A symplectic \mathbb{F} -vector space is an \mathbb{F} -vector space V equipped with a nondegenerate, alternating, bilinear form $B \colon V \times V \to \mathbb{F}$.

1 B is **bilinear** if $B(v, \underline{\ })$ and $B(\underline{\ }, v)$ are linear maps $V \to \mathbb{F}$ for each $v \in V$.

- **1** B is **bilinear** if $B(v, \underline{\ })$ and $B(\underline{\ }, v)$ are linear maps $V \to \mathbb{F}$ for each $v \in V$.
- **②** *B* is **nondegenerate** is the functionals $B(v, _)$ and $B(_, v)$ are nonzero whenever $v \neq 0$.

- **1** B is **bilinear** if $B(v, \underline{\ })$ and $B(\underline{\ }, v)$ are linear maps $V \to \mathbb{F}$ for each $v \in V$.
- **②** *B* is **nondegenerate** is the functionals $B(v, _)$ and $B(_, v)$ are nonzero whenever $v \neq 0$.
- **3** *B* is **alternating** if B(v, v) = 0 for every $v \in V$.

- **1** B is **bilinear** if $B(v, \underline{\ })$ and $B(\underline{\ }, v)$ are linear maps $V \to \mathbb{F}$ for each $v \in V$.
- **②** *B* is **nondegenerate** is the functionals $B(v, _)$ and $B(_, v)$ are nonzero whenever $v \neq 0$.
- **3** *B* is **alternating** if B(v, v) = 0 for every $v \in V$.

A symplectic \mathbb{F} -vector space is an \mathbb{F} -vector space V equipped with a nondegenerate, alternating, bilinear form $B \colon V \times V \to \mathbb{F}$.

- **1** B is **bilinear** if $B(v, \underline{\ })$ and $B(\underline{\ }, v)$ are linear maps $V \to \mathbb{F}$ for each $v \in V$.
- **②** *B* is **nondegenerate** is the functionals $B(v, _)$ and $B(_, v)$ are nonzero whenever $v \neq 0$.
- **3** B is alternating if B(v, v) = 0 for every $v \in V$.

We may write $u \perp v$ to mean B(u, v) = 0, and say that u is orthogonal (or perpendicular) to v.

A symplectic \mathbb{F} -vector space is an \mathbb{F} -vector space V equipped with a nondegenerate, alternating, bilinear form $B \colon V \times V \to \mathbb{F}$.

- **1** B is **bilinear** if $B(v, \underline{\ })$ and $B(\underline{\ }, v)$ are linear maps $V \to \mathbb{F}$ for each $v \in V$.
- **②** *B* is **nondegenerate** is the functionals $B(v, _)$ and $B(_, v)$ are nonzero whenever $v \neq 0$.
- **3** *B* is **alternating** if B(v, v) = 0 for every $v \in V$.

We may write $u \perp v$ to mean B(u, v) = 0, and say that u is orthogonal (or perpendicular) to v.

If *V* is a space with a bilinear form, then the relation \bot is symmetric ($u \bot v$ iff $v \bot u$) iff the form is symmetric or alternating (Thm 6.6.2 of BA1).

A symplectic \mathbb{F} -vector space is an \mathbb{F} -vector space V equipped with a nondegenerate, alternating, bilinear form $B \colon V \times V \to \mathbb{F}$.

- **1** B is **bilinear** if $B(v, \underline{\ })$ and $B(\underline{\ }, v)$ are linear maps $V \to \mathbb{F}$ for each $v \in V$.
- **②** *B* is **nondegenerate** is the functionals $B(v, _)$ and $B(_, v)$ are nonzero whenever $v \neq 0$.
- **3** *B* is **alternating** if B(v, v) = 0 for every $v \in V$.

We may write $u \perp v$ to mean B(u, v) = 0, and say that u is orthogonal (or perpendicular) to v.

If V is a space with a bilinear form, then the relation \bot is symmetric ($u \bot v$ iff $v \bot u$) iff the form is symmetric or alternating (Thm 6.6.2 of BA1). "Alternating" means every vector is orthogonal to itself.

