fn), With respect which B has block diagonal form

Symplectic Vector Spaces



Thm. Any symplectic vector space (V; B(x,y)) has a symplectic basis
B = (e1,fi,-.--,en,fn), With respect which B has block diagonal form

0O S 0
[Bls =
00 S

Symplectic Vector Spaces



Thm. Any symplectic vector space (V; B(x,y)) has a symplectic basis
B = (e1,fi,-.--,en,fn), With respect which B has block diagonal form

0O S 0
[Bls =
00 S

0 1
whereS—[_1 0]'

Symplectic Vector Spaces



Thm. Any symplectic vector space (V; B(x,y)) has a symplectic basis
B = (e1,fi,-.--,en,fn), With respect which B has block diagonal form

S0 --- 0
0 S 0
[B]s =
00 S
0 1 . ..
where S = _1 O] . If V; = span(e;, f;) and B; is the restriction of B to V;,

then the (V;, Bi(x,y)) are 2-dimensional symplectic subspaces of V, and V is
the orthogonal direct sum of these subspaces.

Symplectic Vector Spaces



Thm. Any symplectic vector space (V; B(x,y)) has a symplectic basis
B = (e1,fi,-.--,en,fn), With respect which B has block diagonal form

S0 --- 0
0 S 0
[B]s =
00 S
0 1 . ..
where S = _1 O] . If V; = span(e;, f;) and B; is the restriction of B to V;,

then the (V;, Bi(x,y)) are 2-dimensional symplectic subspaces of V, and V is
the orthogonal direct sum of these subspaces. (The V; are called “hyperbolic
planes”.)
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Q MatrixofBonHl@Hf-hasform [g 2}
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