Symplectic Vector Spaces

Symplectic vector spaces

Symplectic vector spaces

A symplectic \mathbb{F}-vector space is an \mathbb{F}-vector space V equipped with a nondegenerate, alternating, bilinear form $B: V \times V \rightarrow \mathbb{F}$.

Symplectic vector spaces

A symplectic \mathbb{F}-vector space is an \mathbb{F}-vector space V equipped with a nondegenerate, alternating, bilinear form $B: V \times V \rightarrow \mathbb{F}$.
© B is bilinear if $B\left(v,{ }_{-}\right)$and $B\left({ }_{-}, v\right)$ are linear maps $V \rightarrow \mathbb{F}$ for each $v \in V$.

Symplectic vector spaces

A symplectic \mathbb{F}-vector space is an \mathbb{F}-vector space V equipped with a nondegenerate, alternating, bilinear form $B: V \times V \rightarrow \mathbb{F}$.
(1) B is bilinear if $B\left(v,{ }_{-}\right)$and $B\left(_, v\right)$ are linear maps $V \rightarrow \mathbb{F}$ for each $v \in V$.
(2) B is nondegenerate is the functionals $B\left(v,{ }_{-}\right)$and $B\left(_, v\right)$ are nonzero whenever $v \neq 0$.

Symplectic vector spaces

A symplectic \mathbb{F}-vector space is an \mathbb{F}-vector space V equipped with a nondegenerate, alternating, bilinear form $B: V \times V \rightarrow \mathbb{F}$.
(1) B is bilinear if $B\left(v,{ }_{-}\right)$and $B\left({ }_{-}, v\right)$ are linear maps $V \rightarrow \mathbb{F}$ for each $v \in V$.
(2) B is nondegenerate is the functionals $B\left(v,{ }_{-}\right)$and $B\left(_, v\right)$ are nonzero whenever $v \neq 0$.
(3) B is alternating if $B(v, v)=0$ for every $v \in V$.

Symplectic vector spaces

A symplectic \mathbb{F}-vector space is an \mathbb{F}-vector space V equipped with a nondegenerate, alternating, bilinear form $B: V \times V \rightarrow \mathbb{F}$.
(1) B is bilinear if $B\left(v,{ }_{-}\right)$and $B\left({ }_{-}, v\right)$ are linear maps $V \rightarrow \mathbb{F}$ for each $v \in V$.
(2) B is nondegenerate is the functionals $B\left(v,{ }_{-}\right)$and $B\left(_, v\right)$ are nonzero whenever $v \neq 0$.
(3) B is alternating if $B(v, v)=0$ for every $v \in V$.

Symplectic vector spaces

A symplectic \mathbb{F}-vector space is an \mathbb{F}-vector space V equipped with a nondegenerate, alternating, bilinear form $B: V \times V \rightarrow \mathbb{F}$.
(1) B is bilinear if $B\left(v,{ }_{-}\right)$and $B\left({ }_{-}, v\right)$ are linear maps $V \rightarrow \mathbb{F}$ for each $v \in V$.
(2) B is nondegenerate is the functionals $B\left(v,{ }_{-}\right)$and $B\left(_, v\right)$ are nonzero whenever $v \neq 0$.
(3) B is alternating if $B(v, v)=0$ for every $v \in V$.

We may write $u \perp v$ to mean $B(u, v)=0$, and say that u is orthogonal (or perpendicular) to v.

Symplectic vector spaces

A symplectic \mathbb{F}-vector space is an \mathbb{F}-vector space V equipped with a nondegenerate, alternating, bilinear form $B: V \times V \rightarrow \mathbb{F}$.
(1) B is bilinear if $B\left(v,{ }_{-}\right)$and $B\left({ }_{-}, v\right)$ are linear maps $V \rightarrow \mathbb{F}$ for each $v \in V$.
(2) B is nondegenerate is the functionals $B\left(v,{ }_{-}\right)$and $B\left(_, v\right)$ are nonzero whenever $v \neq 0$.
(3) B is alternating if $B(v, v)=0$ for every $v \in V$.

We may write $u \perp v$ to mean $B(u, v)=0$, and say that u is orthogonal (or perpendicular) to v.
If V is a space with a bilinear form, then the relation \perp is symmetric ($u \perp v$ iff
$v \perp u$) iff the form is symmetric or alternating (Thm 6.6.2 of BA1).