A symplectic \mathbb{F} -vector space is an \mathbb{F} -vector space V equipped with a nondegenerate, alternating, bilinear form $B \colon V \times V \to \mathbb{F}$.

- **1** B is **bilinear** if $B(v, \underline{\ })$ and $B(\underline{\ }, v)$ are linear maps $V \to \mathbb{F}$ for each $v \in V$.
- **②** *B* is **nondegenerate** is the functionals $B(v, _)$ and $B(_, v)$ are nonzero whenever $v \neq 0$.
- **3** B is alternating if B(v, v) = 0 for every $v \in V$.

We may write $u \perp v$ to mean B(u, v) = 0, and say that u is orthogonal (or perpendicular) to v.

If V is a space with a bilinear form, then the relation \bot is symmetric ($u \bot v$ iff $v \bot u$) iff the form is symmetric or alternating (Thm 6.6.2 of BA1).

"Alternating" means every vector is orthogonal to itself.

"Nondegenerate" means no nonzero vector is orthogonal to the entire space.

A symplectic \mathbb{F} -vector space is an \mathbb{F} -vector space V equipped with a nondegenerate, alternating, bilinear form $B \colon V \times V \to \mathbb{F}$.

- **1** B is **bilinear** if $B(v, \underline{\ })$ and $B(\underline{\ }, v)$ are linear maps $V \to \mathbb{F}$ for each $v \in V$.
- **②** *B* is **nondegenerate** is the functionals $B(v, _)$ and $B(_, v)$ are nonzero whenever $v \neq 0$.
- **3** *B* is **alternating** if B(v, v) = 0 for every $v \in V$.

We may write $u \perp v$ to mean B(u, v) = 0, and say that u is orthogonal (or perpendicular) to v.

If *V* is a space with a bilinear form, then the relation \bot is symmetric ($u \bot v$ iff $v \bot u$) iff the form is symmetric or alternating (Thm 6.6.2 of BA1).

- "Alternating" means every vector is orthogonal to itself.
- "Nondegenerate" means no nonzero vector is orthogonal to the entire space. We may write u^{\perp} for $\{v \in V \mid u \perp v\}$.

A symplectic \mathbb{F} -vector space is an \mathbb{F} -vector space V equipped with a nondegenerate, alternating, bilinear form $B \colon V \times V \to \mathbb{F}$.

- **1** B is **bilinear** if $B(v, \underline{\ })$ and $B(\underline{\ }, v)$ are linear maps $V \to \mathbb{F}$ for each $v \in V$.
- **②** *B* is **nondegenerate** is the functionals $B(v, _)$ and $B(_, v)$ are nonzero whenever $v \neq 0$.
- **3** *B* is **alternating** if B(v, v) = 0 for every $v \in V$.

We may write $u \perp v$ to mean B(u, v) = 0, and say that u is orthogonal (or perpendicular) to v.

If V is a space with a bilinear form, then the relation \bot is symmetric ($u \bot v$ iff $v \bot u$) iff the form is symmetric or alternating (Thm 6.6.2 of BA1).

- "Alternating" means every vector is orthogonal to itself.
- "Nondegenerate" means no nonzero vector is orthogonal to the entire space.

We may write u^{\perp} for $\{v \in V \mid u \perp v\}$. This is a codimension 1 subspace of V.

A symplectic \mathbb{F} -vector space is an \mathbb{F} -vector space V equipped with a nondegenerate, alternating, bilinear form $B \colon V \times V \to \mathbb{F}$.

- **1** B is **bilinear** if $B(v, _)$ and $B(_, v)$ are linear maps $V \to \mathbb{F}$ for each $v \in V$.
- **②** *B* is **nondegenerate** is the functionals $B(v, _)$ and $B(_, v)$ are nonzero whenever $v \neq 0$.
- **3** *B* is **alternating** if B(v, v) = 0 for every $v \in V$.

We may write $u \perp v$ to mean B(u, v) = 0, and say that u is orthogonal (or perpendicular) to v.

If V is a space with a bilinear form, then the relation \bot is symmetric ($u \bot v$ iff $v \bot u$) iff the form is symmetric or alternating (Thm 6.6.2 of BA1).

