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(Vi+,—,0,{r(x) | r € R}) such that (V; 4+, —,0,{a(x) | « € k}) is k-vector
space and p : R — Endg(V) : r — r(x) is a k-algebra homomorphism.

The class of all R-modules is equationally definable, hence forms (the object
class of) a complete and cocomplete category. The study of this category is
the representation theory of R.
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@ (R =k, afield) : A k-module is a k-vector space V. So the
representations of a field & are classified by dimension.

@ (R = My(R)) : R? is a simple M,(R)-module. Every M,(IR)-module is a
direct sum of a uniquely determined number of copies of this simple
module. The representations of M;(IR) are also classified by a single
cardinal parameter.

© (R =R) : Ris an R-module. (Write gR.) The submodules of gR are the
(left) ideals of R.
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@ Localization.

Please read A-M, Chapters 2 & 3.
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For universal morphism to X, from F reverse the directions of the morphisms.
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