Symplectic vector spaces

A symplectic \mathbb{F}-vector space is an \mathbb{F}-vector space V equipped with a nondegenerate, alternating, bilinear form $B: V \times V \rightarrow \mathbb{F}$.
(1) B is bilinear if $B\left(v,{ }_{-}\right)$and $B\left({ }_{-}, v\right)$ are linear maps $V \rightarrow \mathbb{F}$ for each $v \in V$.
(2) B is nondegenerate is the functionals $B\left(v,,_{-}\right)$and $B\left(_, v\right)$ are nonzero whenever $v \neq 0$.
(3) B is alternating if $B(v, v)=0$ for every $v \in V$.

We may write $u \perp v$ to mean $B(u, v)=0$, and say that u is orthogonal (or perpendicular) to v.
If V is a space with a bilinear form, then the relation \perp is symmetric ($u \perp v$ iff
$v \perp u$) iff the form is symmetric or alternating (Thm 6.6.2 of BA1).
"Alternating" means every vector is orthogonal to itself.

Symplectic vector spaces

A symplectic \mathbb{F}-vector space is an \mathbb{F}-vector space V equipped with a nondegenerate, alternating, bilinear form $B: V \times V \rightarrow \mathbb{F}$.
(1) B is bilinear if $B\left(v,{ }_{-}\right)$and $B\left({ }_{-}, v\right)$ are linear maps $V \rightarrow \mathbb{F}$ for each $v \in V$.
(c) B is nondegenerate is the functionals $B\left(v,{ }_{-}\right)$and $B\left(_, v\right)$ are nonzero whenever $v \neq 0$.
(3) B is alternating if $B(v, v)=0$ for every $v \in V$.

We may write $u \perp v$ to mean $B(u, v)=0$, and say that u is orthogonal (or perpendicular) to v.
If V is a space with a bilinear form, then the relation \perp is symmetric ($u \perp v$ iff
$v \perp u$) iff the form is symmetric or alternating (Thm 6.6.2 of BA1).
"Alternating" means every vector is orthogonal to itself.
"Nondegenerate" means no nonzero vector is orthogonal to the entire space.

Symplectic vector spaces

A symplectic \mathbb{F}-vector space is an \mathbb{F}-vector space V equipped with a nondegenerate, alternating, bilinear form $B: V \times V \rightarrow \mathbb{F}$.
© B is bilinear if $B\left(v,{ }_{-}\right)$and $B\left({ }_{-}, v\right)$ are linear maps $V \rightarrow \mathbb{F}$ for each $v \in V$.
(c) B is nondegenerate is the functionals $B\left(v,{ }_{-}\right)$and $B\left(_, v\right)$ are nonzero whenever $v \neq 0$.
(3) B is alternating if $B(v, v)=0$ for every $v \in V$.

We may write $u \perp v$ to mean $B(u, v)=0$, and say that u is orthogonal (or perpendicular) to v.
If V is a space with a bilinear form, then the relation \perp is symmetric ($u \perp v$ iff
$v \perp u$) iff the form is symmetric or alternating (Thm 6.6.2 of BA1).
"Alternating" means every vector is orthogonal to itself.
"Nondegenerate" means no nonzero vector is orthogonal to the entire space.
We may write u^{\perp} for $\{v \in V \mid u \perp v\}$.

Symplectic vector spaces

A symplectic \mathbb{F}-vector space is an \mathbb{F}-vector space V equipped with a nondegenerate, alternating, bilinear form $B: V \times V \rightarrow \mathbb{F}$.
© B is bilinear if $B\left(v,{ }_{-}\right)$and $B\left({ }_{-}, v\right)$ are linear maps $V \rightarrow \mathbb{F}$ for each $v \in V$.
(c) B is nondegenerate is the functionals $B\left(v,{ }_{-}\right)$and $B\left(_, v\right)$ are nonzero whenever $v \neq 0$.
(3) B is alternating if $B(v, v)=0$ for every $v \in V$.

We may write $u \perp v$ to mean $B(u, v)=0$, and say that u is orthogonal (or perpendicular) to v.
If V is a space with a bilinear form, then the relation \perp is symmetric ($u \perp v$ iff
$v \perp u$) iff the form is symmetric or alternating (Thm 6.6.2 of BA1).
"Alternating" means every vector is orthogonal to itself.
"Nondegenerate" means no nonzero vector is orthogonal to the entire space.
We may write u^{\perp} for $\{v \in V \mid u \perp v\}$. This is a codimension 1 subspace of V.

