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Modules, I

Richard Dedekind introduced the name “module” into mathematics. (From
“modulus of a congruence a ≡ b (mod p)” to “modulus of a congruence
a ≡ b (mod p)” to “additive subgroup of C” to “module”.)

Df. (R a ring.) An R-module is a structure 〈M; +,−, 0, {r(x) | r ∈ R}〉 such
that 〈M; +,−, 0〉 is an abelian group and ρ : R→ EndZ(M) : r 7→ r(x) is a
ring homomorphism.

Df. (R a k-algebra defined by k→ R : α 7→ α · 1.) An R-module is a structure
〈V; +,−, 0, {r(x) | r ∈ R}〉 such that 〈V; +,−, 0, {α(x) | α ∈ k}〉 is k-vector
space and ρ : R→ Endk(V) : r 7→ r(x) is a k-algebra homomorphism.

The class of all R-modules is equationally definable, hence forms (the object
class of) a complete and cocomplete category. The study of this category is
the representation theory of R.
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Simplest examples

1 (R = Z) : A Z-module is an abelian group M equipped with scalar
multiplications

n(x) = x + · · ·+ x︸ ︷︷ ︸
n times

, n ∈ Z

2 (R = k, a field) : A k-module is a k-vector space V . So the
representations of a field k are classified by dimension.

3 (R = M2(R)) : R2 is a simple M2(R)-module. Every M2(R)-module is a
direct sum of a uniquely determined number of copies of this simple
module. The representations of M2(R) are also classified by a single
cardinal parameter.

4 (R = R) : R is an R-module. (Write RR.) The submodules of RR are the
(left) ideals of R.

Modules 3 / 6



Simplest examples

1 (R = Z) :

A Z-module is an abelian group M equipped with scalar
multiplications

n(x) = x + · · ·+ x︸ ︷︷ ︸
n times

, n ∈ Z

2 (R = k, a field) : A k-module is a k-vector space V . So the
representations of a field k are classified by dimension.

3 (R = M2(R)) : R2 is a simple M2(R)-module. Every M2(R)-module is a
direct sum of a uniquely determined number of copies of this simple
module. The representations of M2(R) are also classified by a single
cardinal parameter.

4 (R = R) : R is an R-module. (Write RR.) The submodules of RR are the
(left) ideals of R.

Modules 3 / 6



Simplest examples

1 (R = Z) :

A Z-module is an abelian group M equipped with scalar
multiplications

n(x) = x + · · ·+ x︸ ︷︷ ︸
n times

, n ∈ Z

2 (R = k, a field) : A k-module is a k-vector space V . So the
representations of a field k are classified by dimension.

3 (R = M2(R)) : R2 is a simple M2(R)-module. Every M2(R)-module is a
direct sum of a uniquely determined number of copies of this simple
module. The representations of M2(R) are also classified by a single
cardinal parameter.

4 (R = R) : R is an R-module. (Write RR.) The submodules of RR are the
(left) ideals of R.

Modules 3 / 6



Simplest examples

1 (R = Z) : A Z-module is an abelian group M equipped with scalar
multiplications

n(x) = x + · · ·+ x︸ ︷︷ ︸
n times

, n ∈ Z

2 (R = k, a field) : A k-module is a k-vector space V . So the
representations of a field k are classified by dimension.

3 (R = M2(R)) : R2 is a simple M2(R)-module. Every M2(R)-module is a
direct sum of a uniquely determined number of copies of this simple
module. The representations of M2(R) are also classified by a single
cardinal parameter.

4 (R = R) : R is an R-module. (Write RR.) The submodules of RR are the
(left) ideals of R.

Modules 3 / 6



Simplest examples

1 (R = Z) : A Z-module is an abelian group M equipped with scalar
multiplications

n(x) = x + · · ·+ x︸ ︷︷ ︸
n times

, n ∈ Z

2 (R = k, a field) :

A k-module is a k-vector space V . So the
representations of a field k are classified by dimension.