- "Alternating" means every vector is orthogonal to itself.
- "Nondegenerate" means no nonzero vector is orthogonal to the entire space.

We may write u^{\perp} for $\{v \in V \mid u \perp v\}$. This is a codimension 1 subspace of V. Alternating implies antisymmetric. Converse holds if $\operatorname{char}(\mathbb{F}) \neq 2$.

Let $\langle V; B(x, y) \rangle$ be a f.d. vector space with a bilinear form.

Let $\langle V; B(x, y) \rangle$ be a f.d. vector space with a bilinear form. If $\mathcal{B} = (e_1, \dots, e_n)$ is an ordered basis for V, then vectors $u \in V$ may be represented by column vectors in \mathbb{F}^n .

Let $\langle V; B(x, y) \rangle$ be a f.d. vector space with a bilinear form. If $\mathcal{B} = (e_1, \dots, e_n)$ is an ordered basis for V, then vectors $u \in V$ may be represented by column vectors in \mathbb{F}^n .

If
$$u = \alpha_1 e_1 + \cdots + \alpha_n e_n$$
, then

$$[u]_{\mathcal{B}} = \begin{bmatrix} \alpha_1 \\ \vdots \\ \alpha_n \end{bmatrix}$$

Let $\langle V; B(x,y) \rangle$ be a f.d. vector space with a bilinear form. If $\mathcal{B} = (e_1, \dots, e_n)$ is an ordered basis for V, then vectors $u \in V$ may be represented by column vectors in \mathbb{F}^n .

If
$$u = \alpha_1 e_1 + \cdots + \alpha_n e_n$$
, then

$$[u]_{\mathcal{B}} = \begin{bmatrix} \alpha_1 \\ \vdots \\ \alpha_n \end{bmatrix}$$

If
$$v = \beta_1 e_1 + \cdots + \beta_n e_n$$
, then

Let $\langle V; B(x, y) \rangle$ be a f.d. vector space with a bilinear form. If $\mathcal{B} = (e_1, \dots, e_n)$ is an ordered basis for V, then vectors $u \in V$ may be represented by column vectors in \mathbb{F}^n .

If $u = \alpha_1 e_1 + \cdots + \alpha_n e_n$, then

$$[u]_{\mathcal{B}} = \begin{bmatrix} \alpha_1 \\ \vdots \\ \alpha_n \end{bmatrix}$$

If
$$v = \beta_1 e_1 + \dots + \beta_n e_n$$
, then
$$B(u, v) = B(\alpha_1 e_1 + \dots + \alpha_n e_n, \beta_1 e_1 + \dots + \beta_n e_n)$$
$$= \sum_{i,j} \alpha_i \beta_j B(e_i, e_j)$$

Let $\langle V; B(x, y) \rangle$ be a f.d. vector space with a bilinear form. If $\mathcal{B} = (e_1, \dots, e_n)$ is an ordered basis for V, then vectors $u \in V$ may be represented by column vectors in \mathbb{F}^n .

If $u = \alpha_1 e_1 + \cdots + \alpha_n e_n$, then

$$[u]_{\mathcal{B}} = \begin{bmatrix} \alpha_1 \\ \vdots \\ \alpha_n \end{bmatrix}$$

If $v = \beta_1 e_1 + \cdots + \beta_n e_n$, then

$$B(u,v) = B(\alpha_1 e_1 + \dots + \alpha_n e_n, \beta_1 e_1 + \dots + \beta_n e_n)$$

= $\sum_{i,j} \alpha_i \beta_j B(e_i, e_j)$

so the value of B(u, v) is determined by $[u]_{\mathcal{B}}, [v]_{\mathcal{B}}$, and the values $B(e_i, e_j)$. In fact, if $[B]_{\mathcal{B}} = [B(e_i, e_j)] = M$ then

Let $\langle V; B(x, y) \rangle$ be a f.d. vector space with a bilinear form. If $\mathcal{B} = (e_1, \dots, e_n)$ is an ordered basis for V, then vectors $u \in V$ may be represented by column vectors in \mathbb{F}^n .