Symplectic vector spaces

A symplectic \mathbb{F}-vector space is an \mathbb{F}-vector space V equipped with a nondegenerate, alternating, bilinear form $B: V \times V \rightarrow \mathbb{F}$.
(1) B is bilinear if $B\left(v,{ }_{-}\right)$and $B\left(_, v\right)$ are linear maps $V \rightarrow \mathbb{F}$ for each $v \in V$.
(2) B is nondegenerate is the functionals $B\left(v,,_{-}\right)$and $B\left(_, v\right)$ are nonzero whenever $v \neq 0$.
(3) B is alternating if $B(v, v)=0$ for every $v \in V$.

We may write $u \perp v$ to mean $B(u, v)=0$, and say that u is orthogonal (or perpendicular) to v.
If V is a space with a bilinear form, then the relation \perp is symmetric ($u \perp v$ iff
$v \perp u$) iff the form is symmetric or alternating (Thm 6.6.2 of BA1).
"Alternating" means every vector is orthogonal to itself.
"Nondegenerate" means no nonzero vector is orthogonal to the entire space.
We may write u^{\perp} for $\{v \in V \mid u \perp v\}$. This is a codimension 1 subspace of V. Alternating implies antisymmetric. Converse holds if $\operatorname{char}(\mathbb{F}) \neq 2$.

Matrices for forms

Matrices for forms

Let $\langle V ; B(x, y)\rangle$ be a f.d. vector space with a bilinear form.

Matrices for forms

Let $\langle V ; B(x, y)\rangle$ be a $\mathrm{f} . \mathrm{d}$. vector space with a bilinear form. If $\mathcal{B}=\left(e_{1}, \ldots, e_{n}\right)$ is an ordered basis for V, then vectors $u \in V$ may be represented by column vectors in \mathbb{F}^{n}.

Matrices for forms

Let $\langle V ; B(x, y)\rangle$ be a f.d. vector space with a bilinear form. If $\mathcal{B}=\left(e_{1}, \ldots, e_{n}\right)$ is an ordered basis for V, then vectors $u \in V$ may be represented by column vectors in \mathbb{F}^{n}.
If $u=\alpha_{1} e_{1}+\cdots+\alpha_{n} e_{n}$, then

$$
[u]_{\mathcal{B}}=\left[\begin{array}{c}
\alpha_{1} \\
\vdots \\
\alpha_{n}
\end{array}\right]
$$

Matrices for forms

Let $\langle V ; B(x, y)\rangle$ be a f.d. vector space with a bilinear form. If $\mathcal{B}=\left(e_{1}, \ldots, e_{n}\right)$ is an ordered basis for V, then vectors $u \in V$ may be represented by column vectors in \mathbb{F}^{n}.
If $u=\alpha_{1} e_{1}+\cdots+\alpha_{n} e_{n}$, then

$$
[u]_{\mathcal{B}}=\left[\begin{array}{c}
\alpha_{1} \\
\vdots \\
\alpha_{n}
\end{array}\right]
$$

If $v=\beta_{1} e_{1}+\cdots+\beta_{n} e_{n}$, then

Matrices for forms

Let $\langle V ; B(x, y)\rangle$ be a f.d. vector space with a bilinear form. If $\mathcal{B}=\left(e_{1}, \ldots, e_{n}\right)$ is an ordered basis for V, then vectors $u \in V$ may be represented by column vectors in \mathbb{F}^{n}.
If $u=\alpha_{1} e_{1}+\cdots+\alpha_{n} e_{n}$, then

$$
[u]_{\mathcal{B}}=\left[\begin{array}{c}
\alpha_{1} \\
\vdots \\
\alpha_{n}
\end{array}\right]
$$

If $v=\beta_{1} e_{1}+\cdots+\beta_{n} e_{n}$, then

$$
\begin{aligned}
B(u, v) & =B\left(\alpha_{1} e_{1}+\cdots+\alpha_{n} e_{n}, \beta_{1} e_{1}+\cdots+\beta_{n} e_{n}\right) \\
& =\sum_{i, j} \alpha_{i} \beta_{j} B\left(e_{i}, e_{j}\right)
\end{aligned}
$$

