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Symplectic vector spaces

A symplectic F-vector space is an F-vector space V equipped with a
nondegenerate, alternating, bilinear form B : V × V → F.

1 B is bilinear if B(v, ) and B( , v) are linear maps V → F for each
v ∈ V .

2 B is nondegenerate is the functionals B(v, ) and B( , v) are nonzero
whenever v 6= 0.

3 B is alternating if B(v, v) = 0 for every v ∈ V .

We may write u ⊥ v to mean B(u, v) = 0, and say that u is orthogonal (or
perpendicular) to v.
If V is a space with a bilinear form, then the relation ⊥ is symmetric (u ⊥ v iff
v ⊥ u) iff the form is symmetric or alternating (Thm 6.6.2 of BA1).
“Alternating” means every vector is orthogonal to itself.
“Nondegenerate” means no nonzero vector is orthogonal to the entire space.
We may write u⊥ for {v ∈ V | u ⊥ v}. This is a codimension 1 subspace of V .
Alternating implies antisymmetric. Converse holds if char(F) 6= 2.
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Matrices for forms

Let 〈V;B(x, y)〉 be a f.d. vector space with a bilinear form. If
B = (e1, . . . , en) is an ordered basis for V , then vectors u ∈ V may be
represented by column vectors in Fn.
If u = α1e1 + · · ·+ αnen, then

[u]B =

α1
...
αn


If v = β1e1 + · · ·+ βnen, then

B(u, v) = B(α1e1 + · · ·+ αnen, β1e1 + · · ·+ βnen)
=
∑

i,j αiβjB(ei, ej)

so the value of B(u, v) is determined by [u]B, [v]B, and the values B(ei, ej). In
fact, if [B]B = [B(ei, ej)] = M then

B(u, v) = [u]tB[B]B[v]B = [u]tM[v].
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Change of basis

If B = (e1, . . . , en) and C = (f1, . . . , fn) are ordered bases for V , and
T = C [idV ]B is the change of basis matrix from basis B to basis C, then

[u]C = T · [u]B, [B]B = T t · [B]C · T.

Call matrices M and N congruent if there is an invertible matrix T such that
M = T tNT . We wish to classify possible matrices for a symplectic form
B(x, y), up to congruence.
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The theorem

Thm. Any symplectic vector space 〈V;B(x, y)〉 has a symplectic basis
B = (e1, f1, . . . , en, fn), with respect which B has block diagonal form

[B]B =


S 0 · · · 0
0 S 0
...

. . .
...

0 0 · · · S


where S =

[
0 1
−1 0

]
. If Vi = span(ei, fi) and Bi is the restriction of B to Vi,

then the 〈Vi,Bi(x, y)〉 are 2-dimensional symplectic subspaces of V , and V is
the orthogonal direct sum of these subspaces. (The Vi are called “hyperbolic
planes”.)
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. If Vi = span(ei, fi) and Bi is the restriction of B to Vi,

then the 〈Vi,Bi(x, y)〉 are 2-dimensional symplectic subspaces of V , and V is
the orthogonal direct sum of these subspaces. (The Vi are called “hyperbolic
planes”.)
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The proof

1 Let e1 be any nonzero vector.
2 e⊥1 has codimension 1, so choose f1 such that B(e1, f1) 6= 0. May assume,

after scaling f1, that B(e1, f1) = 1.
3 e⊥1 6= f⊥1 , since f1 ∈ f⊥1 − e⊥1 . (Similarly, e1 ∈ e⊥1 − f⊥1 .)
4 Let H1 = span(e1, f1).
5 B(x, y)|H1 has matrix S relative to {e1, f1}.
6 H⊥

1 = e⊥1 ∩ f⊥1 has codimension 2.
7 H1 ∩ H⊥

1 = {0}, V = H1 + H⊥
1 , H1 ⊥ H⊥

1 .
8 B(x, y)|H⊥

1
is a symplectic form on H⊥

1 .

9 Matrix of B on H1 ⊕ H⊥
1 has form

[
S 0
0 ∗

]
.
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