If $u = \alpha_1 e_1 + \cdots + \alpha_n e_n$, then

$$[u]_{\mathcal{B}} = \begin{bmatrix} \alpha_1 \\ \vdots \\ \alpha_n \end{bmatrix}$$

If $v = \beta_1 e_1 + \cdots + \beta_n e_n$, then

$$B(u,v) = B(\alpha_1 e_1 + \dots + \alpha_n e_n, \beta_1 e_1 + \dots + \beta_n e_n)$$

= $\sum_{i,j} \alpha_i \beta_j B(e_i, e_j)$

so the value of B(u, v) is determined by $[u]_{\mathcal{B}}$, $[v]_{\mathcal{B}}$, and the values $B(e_i, e_j)$. In fact, if $[B]_{\mathcal{B}} = [B(e_i, e_j)] = M$ then

$$B(u,v) = [u]_{\mathcal{B}}^t [B]_{\mathcal{B}}[v]_{\mathcal{B}} = [u]^t M[v].$$

If $\mathcal{B} = (e_1, \dots, e_n)$ and $\mathcal{C} = (f_1, \dots, f_n)$ are ordered bases for V,

If $\mathcal{B} = (e_1, \dots, e_n)$ and $\mathcal{C} = (f_1, \dots, f_n)$ are ordered bases for V, and $T = \mathcal{C}[\mathrm{id}_V]_{\mathcal{B}}$ is the change of basis matrix from basis \mathcal{B} to basis \mathcal{C} , then

If $\mathcal{B} = (e_1, \dots, e_n)$ and $\mathcal{C} = (f_1, \dots, f_n)$ are ordered bases for V, and $T = \mathcal{C}[\mathrm{id}_V]_{\mathcal{B}}$ is the change of basis matrix from basis \mathcal{B} to basis \mathcal{C} , then

$$[u]_{\mathcal{C}}=T\cdot [u]_{\mathcal{B}},$$

If $\mathcal{B} = (e_1, \dots, e_n)$ and $\mathcal{C} = (f_1, \dots, f_n)$ are ordered bases for V, and $T = \mathcal{C}[\mathrm{id}_V]_{\mathcal{B}}$ is the change of basis matrix from basis \mathcal{B} to basis \mathcal{C} , then

$$[u]_{\mathcal{C}} = T \cdot [u]_{\mathcal{B}}, \qquad [B]_{\mathcal{B}} = T^t \cdot [B]_{\mathcal{C}} \cdot T.$$

If $\mathcal{B} = (e_1, \dots, e_n)$ and $\mathcal{C} = (f_1, \dots, f_n)$ are ordered bases for V, and $T = \mathcal{C}[\mathrm{id}_V]_{\mathcal{B}}$ is the change of basis matrix from basis \mathcal{B} to basis \mathcal{C} , then

$$[u]_{\mathcal{C}} = T \cdot [u]_{\mathcal{B}}, \qquad [B]_{\mathcal{B}} = T^t \cdot [B]_{\mathcal{C}} \cdot T.$$

Call matrices M and N congruent if there is an invertible matrix T such that $M = T^t NT$. We wish to classify possible matrices for a symplectic form B(x, y), up to congruence.

Thm. Any symplectic vector space $\langle V; B(x,y) \rangle$ has a **symplectic basis** $\mathcal{B} = (e_1, f_1, \dots, e_n, f_n)$,

Thm. Any symplectic vector space $\langle V; B(x,y) \rangle$ has a **symplectic basis** $\mathcal{B} = (e_1, f_1, \dots, e_n, f_n)$, with respect which B has block diagonal form

Thm. Any symplectic vector space $\langle V; B(x,y) \rangle$ has a **symplectic basis** $\mathcal{B} = (e_1, f_1, \dots, e_n, f_n)$, with respect which B has block diagonal form

$$[B]_{\mathcal{B}} = \begin{bmatrix} S & 0 & \cdots & 0 \\ 0 & S & & 0 \\ \vdots & & \ddots & \vdots \\ 0 & 0 & \cdots & S \end{bmatrix}$$

Thm. Any symplectic vector space $\langle V; B(x,y) \rangle$ has a **symplectic basis** $\mathcal{B} = (e_1, f_1, \dots, e_n, f_n)$, with respect which B has block diagonal form

$$[B]_{\mathcal{B}} = \begin{bmatrix} S & 0 & \cdots & 0 \\ 0 & S & & 0 \\ \vdots & & \ddots & \vdots \\ 0 & 0 & \cdots & S \end{bmatrix}$$

where
$$S = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}$$
.