Matrices for forms

Let $\langle V ; B(x, y)\rangle$ be a f.d. vector space with a bilinear form. If $\mathcal{B}=\left(e_{1}, \ldots, e_{n}\right)$ is an ordered basis for V, then vectors $u \in V$ may be represented by column vectors in \mathbb{F}^{n}.
If $u=\alpha_{1} e_{1}+\cdots+\alpha_{n} e_{n}$, then

$$
[u]_{\mathcal{B}}=\left[\begin{array}{c}
\alpha_{1} \\
\vdots \\
\alpha_{n}
\end{array}\right]
$$

If $v=\beta_{1} e_{1}+\cdots+\beta_{n} e_{n}$, then

$$
\begin{aligned}
B(u, v) & =B\left(\alpha_{1} e_{1}+\cdots+\alpha_{n} e_{n}, \beta_{1} e_{1}+\cdots+\beta_{n} e_{n}\right) \\
& =\sum_{i, j} \alpha_{i} \beta_{j} B\left(e_{i}, e_{j}\right)
\end{aligned}
$$

so the value of $B(u, v)$ is determined by $[u]_{\mathcal{B}},[v]_{\mathcal{B}}$, and the values $B\left(e_{i}, e_{j}\right)$. In fact, if $[B]_{\mathcal{B}}=\left[B\left(e_{i}, e_{j}\right)\right]=M$ then

Matrices for forms

Let $\langle V ; B(x, y)\rangle$ be a f.d. vector space with a bilinear form. If $\mathcal{B}=\left(e_{1}, \ldots, e_{n}\right)$ is an ordered basis for V, then vectors $u \in V$ may be represented by column vectors in \mathbb{F}^{n}.
If $u=\alpha_{1} e_{1}+\cdots+\alpha_{n} e_{n}$, then

$$
[u]_{\mathcal{B}}=\left[\begin{array}{c}
\alpha_{1} \\
\vdots \\
\alpha_{n}
\end{array}\right]
$$

If $v=\beta_{1} e_{1}+\cdots+\beta_{n} e_{n}$, then

$$
\begin{aligned}
B(u, v) & =B\left(\alpha_{1} e_{1}+\cdots+\alpha_{n} e_{n}, \beta_{1} e_{1}+\cdots+\beta_{n} e_{n}\right) \\
& =\sum_{i, j} \alpha_{i} \beta_{j} B\left(e_{i}, e_{j}\right)
\end{aligned}
$$

so the value of $B(u, v)$ is determined by $[u]_{\mathcal{B}},[v]_{\mathcal{B}}$, and the values $B\left(e_{i}, e_{j}\right)$. In fact, if $[B]_{\mathcal{B}}=\left[B\left(e_{i}, e_{j}\right)\right]=M$ then

$$
B(u, v)=[u]_{\mathcal{B}}^{t}[B]_{\mathcal{B}}[v]_{\mathcal{B}}=[u]^{t} M[v] .
$$

Change of basis

Change of basis

If $\mathcal{B}=\left(e_{1}, \ldots, e_{n}\right)$ and $\mathcal{C}=\left(f_{1}, \ldots, f_{n}\right)$ are ordered bases for V,

Change of basis

If $\mathcal{B}=\left(e_{1}, \ldots, e_{n}\right)$ and $\mathcal{C}=\left(f_{1}, \ldots, f_{n}\right)$ are ordered bases for V, and $T=\mathcal{C}\left[\mathrm{id}_{V}\right]_{\mathcal{B}}$ is the change of basis matrix from basis \mathcal{B} to basis \mathcal{C}, then

Change of basis

If $\mathcal{B}=\left(e_{1}, \ldots, e_{n}\right)$ and $\mathcal{C}=\left(f_{1}, \ldots, f_{n}\right)$ are ordered bases for V, and $T=\mathcal{C}\left[\mathrm{id}_{V}\right]_{\mathcal{B}}$ is the change of basis matrix from basis \mathcal{B} to basis \mathcal{C}, then

$$
[u]_{\mathcal{C}}=T \cdot[u]_{\mathcal{B}},
$$

Change of basis

If $\mathcal{B}=\left(e_{1}, \ldots, e_{n}\right)$ and $\mathcal{C}=\left(f_{1}, \ldots, f_{n}\right)$ are ordered bases for V, and $T=\mathcal{C}\left[\mathrm{id}_{V}\right]_{\mathcal{B}}$ is the change of basis matrix from basis \mathcal{B} to basis \mathcal{C}, then

$$
[u]_{\mathcal{C}}=T \cdot[u]_{\mathcal{B}}, \quad[B]_{\mathcal{B}}=T^{t} \cdot[B]_{\mathcal{C}} \cdot T
$$