3 (R = M2(R)) : R2 is a simple M2(R)-module. Every M2(R)-module is a
direct sum of a uniquely determined number of copies of this simple
module. The representations of M2(R) are also classified by a single
cardinal parameter.

4 (R = R) : R is an R-module. (Write RR.) The submodules of RR are the
(left) ideals of R.

Modules 3 / 6



Simplest examples

1 (R = Z) : A Z-module is an abelian group M equipped with scalar
multiplications

n(x) = x + · · ·+ x︸ ︷︷ ︸
n times

, n ∈ Z

2 (R = k, a field) :

A k-module is a k-vector space V . So the
representations of a field k are classified by dimension.

3 (R = M2(R)) : R2 is a simple M2(R)-module. Every M2(R)-module is a
direct sum of a uniquely determined number of copies of this simple
module. The representations of M2(R) are also classified by a single
cardinal parameter.

4 (R = R) : R is an R-module. (Write RR.) The submodules of RR are the
(left) ideals of R.

Modules 3 / 6



Simplest examples

1 (R = Z) : A Z-module is an abelian group M equipped with scalar
multiplications

n(x) = x + · · ·+ x︸ ︷︷ ︸
n times

, n ∈ Z

2 (R = k, a field) : A k-module is a k-vector space V .

So the
representations of a field k are classified by dimension.

3 (R = M2(R)) : R2 is a simple M2(R)-module. Every M2(R)-module is a
direct sum of a uniquely determined number of copies of this simple
module. The representations of M2(R) are also classified by a single
cardinal parameter.

4 (R = R) : R is an R-module. (Write RR.) The submodules of RR are the
(left) ideals of R.

Modules 3 / 6



Simplest examples

1 (R = Z) : A Z-module is an abelian group M equipped with scalar
multiplications

n(x) = x + · · ·+ x︸ ︷︷ ︸
n times

, n ∈ Z

2 (R = k, a field) : A k-module is a k-vector space V . So the
representations of a field k are classified by dimension.

3 (R = M2(R)) : R2 is a simple M2(R)-module. Every M2(R)-module is a
direct sum of a uniquely determined number of copies of this simple
module. The representations of M2(R) are also classified by a single
cardinal parameter.

4 (R = R) : R is an R-module. (Write RR.) The submodules of RR are the
(left) ideals of R.
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Topics to discuss

1 Products, coproducts.

(a) Universal properties.
(b) Constructions of products and coproducts.

2 Free objects.

(a) Construction.
(b) Presentations.

3 Tensor product.

(a) Representable functors.
(b) Coalgebras.
(c) Presentation of tensor product.

4 Restriction and extension of scalars.
5 Exact sequences.

(a) Exact functors.
(b) Projectives and injectives.
(c) Flatness.

6 Localization.

Please read A-M, Chapters 2 & 3.
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Universal morphisms

Given a functor F : C → D, a universal morphism from X ∈ Ob(D) to F is a
pair (A, f ) ∈ Ob(C)×Mor(D) that is “universal” among all such pairs for the
property that f : X → F(A). The universality means that if (B, g) is another
pair with g : X → F(B), then there is a unique h : A→ B such that
g = F(h) ◦ f .

C

D

j

F
sX

?

f

F(A) ssA

s

A
A
A
A
A
AU

g

s
F(B)B

R∃!h RF(h)

For universal morphism to X, from F reverse the directions of the morphisms.
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pair with g : X → F(B), then there is a unique h : A→ B such that
g = F(h) ◦ f .
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Universal properties

The statement that (A, f ) is a universal morphism is the universal property of
this pair.

Examples.

1 Let C × C be the category whose objects are pairs (A,B) where
A,B ∈ Ob(C) and whose morphisms are pairs (f , g) where
f , g ∈ Mor(C). Now let ∆: C → C × C be the functor C 7→ (C,C),
e 7→ (e, e). For any X = (A,B) in this category, a universal morphism
from ∆ to X is a product (P, (πA, πB)) of A and B.

2 A universal morphism to ∆ from X is a coproduct of A and B.
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