Thm. Any symplectic vector space $\langle V; B(x,y) \rangle$ has a **symplectic basis** $\mathcal{B} = (e_1, f_1, \dots, e_n, f_n)$, with respect which B has block diagonal form

$$[B]_{\mathcal{B}} = \begin{bmatrix} S & 0 & \cdots & 0 \\ 0 & S & & 0 \\ \vdots & & \ddots & \vdots \\ 0 & 0 & \cdots & S \end{bmatrix}$$

where $S = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}$. If $V_i = \operatorname{span}(e_i, f_i)$ and B_i is the restriction of B to V_i , then the $\langle V_i, B_i(x, y) \rangle$ are 2-dimensional symplectic subspaces of V, and V is the orthogonal direct sum of these subspaces.

Thm. Any symplectic vector space $\langle V; B(x,y) \rangle$ has a **symplectic basis** $\mathcal{B} = (e_1, f_1, \dots, e_n, f_n)$, with respect which B has block diagonal form

$$[B]_{\mathcal{B}} = \begin{bmatrix} S & 0 & \cdots & 0 \\ 0 & S & & 0 \\ \vdots & & \ddots & \vdots \\ 0 & 0 & \cdots & S \end{bmatrix}$$

where $S = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}$. If $V_i = \operatorname{span}(e_i, f_i)$ and B_i is the restriction of B to V_i , then the $\langle V_i, B_i(x, y) \rangle$ are 2-dimensional symplectic subspaces of V, and V is the orthogonal direct sum of these subspaces. (The V_i are called "hyperbolic planes".)

The proof

• Let e_1 be any nonzero vector.

- Let e_1 be any nonzero vector.
- \bullet e_1^{\perp} has codimension 1, so choose f_1 such that $B(e_1, f_1) \neq 0$.

- Let e_1 be any nonzero vector.
- \bullet e_1^{\perp} has codimension 1, so choose f_1 such that $B(e_1, f_1) \neq 0$.

- Let e_1 be any nonzero vector.
- ② e_1^{\perp} has codimension 1, so choose f_1 such that $B(e_1, f_1) \neq 0$. May assume, after scaling f_1 , that $B(e_1, f_1) = 1$.

- Let e_1 be any nonzero vector.
- ② e_1^{\perp} has codimension 1, so choose f_1 such that $B(e_1, f_1) \neq 0$. May assume, after scaling f_1 , that $B(e_1, f_1) = 1$.
- $e_1^{\perp} \neq f_1^{\perp}$, since $f_1 \in f_1^{\perp} e_1^{\perp}$.

- Let e_1 be any nonzero vector.
- ② e_1^{\perp} has codimension 1, so choose f_1 such that $B(e_1, f_1) \neq 0$. May assume, after scaling f_1 , that $B(e_1, f_1) = 1$.
- $e_1^{\perp} \neq f_1^{\perp}$, since $f_1 \in f_1^{\perp} e_1^{\perp}$.

- Let e_1 be any nonzero vector.
- ② e_1^{\perp} has codimension 1, so choose f_1 such that $B(e_1, f_1) \neq 0$. May assume, after scaling f_1 , that $B(e_1, f_1) = 1$.
- **1** $e_1^{\perp} \neq f_1^{\perp}$, since $f_1 \in f_1^{\perp} e_1^{\perp}$. (Similarly, $e_1 \in e_1^{\perp} f_1^{\perp}$.)

- Let e_1 be any nonzero vector.
- ② e_1^{\perp} has codimension 1, so choose f_1 such that $B(e_1, f_1) \neq 0$. May assume, after scaling f_1 , that $B(e_1, f_1) = 1$.
- **1** $e_1^{\perp} \neq f_1^{\perp}$, since $f_1 \in f_1^{\perp} e_1^{\perp}$. (Similarly, $e_1 \in e_1^{\perp} f_1^{\perp}$.)
- **1** Let $H_1 = \text{span}(e_1, f_1)$.