Change of basis

If $\mathcal{B}=\left(e_{1}, \ldots, e_{n}\right)$ and $\mathcal{C}=\left(f_{1}, \ldots, f_{n}\right)$ are ordered bases for V, and $T=\mathcal{C}_{\mathcal{C}}\left[\mathrm{id}_{V}\right]_{\mathcal{B}}$ is the change of basis matrix from basis \mathcal{B} to basis \mathcal{C}, then

$$
[u]_{\mathcal{C}}=T \cdot[u]_{\mathcal{B}}, \quad[B]_{\mathcal{B}}=T^{t} \cdot[B]_{\mathcal{C}} \cdot T
$$

Call matrices M and N congruent if there is an invertible matrix T such that $M=T^{t} N T$. We wish to classify possible matrices for a symplectic form $B(x, y)$, up to congruence.

The theorem

The theorem

Thm. Any symplectic vector space $\langle V ; B(x, y)\rangle$ has a symplectic basis $\mathcal{B}=\left(e_{1}, f_{1}, \ldots, e_{n}, f_{n}\right)$,

The theorem

Thm. Any symplectic vector space $\langle V ; B(x, y)\rangle$ has a symplectic basis $\mathcal{B}=\left(e_{1}, f_{1}, \ldots, e_{n}, f_{n}\right)$, with respect which B has block diagonal form

The theorem

Thm. Any symplectic vector space $\langle V ; B(x, y)\rangle$ has a symplectic basis $\mathcal{B}=\left(e_{1}, f_{1}, \ldots, e_{n}, f_{n}\right)$, with respect which B has block diagonal form

$$
[B]_{\mathcal{B}}=\left[\begin{array}{cccc}
S & 0 & \cdots & 0 \\
0 & S & & 0 \\
\vdots & & \ddots & \vdots \\
0 & 0 & \cdots & S
\end{array}\right]
$$

The theorem

Thm. Any symplectic vector space $\langle V ; B(x, y)\rangle$ has a symplectic basis $\mathcal{B}=\left(e_{1}, f_{1}, \ldots, e_{n}, f_{n}\right)$, with respect which B has block diagonal form

$$
[B]_{\mathcal{B}}=\left[\begin{array}{cccc}
S & 0 & \cdots & 0 \\
0 & S & & 0 \\
\vdots & & \ddots & \vdots \\
0 & 0 & \cdots & S
\end{array}\right]
$$

where $S=\left[\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right]$.

The theorem

Thm. Any symplectic vector space $\langle V ; B(x, y)\rangle$ has a symplectic basis $\mathcal{B}=\left(e_{1}, f_{1}, \ldots, e_{n}, f_{n}\right)$, with respect which B has block diagonal form

$$
[B]_{\mathcal{B}}=\left[\begin{array}{cccc}
S & 0 & \cdots & 0 \\
0 & S & & 0 \\
\vdots & & \ddots & \vdots \\
0 & 0 & \cdots & S
\end{array}\right]
$$

where $S=\left[\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right]$. If $V_{i}=\operatorname{span}\left(e_{i}, f_{i}\right)$ and B_{i} is the restriction of B to V_{i}, then the $\left\langle V_{i}, B_{i}(x, y)\right\rangle$ are 2-dimensional symplectic subspaces of V, and V is the orthogonal direct sum of these subspaces.

The theorem

Thm. Any symplectic vector space $\langle V ; B(x, y)\rangle$ has a symplectic basis $\mathcal{B}=\left(e_{1}, f_{1}, \ldots, e_{n}, f_{n}\right)$, with respect which B has block diagonal form

$$
[B]_{\mathcal{B}}=\left[\begin{array}{cccc}
S & 0 & \cdots & 0 \\
0 & S & & 0 \\
\vdots & & \ddots & \vdots \\
0 & 0 & \cdots & S
\end{array}\right]
$$

where $S=\left[\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right]$. If $V_{i}=\operatorname{span}\left(e_{i}, f_{i}\right)$ and B_{i} is the restriction of B to V_{i}, then the $\left\langle V_{i}, B_{i}(x, y)\right\rangle$ are 2-dimensional symplectic subspaces of V, and V is the orthogonal direct sum of these subspaces. (The V_{i} are called "hyperbolic planes".)

