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Uniserial domains

A domain D is uniserial if its ideal lattice is a chain.
Uniseriality induces a linear quasiorder on the multiplicative monoid
D◦ = 〈D− {0}; ·, 1〉 of D: a ≤ b iff a | b iff (a) ⊇ (b).

If we write a ∼ b to mean a ≤ b and b ≤ a, then a ∼ b holds when (a) = (b),
which holds iff a and b differ by a unit of D. The quotient D◦/D× is a linearly
ordered, commutative, cancellative monoid.

We can extend the linear quasiorder on D◦ to K×. For x, y ∈ K×, define x ≤ y
iff (∃d)(dx = y) iff 〈x〉D ⊇ 〈y〉D. If x = a/b ∈ K×, then b | a is equivalent to
x ∈ D while a | b is equivalent to x−1 ∈ D. Uniseriality of D is reflected by
this property of K: (∀x ∈ K)((x ∈ D) or (x−1 ∈ D)). (calg1p2) (D is a
valuation subring of K.)

The observations lead us to define a “value group” G = K×/D×, which has a
total order given by divisibility x ≤ y iff y/x ∈ D. (Or, the order on G is given
by the positive cone D◦/D×.) The function v : K× → G : x 7→ x = x/D× is a
valuation on K whose valuation ring is D.
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Examples

Example 1. D = (C[x])(x). The ideals of D are D ⊇ (x) ⊇ (x2) ⊇ · · · ⊇ (0).
The value group is ∼= Z. All Noetherian examples look like this example.

Example 2. Let A = C[x, x
1
2 , x

1
4 , · · · ], m = (x, x

1
2 , x

1
4 , · · · ), and D = Am.

Any f.g. ideal of D has the form (xq) where q is a positive dyadic rational. A
general ideal is determined by a filter of positive dyadic rationals. E.g., for
α ∈ R≥0, Iα = 〈xq |; q > α〉 and (xq), q > 0. The value group has size
continuum.
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