- Let e_1 be any nonzero vector.
- ② e_1^{\perp} has codimension 1, so choose f_1 such that $B(e_1, f_1) \neq 0$. May assume, after scaling f_1 , that $B(e_1, f_1) = 1$.
- $lackbox{0}\ e_1^\perp
 eq f_1^\perp$, since $f_1 \in f_1^\perp e_1^\perp$. (Similarly, $e_1 \in e_1^\perp f_1^\perp$.)
- Let $H_1 = \text{span}(e_1, f_1)$.
- \bullet $B(x,y)|_{H_1}$ has matrix S relative to $\{e_1,f_1\}$.

- Let e_1 be any nonzero vector.
- ② e_1^{\perp} has codimension 1, so choose f_1 such that $B(e_1, f_1) \neq 0$. May assume, after scaling f_1 , that $B(e_1, f_1) = 1$.
- **1** $e_1^{\perp} \neq f_1^{\perp}$, since $f_1 \in f_1^{\perp} e_1^{\perp}$. (Similarly, $e_1 \in e_1^{\perp} f_1^{\perp}$.)
- **1** Let $H_1 = \text{span}(e_1, f_1)$.
- \bullet $B(x,y)|_{H_1}$ has matrix S relative to $\{e_1,f_1\}$.
- \bullet $H_1^{\perp} = e_1^{\perp} \cap f_1^{\perp}$ has codimension 2.

- Let e_1 be any nonzero vector.
- ② e_1^{\perp} has codimension 1, so choose f_1 such that $B(e_1, f_1) \neq 0$. May assume, after scaling f_1 , that $B(e_1, f_1) = 1$.
- **1** $e_1^{\perp} \neq f_1^{\perp}$, since $f_1 \in f_1^{\perp} e_1^{\perp}$. (Similarly, $e_1 \in e_1^{\perp} f_1^{\perp}$.)
- Let $H_1 = \text{span}(e_1, f_1)$.
- \bullet $B(x,y)|_{H_1}$ has matrix S relative to $\{e_1,f_1\}$.
- $\bullet \ H_1^{\perp} = e_1^{\perp} \cap f_1^{\perp} \text{ has codimension 2.}$
- $H_1 \cap H_1^{\perp} = \{0\},\$

- Let e_1 be any nonzero vector.
- ② e_1^{\perp} has codimension 1, so choose f_1 such that $B(e_1, f_1) \neq 0$. May assume, after scaling f_1 , that $B(e_1, f_1) = 1$.
- **1** $e_1^{\perp} \neq f_1^{\perp}$, since $f_1 \in f_1^{\perp} e_1^{\perp}$. (Similarly, $e_1 \in e_1^{\perp} f_1^{\perp}$.)
- Let $H_1 = \text{span}(e_1, f_1)$.
- \bullet $B(x,y)|_{H_1}$ has matrix S relative to $\{e_1,f_1\}$.
- $\bullet \ H_1^{\perp} = e_1^{\perp} \cap f_1^{\perp} \text{ has codimension 2.}$
- $H_1 \cap H_1^{\perp} = \{0\},\$

- Let e_1 be any nonzero vector.
- ② e_1^{\perp} has codimension 1, so choose f_1 such that $B(e_1, f_1) \neq 0$. May assume, after scaling f_1 , that $B(e_1, f_1) = 1$.
- **1** $e_1^{\perp} \neq f_1^{\perp}$, since $f_1 \in f_1^{\perp} e_1^{\perp}$. (Similarly, $e_1 \in e_1^{\perp} f_1^{\perp}$.)
- **1** Let $H_1 = \text{span}(e_1, f_1)$.
- \bullet $B(x,y)|_{H_1}$ has matrix S relative to $\{e_1,f_1\}$.
- $\bullet \ H_1^{\perp} = e_1^{\perp} \cap f_1^{\perp} \text{ has codimension 2.}$