The proof

The proof

(1) Let e_{1} be any nonzero vector.

The proof

(1) Let e_{1} be any nonzero vector.
(2) e_{1}^{\perp} has codimension 1 , so choose f_{1} such that $B\left(e_{1}, f_{1}\right) \neq 0$.

The proof

(1) Let e_{1} be any nonzero vector.
(2) e_{1}^{\perp} has codimension 1 , so choose f_{1} such that $B\left(e_{1}, f_{1}\right) \neq 0$.

The proof

(1) Let e_{1} be any nonzero vector.
(2) e_{1}^{\perp} has codimension 1 , so choose f_{1} such that $B\left(e_{1}, f_{1}\right) \neq 0$. May assume, after scaling f_{1}, that $B\left(e_{1}, f_{1}\right)=1$.

The proof

(1) Let e_{1} be any nonzero vector.
(2) e_{1}^{\perp} has codimension 1 , so choose f_{1} such that $B\left(e_{1}, f_{1}\right) \neq 0$. May assume, after scaling f_{1}, that $B\left(e_{1}, f_{1}\right)=1$.
(3) $e_{1}^{\perp} \neq f_{1}^{\perp}$, since $f_{1} \in f_{1}^{\perp}-e_{1}^{\perp}$.

The proof

(1) Let e_{1} be any nonzero vector.
(2) e_{1}^{\perp} has codimension 1 , so choose f_{1} such that $B\left(e_{1}, f_{1}\right) \neq 0$. May assume, after scaling f_{1}, that $B\left(e_{1}, f_{1}\right)=1$.
(3) $e_{1}^{\perp} \neq f_{1}^{\perp}$, since $f_{1} \in f_{1}^{\perp}-e_{1}^{\perp}$.

The proof

(1) Let e_{1} be any nonzero vector.
(2) e_{1}^{\perp} has codimension 1 , so choose f_{1} such that $B\left(e_{1}, f_{1}\right) \neq 0$. May assume, after scaling f_{1}, that $B\left(e_{1}, f_{1}\right)=1$.
(3) $e_{1}^{\perp} \neq f_{1}^{\perp}$, since $f_{1} \in f_{1}^{\perp}-e_{1}^{\perp}$. (Similarly, $e_{1} \in e_{1}^{\perp}-f_{1}^{\perp}$.)

The proof

(1) Let e_{1} be any nonzero vector.
(2) e_{1}^{\perp} has codimension 1 , so choose f_{1} such that $B\left(e_{1}, f_{1}\right) \neq 0$. May assume, after scaling f_{1}, that $B\left(e_{1}, f_{1}\right)=1$.
(3) $e_{1}^{\perp} \neq f_{1}^{\perp}$, since $f_{1} \in f_{1}^{\perp}-e_{1}^{\perp}$. (Similarly, $e_{1} \in e_{1}^{\perp}-f_{1}^{\perp}$.)
(9) Let $H_{1}=\operatorname{span}\left(e_{1}, f_{1}\right)$.

The proof

(1) Let e_{1} be any nonzero vector.
(2) e_{1}^{\perp} has codimension 1 , so choose f_{1} such that $B\left(e_{1}, f_{1}\right) \neq 0$. May assume, after scaling f_{1}, that $B\left(e_{1}, f_{1}\right)=1$.
(3) $e_{1}^{\perp} \neq f_{1}^{\perp}$, since $f_{1} \in f_{1}^{\perp}-e_{1}^{\perp}$. (Similarly, $e_{1} \in e_{1}^{\perp}-f_{1}^{\perp}$.)
(9) Let $H_{1}=\operatorname{span}\left(e_{1}, f_{1}\right)$.
(0) $\left.B(x, y)\right|_{H_{1}}$ has matrix S relative to $\left\{e_{1}, f_{1}\right\}$.

The proof

(1) Let e_{1} be any nonzero vector.
(2) e_{1}^{\perp} has codimension 1 , so choose f_{1} such that $B\left(e_{1}, f_{1}\right) \neq 0$. May assume, after scaling f_{1}, that $B\left(e_{1}, f_{1}\right)=1$.
(3) $e_{1}^{\perp} \neq f_{1}^{\perp}$, since $f_{1} \in f_{1}^{\perp}-e_{1}^{\perp}$. (Similarly, $e_{1} \in e_{1}^{\perp}-f_{1}^{\perp}$.)
(9) Let $H_{1}=\operatorname{span}\left(e_{1}, f_{1}\right)$.
(3) $\left.B(x, y)\right|_{H_{1}}$ has matrix S relative to $\left\{e_{1}, f_{1}\right\}$.
(c) $H_{1}^{\perp}=e_{1}^{\perp} \cap f_{1}^{\perp}$ has codimension 2 .

The proof

(1) Let e_{1} be any nonzero vector.
(2) e_{1}^{\perp} has codimension 1 , so choose f_{1} such that $B\left(e_{1}, f_{1}\right) \neq 0$. May assume, after scaling f_{1}, that $B\left(e_{1}, f_{1}\right)=1$.
(3) $e_{1}^{\perp} \neq f_{1}^{\perp}$, since $f_{1} \in f_{1}^{\perp}-e_{1}^{\perp}$. (Similarly, $e_{1} \in e_{1}^{\perp}-f_{1}^{\perp}$.)
(9) Let $H_{1}=\operatorname{span}\left(e_{1}, f_{1}\right)$.
(3) $\left.B(x, y)\right|_{H_{1}}$ has matrix S relative to $\left\{e_{1}, f_{1}\right\}$.
(2) $H_{1}^{\perp}=e_{1}^{\perp} \cap f_{1}^{\perp}$ has codimension 2 .
(-) $H_{1} \cap H_{1}^{\perp}=\{0\}$,

The proof

(1) Let e_{1} be any nonzero vector.
(2) e_{1}^{\perp} has codimension 1 , so choose f_{1} such that $B\left(e_{1}, f_{1}\right) \neq 0$. May assume, after scaling f_{1}, that $B\left(e_{1}, f_{1}\right)=1$.
(3) $e_{1}^{\perp} \neq f_{1}^{\perp}$, since $f_{1} \in f_{1}^{\perp}-e_{1}^{\perp}$. (Similarly, $e_{1} \in e_{1}^{\perp}-f_{1}^{\perp}$.)
(9) Let $H_{1}=\operatorname{span}\left(e_{1}, f_{1}\right)$.
(3) $\left.B(x, y)\right|_{H_{1}}$ has matrix S relative to $\left\{e_{1}, f_{1}\right\}$.
(2) $H_{1}^{\perp}=e_{1}^{\perp} \cap f_{1}^{\perp}$ has codimension 2 .
(-) $H_{1} \cap H_{1}^{\perp}=\{0\}$,

The proof

(1) Let e_{1} be any nonzero vector.
(2) e_{1}^{\perp} has codimension 1 , so choose f_{1} such that $B\left(e_{1}, f_{1}\right) \neq 0$. May assume, after scaling f_{1}, that $B\left(e_{1}, f_{1}\right)=1$.
(3) $e_{1}^{\perp} \neq f_{1}^{\perp}$, since $f_{1} \in f_{1}^{\perp}-e_{1}^{\perp}$. (Similarly, $e_{1} \in e_{1}^{\perp}-f_{1}^{\perp}$.)
(1) Let $H_{1}=\operatorname{span}\left(e_{1}, f_{1}\right)$.
(3) $\left.B(x, y)\right|_{H_{1}}$ has matrix S relative to $\left\{e_{1}, f_{1}\right\}$.
(2) $H_{1}^{\perp}=e_{1}^{\perp} \cap f_{1}^{\perp}$ has codimension 2 .
(c) $H_{1} \cap H_{1}^{\perp}=\{0\}, V=H_{1}+H_{1}^{\perp}$,

The proof

(1) Let e_{1} be any nonzero vector.
(2) e_{1}^{\perp} has codimension 1 , so choose f_{1} such that $B\left(e_{1}, f_{1}\right) \neq 0$. May assume, after scaling f_{1}, that $B\left(e_{1}, f_{1}\right)=1$.
(3) $e_{1}^{\perp} \neq f_{1}^{\perp}$, since $f_{1} \in f_{1}^{\perp}-e_{1}^{\perp}$. (Similarly, $e_{1} \in e_{1}^{\perp}-f_{1}^{\perp}$.)
(1) Let $H_{1}=\operatorname{span}\left(e_{1}, f_{1}\right)$.
(3) $\left.B(x, y)\right|_{H_{1}}$ has matrix S relative to $\left\{e_{1}, f_{1}\right\}$.
(2) $H_{1}^{\perp}=e_{1}^{\perp} \cap f_{1}^{\perp}$ has codimension 2 .
(0) $H_{1} \cap H_{1}^{\perp}=\{0\}, V=H_{1}+H_{1}^{\perp}, H_{1} \perp H_{1}^{\perp}$.