- Let e_1 be any nonzero vector.
- ② e_1^{\perp} has codimension 1, so choose f_1 such that $B(e_1, f_1) \neq 0$. May assume, after scaling f_1 , that $B(e_1, f_1) = 1$.
- **1** $e_1^{\perp} \neq f_1^{\perp}$, since $f_1 \in f_1^{\perp} e_1^{\perp}$. (Similarly, $e_1 \in e_1^{\perp} f_1^{\perp}$.)
- Let $H_1 = \text{span}(e_1, f_1)$.
- \bullet $B(x,y)|_{H_1}$ has matrix S relative to $\{e_1,f_1\}$.
- $H_1^{\perp} = e_1^{\perp} \cap f_1^{\perp}$ has codimension 2.
- $\bullet H_1 \cap H_1^{\perp} = \{0\}, V = H_1 + H_1^{\perp}, H_1 \perp H_1^{\perp}.$

- Let e_1 be any nonzero vector.
- ② e_1^{\perp} has codimension 1, so choose f_1 such that $B(e_1, f_1) \neq 0$. May assume, after scaling f_1 , that $B(e_1, f_1) = 1$.
- **1** $e_1^{\perp} \neq f_1^{\perp}$, since $f_1 \in f_1^{\perp} e_1^{\perp}$. (Similarly, $e_1 \in e_1^{\perp} f_1^{\perp}$.)
- Let $H_1 = \text{span}(e_1, f_1)$.
- \bullet $B(x,y)|_{H_1}$ has matrix S relative to $\{e_1,f_1\}$.
- $H_1^{\perp} = e_1^{\perp} \cap f_1^{\perp}$ has codimension 2.
- $\bullet H_1 \cap H_1^{\perp} = \{0\}, V = H_1 + H_1^{\perp}, H_1 \perp H_1^{\perp}.$
- § $B(x,y)|_{H_1^{\perp}}$ is a symplectic form on H_1^{\perp} .

- Let e_1 be any nonzero vector.
- ② e_1^{\perp} has codimension 1, so choose f_1 such that $B(e_1, f_1) \neq 0$. May assume, after scaling f_1 , that $B(e_1, f_1) = 1$.
- **1** $e_1^{\perp} \neq f_1^{\perp}$, since $f_1 \in f_1^{\perp} e_1^{\perp}$. (Similarly, $e_1 \in e_1^{\perp} f_1^{\perp}$.)
- Let $H_1 = \text{span}(e_1, f_1)$.
- \bullet $B(x,y)|_{H_1}$ has matrix S relative to $\{e_1,f_1\}$.
- $H_1^{\perp} = e_1^{\perp} \cap f_1^{\perp}$ has codimension 2.
- $\bullet H_1 \cap H_1^{\perp} = \{0\}, V = H_1 + H_1^{\perp}, H_1 \perp H_1^{\perp}.$
- § $B(x,y)|_{H_1^{\perp}}$ is a symplectic form on H_1^{\perp} .

- Let e_1 be any nonzero vector.
- ② e_1^{\perp} has codimension 1, so choose f_1 such that $B(e_1, f_1) \neq 0$. May assume, after scaling f_1 , that $B(e_1, f_1) = 1$.
- **1** $e_1^{\perp} \neq f_1^{\perp}$, since $f_1 \in f_1^{\perp} e_1^{\perp}$. (Similarly, $e_1 \in e_1^{\perp} f_1^{\perp}$.)
- **1** Let $H_1 = \text{span}(e_1, f_1)$.
- \bullet $B(x,y)|_{H_1}$ has matrix S relative to $\{e_1,f_1\}$.
- **6** $H_1^{\perp} = e_1^{\perp} \cap f_1^{\perp}$ has codimension 2.
- $\bullet H_1 \cap H_1^{\perp} = \{0\}, V = H_1 + H_1^{\perp}, H_1 \perp H_1^{\perp}.$
- \bullet $B(x,y)|_{H_1^{\perp}}$ is a symplectic form on H_1^{\perp} .
- Matrix of B on $H_1 \oplus H_1^{\perp}$ has form $\left[\begin{array}{c|c} S & 0 \\ \hline 0 & * \end{array}\right]$.