The proof

(1) Let e_{1} be any nonzero vector.
(2) e_{1}^{\perp} has codimension 1 , so choose f_{1} such that $B\left(e_{1}, f_{1}\right) \neq 0$. May assume, after scaling f_{1}, that $B\left(e_{1}, f_{1}\right)=1$.
(3) $e_{1}^{\perp} \neq f_{1}^{\perp}$, since $f_{1} \in f_{1}^{\perp}-e_{1}^{\perp}$. (Similarly, $e_{1} \in e_{1}^{\perp}-f_{1}^{\perp}$.)
(1) Let $H_{1}=\operatorname{span}\left(e_{1}, f_{1}\right)$.
(3) $\left.B(x, y)\right|_{H_{1}}$ has matrix S relative to $\left\{e_{1}, f_{1}\right\}$.
(2) $H_{1}^{\perp}=e_{1}^{\perp} \cap f_{1}^{\perp}$ has codimension 2 .
(0) $H_{1} \cap H_{1}^{\perp}=\{0\}, V=H_{1}+H_{1}^{\perp}, H_{1} \perp H_{1}^{\perp}$.
(8) $\left.B(x, y)\right|_{H_{1}^{\perp}}$ is a symplectic form on H_{1}^{\perp}.

The proof

(1) Let e_{1} be any nonzero vector.
(2) e_{1}^{\perp} has codimension 1 , so choose f_{1} such that $B\left(e_{1}, f_{1}\right) \neq 0$. May assume, after scaling f_{1}, that $B\left(e_{1}, f_{1}\right)=1$.
(3) $e_{1}^{\perp} \neq f_{1}^{\perp}$, since $f_{1} \in f_{1}^{\perp}-e_{1}^{\perp}$. (Similarly, $e_{1} \in e_{1}^{\perp}-f_{1}^{\perp}$.)
(1) Let $H_{1}=\operatorname{span}\left(e_{1}, f_{1}\right)$.
(3) $\left.B(x, y)\right|_{H_{1}}$ has matrix S relative to $\left\{e_{1}, f_{1}\right\}$.
(2) $H_{1}^{\perp}=e_{1}^{\perp} \cap f_{1}^{\perp}$ has codimension 2 .
(0) $H_{1} \cap H_{1}^{\perp}=\{0\}, V=H_{1}+H_{1}^{\perp}, H_{1} \perp H_{1}^{\perp}$.
(8) $\left.B(x, y)\right|_{H_{1}^{\perp}}$ is a symplectic form on H_{1}^{\perp}.

The proof

(1) Let e_{1} be any nonzero vector.
(2) e_{1}^{\perp} has codimension 1 , so choose f_{1} such that $B\left(e_{1}, f_{1}\right) \neq 0$. May assume, after scaling f_{1}, that $B\left(e_{1}, f_{1}\right)=1$.
(3) $e_{1}^{\perp} \neq f_{1}^{\perp}$, since $f_{1} \in f_{1}^{\perp}-e_{1}^{\perp}$. (Similarly, $e_{1} \in e_{1}^{\perp}-f_{1}^{\perp}$.)
(9) Let $H_{1}=\operatorname{span}\left(e_{1}, f_{1}\right)$.
(3) $\left.B(x, y)\right|_{H_{1}}$ has matrix S relative to $\left\{e_{1}, f_{1}\right\}$.
(0) $H_{1}^{\perp}=e_{1}^{\perp} \cap f_{1}^{\perp}$ has codimension 2 .
(0) $H_{1} \cap H_{1}^{\perp}=\{0\}, V=H_{1}+H_{1}^{\perp}, H_{1} \perp H_{1}^{\perp}$.
(8) $\left.B(x, y)\right|_{H_{1}^{\perp}}$ is a symplectic form on H_{1}^{\perp}.
(2) Matrix of B on $H_{1} \oplus H_{1}^{\perp}$ has form $\left[\begin{array}{l|l}S & 0 \\ \hline 0 & *\end{array}\right]$.

